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Abstract— The importance of silicon cannot be undermined – in 
photovoltaics (PV) as well as in semiconductor industries. 
However, silicon is very brittle. Silicon cells/wafers crack easily 
during manufacturing assembly and/or during device 
operations. Crack Catcher AI uses novel smart fracture 
mechanics approach with Artificial Intelligence (AI) 
methodologies to predict and control crack/damage evolution in 
thin silicon cells/wafers.  This is critical as semiconductor 3D 
integration technology calls for wafer-to-wafer bonding with 
utmost alignment accuracy and yield/reliability. 

Index Terms-- 3D Integrated Devices/Packages, Fracture 
Mechanics, Machine Learning Approaches, Silicon Crack  

I. INTRODUCTION 
Silicon is a crucial material in modern technology, 

particularly in its thin-layer geometry, including in 
semiconductor industry. Most recently, thin silicon wafers 
(less than 1 mm thickness) with large diameters (up to 300 
mm or 12 inches) even need to be bonded wafer-to-wafer to 
enable 3D integration of microelectronics devices/packages. 
One of the key issues in Wafer-to-wafer bonding process is 
making sure the chips are all aligned within the specific target 
of Ultimate Bond Pad Pitch Target < 1 μm, with Pad to Pad 
Placement Accuracy (x, y) Target <10% of bonding pitch, for 
silicon semiconductor wafers as large as 300 mm and chiplet 
sizes as small as 2 x 2 mm [1]. 

Semiconductor wafers go through various thermal and 
mechanical processes during their Front-End and Back-End 
manufacturing sequence in the wafer fab. As a result, 
mechanical stress resides in the wafers, and especially in large 
wafers (300 mm diameter). The semiconductor industry has 
recognized this general issue and has used wafer curvature 
measurement techniques so far to manage stress due to 

thermomechanical processes as well as the introduction of 
new thin film materials in the past 10-15 years or so. 
However, this wafer curvature technique is mostly effective 
for determining the global stress in the wafers. Wafer-to-wafer 
bonding requires highly precise alignment between chips on 
one wafer to the chips on the other wafer it is to be bonded on, 
as illustrated in Fig. 1. Global or overall mechanical stresses in 
large semiconductor wafers have already made this quite 
challenging, but whether all chips in the large wafer can be 
aligned within the specific targets depends also on the local 
stresses which vary from location to location in the wafers. 
Even very small strains, such as exemplified in Fig. 1, could 
lead to large misalignment in the wafer-to-wafer bonding. 
Furthermore, these local stresses can lead to surface 
microcracks on wafers (either top or bottom) and result in 
even larger misalignments.   

Figure 1.   Schematic illustration of Wafer-to-wafer bonding process and the 
key issue of misalignment due to local stresses in the large, thin silicon 

semiconductor wafers. 



 

Our proposed solution is Crack Catcher AI – Smart 
Fracture Mechanics Approach in Thin Silicon Semiconductor 
Wafers for Enabling Wafer-to-wafer bonding in 3D 
Semiconductor Integrated Devices/Packages. It is about a 
local stress metrology tool that would allow rapid mapping of 
local stresses in a silicon semiconductor wafer which enables 
use in high volume manufacturing or packaging assembly 
environments. With the local stress map in each wafer, each 
potential misalignment on every chip on the wafer may be 
mapped and optimization of alignment process of each wafer 
in the Wafer-to-wafer bonding process both in X and Y 
directions may be done in fast, quantitative and with high 
confidence for the best results for manufacturing or packaging 
assembly yield. Our proposed technique for the local stress 
metrology is not based on the typical X-Ray Diffraction 
(XRD) or Raman methodology – in which case, rapid 
mapping of local stress has not been possible or practical. Our 
technique in the Crack Catcher AI method uses a laser system 
to detect local surface misorientations across the silicon wafer 
and correlate those to local stresses. Hence, the rapid mapping 
ability of the local stresses in a silicon semiconductor wafer. 

Our collaborative team has developed the Crack Catcher 
AI methodology mostly for determining local stresses in the 
silicon solar cells which have led to propagation of cracks in 
the solar cells – one of the top 3, if not top 2, reliability issues 
in the industry. Cracks occur in the silicon cells even when 
they are already integrated within the solar panels and in 
operation in the fields. They propagate due to mechanical 
stress or loads from winds, snows or storms which happen in 
ordinary circumstances in the fields, especially in four-season 
countries, like the U.S.A. Over time, when these cracks 
propagate to many of the areas in a solar cell, power 
production from that cell degrades significantly, and 
eventually affects the performance of the overall solar panel. 
Hence, these cracks are defects that can compromise the 
efficiency (power production) and longevity (lifetime) of 
photovoltaic (PV) modules. 

The Crack Catcher AI was our research joint 
collaboration’s entry in the Department of Energy (DOE)’s 
American-Made Solar Innovation competition in 2022 (Round 
6) which later was selected as the national semifinalists and 
won an award announced by DOE in December 2022 [2]. This 
system employs smart stress sensing and smart fracture 
prediction methods, integrating fundamental fracture 
mechanics with big data analytics to minimize cracks and 
enhance the durability of PV products. Smart Stress Sensing 
utilizes a laser-based curvature technique for rapid in-line 
stress measurement, while Smart Fracture Prediction applies 
AI for defect detection and yield improvement in PV 
production. While our study thus far has been primarily 
focused on monocrystalline silicon solar cells (for the 
applications of reliability improvement in the silicon solar PV 
industry), the principles and innovations discussed are also 
applicable to single crystal silicon semiconductor wafers. The 
present manuscript represents our efforts to apply the Crack 
Catcher AI methodology for enabling Wafer-to-wafer 
bonding process in the semiconductor industry. Much of the 
findings reported here are therefore mostly from the silicon 
solar cells, but we include our analysis on how they could 
enable chip alignment accuracy in the wafer-to-wafer bonding 

scheme, as well as enhancing semiconductor manufacturing 
yield (by damage/defect control of semiconductor wafers) 
along with improving semiconductor product quality and 
reliability. 

II. METHODOLOGIES 
Silicon, especially in its most useful thin layer form, is 

inherently brittle and prone to cracking during the 
manufacturing of solar cells or semiconductor wafers. In the 
PV industry, these cracks are defects that can compromise the 
efficiency and longevity of PV modules. Silicon solar cells are 
becoming increasingly thinner as technology advances. One 
drawback of this trend is higher stress concentration during the 
manufacturing processes. This is resulting in deteriorating 
efficiencies and long-term reliability of the silicon solar cells. 
The Crack Catcher AI is using high-resolution laser 
techniques to achieve similar quantitative stress that is built on 
previous work using synchrotron X-ray microdiffraction [3,4], 
to map stress in silicon cells. A smart stress sensing tool for 
inline production, improving fracture prediction and 
manufacturing yield is in development by leveraging AI and 
data analytics. The present manuscript outlines two key 
systems: Smart Stress Sensing (using laser technology) and 
Smart Fracture Sensing and Prediction (utilizing AI), both 
aimed at enhancing the efficiency and cost-effectiveness of 
next-generation solar silicon PV technologies (as shown in 
Fig. 2). 

Figure 2.   Schematic illustration of optical (laser-based) inline metrology 
system and the data processing via BeagleBone and big data analysis by 
cloud computing machine algorithms. Reproduced with permission from 

Elsevier B.V [2]. 

The Smart Stress Sensing (SSS) System is based on high-
resolution laser instrumentation and enabled by the local 
curvature technique (Stoney’s equation) [3,4]. This technique 
is used to measure the local stress and map it as a function of 
position (X, Y) across the large silicon semiconductor wafer in 
high resolution (micron-scale), such as illustrated in Fig. 2. 
The principle of measuring local stress in a thin silicon plate 
form based on local curvature has been successfully 
demonstrated [2,5-7] on silicon solar cells, such as shown in 
Fig. 3. Moreover, stress determination based on local 
curvature (Stoney’s equation) has been correlated with the 
stress determination based on synchrotron X-ray 
microdiffraction [5,6]. These are two different physics in 
measuring local stress in thin plate forms, and yet the results 
are correlated very well [6]. The mapping of local stress in a 
silicon semiconductor wafer using the local curvature method 
has not been demonstrated so far, but the scientific principles 
apply (both silicon solar cells and semiconductor wafers are 
on thin plate forms – where the Stoney’s equation would 
apply, only different in thicknesses, solar cells are about 200 
μm and semiconductor wafers are about 500-800 μm, and both 



 

are made out of single crystal silicon materials with the laser 
essentially reflecting on the same surface). It is within the 
scope of this proposal to demonstrate the basic feasibility of 
the SSS system for silicon semiconductor wafers. 

The Smart Fracture Sensing & Prediction (SFSP) System 
is based on AI (Artificial Intelligence) and big data analytics. 
This technique is used to detect and image defect/crack, map it 
as a function of position (X,Y) across the large silicon 
semiconductor wafer in high resolution (micron-scale) and 
predict the damage evolution or crack propagation based on 
AI and Machine Learning approaches, such as illustrated in 
Fig. 2. The basic principle of mapping and predicting the 
crack propagation has been successfully demonstrated [2] 
again on silicon solar cells. It is not yet done on silicon 
semiconductor wafers but again for similar reasons mentioned 
above (both are silicon single crystals on thin plate forms), the 
crack pattern prediction will be practically the same. On 
reference [2], we have demonstrated the ability of our SFSP 
system to predict the major directions (+/- 45°) of crack 
propagation in the single crystal silicon solar cells, as shown 
in Fig. 4. However, since then, we have also extended our 
work on the SFSP system to include the classification, 
clustering, correlating and predicting the other crack 
propagation lines (minor crack propagation pattern) observed 
in silicon solar cells from various manufacturers occurring due 
to ordinary circumstances (default operational conditions in 
the fields like wind, snow or storm, not extraordinary 
circumstances like fires, hurricanes or typhoons). Our SFSP 
system has been successful in classifying, clustering and 
correlating them, which are the mandatory initial steps for 
eventually predicting them. We present our most recent 
findings with the SFSP system in the Section: SPSF’s 
Ongoing Algorithm Development for Crack Prediction 
Beyond the Major Directions (+/- 45°) later in the present 
manuscript. This work will be continued and extended to 
typical surface crack propagation patterns observed in the 
silicon semiconductor wafers in this proposed work. 

In similar veins, many of our technical discussions in later 
sections of the present manuscript will be primarily based on 
our recent results with monocrystalline silicon solar cells, but 
they form the basis for our main argument in this proposal – 
that the SSS and the SFSP systems’ abilities will be applicable 
for silicon semiconductor wafers, and when done on 
manufacturing/packaging floors, they can help enhance 
misalignment precision and process in wafer-to-wafer bonding 
scheme for the semiconductor packaging industry, and will 
improve semiconductor manufacturing/packaging yield and 
device/product lifetime and reliability assessment. 

III. DATA/RESULTS 
A. Smart Stress Sensing (SSS) 

Silicon solar cells are becoming increasingly thinner as c-
Si (crystalline silicon) solar photovoltaics (PV) technology 
advances. One drawback of this trend is higher stress 
concentration during the manufacturing processes. This is 
resulting in deteriorating efficiencies and long-term reliability 
of the silicon solar cells. This study is using high-resolution 
laser techniques to achieve similar quantitative stress that is 
built on previous work using synchrotron X-ray 

microdiffraction [7,8], to map stress in silicon cells. A smart 
stress sensing tool for inline production, improving fracture 
prediction and manufacturing yield is in development by 
leveraging AI and data analytics. 

 Previous research using synchrotron X-ray 
microdiffraction (μSXRD) effectively mapped stress and 
crack propensity in silicon solar cell assemblies, allowing for 
precise stress quantification in high-stress areas. The current 
study aims to use a new stress sensing technique that replaces 
synchrotron radiation with a high-resolution laser source, 
while maintaining similar quantitative capabilities. This 
innovative approach aims to provide a detailed examination of 
stress and its evolution during real-world operational 
processes of solar devices [2]. The SSS technique aims to 
extend existing wafer curvature measurement methodologies 
to enable localized stress assessments in solar cells, using a 
lab-based system with higher resolution specifications [2,3,9] 
This approach allows for real-time stress measurements during 
manufacturing, facilitating faster innovation in cell design and 
architecture, particularly for ever larger silicon wafers and 
advanced 3D integration package designs. 

Our latest SSS results are shown in Fig. 3, using the laser 
set up (not the synchrotron set up). Fig. 3(a) shows the 
experimental stress maps obtained from the laser measurement 
on areas around a metallization interconnect on the 
monocrystalline silicon cells. They show the high local stress 
concentration areas on the edges of the metal lines. Fig. 3(b) 
shows the simulation using FEA indicating good agreement to 
the experimental stress maps. 

Figure 3.  Comparison between (a) Experimental and (b) Simulation results 
in the monocrystalline silicon solar cell (unlaminated). The comparison 

suggests high degree of consistency in showing the high stress concentration 
areas (the stresses in X-direction (sx) and Y-direction (sy)) [2]. Reproduced 

with permission from Elsevier B.V [2]. 

B. Smart Fracture Sensing & Prediction (SFSP) 
The development of SFSP system is designed for real-time 

data collection and analysis in high-volume c-Si photovoltaic 
manufacturing. The system integrates an inline curvature 
measurement tool that transmits processed data to a cloud 
infrastructure for advanced statistical analysis using artificial 
intelligence (AI), as shown in Fig. 2 [2]. This data can be used 
to create crack/defect maps of the cells, facilitating predictions 
of crack initiation and propagation through a combination of 
Finite Element Analysis (FEA) and AI algorithms.  



 

 

 

 

 

The results of the SFSP experiments for predicting PV 
crack using the Long Short-Term Memory (LSTM) algorithm 
as a Time Series Regression Predictor are demonstrated in Fig. 
4 below [2]. The image shows the crack's prediction results, 
which can be tracked into sequences of time. We compare our 
results with the actual condition of the PV crack picture, 
which is generated using a specific instrument developed in 
the laboratory to obtain a sequenced cracked PV over time. 
The results suggest that prediction can be made properly for a 
linear crack event in major directions (+/- 45° angles). The 
angle definition here uses the convention in solid mechanics 
[21] – in the Cartesian coordinate system, the +X direction is 
0° and then the angle goes positive counter-clockwise (CCW), 
hence the +Y direction is +90°, the -X is 180° and the -Y is 
270°. 

While results as shown in Fig. 4 have successfully 
predicted the major directions of crack propagation (+/- 45° 
angles), the complete crack propagation patterns as shown in 
Fig. 5 remain elusive [10-12]. In addition to the major 
directions (+/- 45° angles), cracks tend to branch to other 
random directions (not necessarily following crystallographic 
planes or directions) [12-19]. Our ongoing work on the SFSP 
system which will be discussed in the following section aims 
to train our algorithm based on large data sets of cell crack 
patterns and enable crack prediction, and hence damage 
control for enhancing manufacturing yield and product 
reliability. The Reinforcement Learning (RL) algorithm is 
infused with the physics associated with fracture mechanics 
and the material science/crystallography of the 
monocrystalline silicon cells. 

Figure 4.   The Crack Prediction result shows the capabilities to predict the 
future event of a crack in a silicon solar cell in the major directions (+/- 45° 
angles) compared to the actual condition (below) of a crack propagation in 

the cell [2]. Reproduced with permission from Elsevier B.V [2]. 

C. SPSF’s Ongoing Algorithm Development for Crack 
Prediction Beyond the Major Directions (+/- 45°) 
In this work, we have conducted a preliminary extension 

by capturing repeated angle of cracks which are happening not 
totally in random but following crystallographic planes in this 
case for monocrystalline silicon PV cells. These repeated 
patterns are captured by two approaches, firstly by image 
processing (computer vision) approach supported by heuristics 
/ hand-crafted rules (classical AI) for preprocessing and 
classification task (Fig. 6). The rules implemented are the 

variation in angle of cracks according to first principles 
physics (crystallographic planes). The experiment was 
conducted on public dataset of PV crack cells [20]. The 
experiment results are shown in Figure 7. In these figures, the 
heuristic-based algorithm has marked all different crack lines 
and classify them by showing in different colour mark as 
different angle. The major angle are the ones shown in green 
which are the +/-45°. The other are different angles shown in 
blue and in orange which are happening in different 
frequencies (less frequent than the +/-45o). 

Figure 5.  Typical complex crack patterns in monocrystalline silicon solar 
cells – major directions (+/- 45° angles) with branches in multiple random 
directions [10-12]. Reproduced with permission from Elsevier B.V [2] 

Figure 6.  Heuristic-based (Classic AI) approach for detecting crack 

Figure 7.   Heuristic (Classic AI) experimental results. 



In the second approach we have conducted a combination 
of object (crack) detection and classification task by machine 
learning approach utilizing deep learning architectures [22-25] 
for learning different kinds of crack patterns (angle) also based 
on the same public dataset of PV crack cells [20]. It follows 
machine learning methodology of training, validating and 
testing procedure to be able to generate the logic for detecting 
and classifying crack patterns which we have confirmed as in 
sync with results from first principles patterns. We use 
computer vision-based preprocessing utilizing OpenCV [26] 
framework which include filtering and thresholding and 
applying convex hull algorithm for identifying cell areas, this 
forms an image processing pipeline according to methodology 
provided in pvimage Phyton package [24,25]. As a following 
procedure to perform object (crack) detection, we use Yolo 
deep learning framework which is an extension of 
Convolutional Neural Network (CNN) architecture [27] and to 
perform classification we use Residual Network (Resnet) 
architecture (also on improved version of CNN) [28] 
according to methodology provided in pv-vision [22,23]. Both 
architectures are trained, validated and tested using the public 
dataset provided by the Duramat Consortium [20].  The 
preliminary results of these experiments are shown in Table 1 
(with accuracy among the detected lines = 98.6%). This result 
indicates that 75.4% of all the crack lines belong to the angles 
(+/- 45°, +/- 6° and +/- 13°) that may be correlated with 
certain crystallographic planes of the single crystal silicon of 
the solar cell. This implies that crack propagates along certain 
preferred crystallographic planes at least 75.4% of the time, 
which has an important role in crack prediction. Whether the 
remaining 24.6% of time may be further predicted by deep 
learning methodology or they are completely random 
(statistically) in a time series model [29] remains our 
continued study for the SPSF system development. 

 
TABLE I.  CRACK LINES DETECTION RESULTS USING OBJECT 

DETECTION BASED ON YOLO V3 AND RESNET 18 – REORDERED BY RANK 

IV. DISCUSSION 
The findings thus far as reported in the present manuscript 

have been primarily on silicon solar cells for the purpose of 
manufacturing yield enhancement as well as product 
reliability/quality improvement along with product warranty 
management which are of utmost importance for the solar PV 
industry. The Crack Catcher AI system (consisting of the two 
key components – the Smart Stress Sensing/SSS and the 
Smart Fracture Sensing & Prediction/SFSP systems, as shown 
in Fig. 2, could be further developed to be implemented as a 
pilot-line metrology tool that will be used in high-volume 
packaging assembly environments in semiconductor industry 
(specifically which involves wafer-to-wafer bonding in the 3D 
integration of packages/devices). 

The SSS system could provide mapping capability of local 
stress in large silicon semiconductor wafers (300 mm) to 
determine adjustments needed to make sure super-critical 
alignment precision in the wafer-wafer bonding – the SSS 
system. As shown in Fig. 1, a mere strain of 0.005% in the 
silicon (certainly has been observed in typical semiconductor 
wafers even during back-end interconnect [30,31] or Through-
Silicon Via (TSV) [32,33] processing) could lead to several 
microns of potential chip-to-chip misalignments, which will 
have detrimental effects on the chip performance. While the 
fundamental issue is stress, its existence in the silicon wafers 
in the semiconductor industry is inevitable due to the many 
thermomechanical recursions that the wafers must endure 
during the creation of the integrated circuits and their 
interconnection networks. This situation is of course further 
aggravated by the current trend of 3D integration with TSV 
for instance which makes the stress states in the silicon 
semiconductor wafers become even more complicated and 3D 
in nature (instead of just primarily 2D stress states in the older 
planar semiconductor technology generations). With the 
Wafer-to-wafer bonding, the stress maps provided by the SSS 
system would make the optimization of the alignment process 
between two wafers more quantified and thus could be done 
more systematically, faster and thus more effectively. 

The SFSP system could provide the map of defect/crack 
and predict crack propagation in large wafers to allow 
quantitative prediction to be made to enhance manufacturing 
yield and device reliability. The silicon wafers in the 
semiconductor industry are typically much thicker (usually 
500-800 microns) compared to the silicon solar cells (typically 
150-250 microns), and that is the reason why through-
thickness cracks were less observed in the semiconductor 
industry. Having said that, many surface cracks and damages 
(dents, scratches, etc.) were observed in semiconductor wafers 
and they might lead to issues ranging from manufacturing 
yield loss, assembly/packaging issues down the line to 
eventually product quality and reliability [34]. While the SFSP 
in the silicon solar cells has been used mostly for predicting 
crack propagation on the plane of the cells, its principles could 
be further extended to prevent propagation of the surface 
cracks in the semiconductor wafers through the thickness of 
the silicon wafers. The fracture mechanics and the silicon 
crystallography will be exactly the same. The AI code, 
especially when it comes to the rapid learning of how crack 
propagates in silicon single crystalline structure may be re-
used with minor modifications. In fact, it is more critical for 
the surface cracks in the semiconductor wafers, and hence the 
impact will be greater. Surface cracks in the silicon 
semiconductor wafers only have say 800 microns of the total 
thickness of the wafers – the much higher ratio between the 
crack size and the overall dimension of the product (in this 
case, the thickness of the wafers) creates much higher driving 
force for the crack to propagate through the thickness, which 
could lead easily to chip performance issues, if not its 
complete breakdown. 

V. CONCLUSIONS 
The Crack Catcher AI (CCAI) is a system that uses two 

key components. The first is a smart sensing technique that 
uses high resolution laser measurements to create a stress map 
of the silicon cell. The second component is an AI algorithm 



to predict cracks and their growth using the data collected 
from the curvature measurements. Although primarily done 
for silicon solar PV in this study, these CCAI approaches 
could be critical for stress and crack damage control for 
silicon semiconductor device/package reliability, especially 
with the ever-increasing trends of 3D stacking/integration and 
wafer-scale bonding (wafer-to-wafer bonding) requiring 
ultimate accuracy, manufacturing yield and product reliability. 
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Fig. 1. Schematic illustration of optical (laser-based) inline metrology system and the 
data processing via BeagleBone and big data analysis by cloud computing machine 

algorithms.
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Fig.4. Comparison between (a) Experimental and (b) Simulation results in the monocrystalline silicon solar cell
(unlaminated). The comparison suggests high degree of consistency in showing the high stress concentration areas (the 

stresses in X-direction (sx) and Y-direction (sy)).

Fig. 5. Heuristic (Classic AI) experimental results.

Introduction
Crack Catcher AI uses smart stress sensing and smart fracture sensing and prediction utilizing

big data analytics to determine local stresses in the silicon solar cells which have led to
propagation of cracks in the solar cells. This technology also applies to the semiconductor industry
in wafer-to-wafer bonding process.

The poster outlines two key systems: Smart Stress Sensing (using laser technology) and
Smart Fracture Sensing and Prediction (utilizing AI), both aimed at enhancing the efficiency
and cost-effectiveness of next-generation silicon technologies (as shown in Fig. 1)

Smart Stress Sensing
The Smart Stress Sensing (SSS) System is based on the high-resolution laser instrumentation 

and enabled by the local curvature technique. This technique is used to measure the local stress 
and map it as a function of position (X,Y) across the large silicon semiconductor wafer in high 
resolution (micron-scale), such as illustrated in Fig. 1. 

The typical system measures wafer curvature by monitoring the deflection of parallel beams of 
laser (due to surface tilt or misorientation) and mapping would be enabled by high precision, servo 
motor controlled x-y stage as seen in Fig. 3.

Conclusion
The Crack Catcher AI (CCAI) is a system that uses two key components. The first is a smart sensing technique

that uses high resolution laser measurements to create a stress map of the silicon cell. The second component is an
AI algorithm to predict cracks and their growth using the data collected from the curvature measurements.
Although primarily done for silicon solar PV in this study, these CCAI approaches could be critical for stress and
damage control for silicon semiconductor device/package reliability, especially with the ever-increasing trends of
3D stacking/integration and wafer-scale bonding (wafer-to-wafer bonding) requiring ultimate accuracy,
manufacturing yield and product reliability.

Smart Fracture Sensing & Prediction
The Smart Fracture Sensing & Prediction (SFSP) System is based on AI (Artificial 

Intelligence) and big data analytics. This technique is used to detect and image defect/crack, 
map it as a function of position (X,Y) across the large silicon semiconductor wafer in high 
resolution (micron-scale) and predict the damage evolution or crack propagation based on AI and 
Machine Learning approaches, such as illustrated in Fig. 1.

The experiment results are shown in Figure 5. In these figures, the heuristic-based algorithm 
has marked all different crack lines and classify them by showing in different colour mark as 
different angle. The major angle are the ones shown in green which are the +/-45o. The other are 
different angles shown in blue and in orange which are happening in different frequencies (less 
frequent than the +/-45o).

Our latest SSS results are shown in Fig. 4, using the laser set up (not the synchrotron set up). 
Fig. 4(a) shows the experimental stress maps obtained from the laser measurement on areas 
around a metallization interconnect on the monocrystalline silicon cells. They show the high local 
stress concentration areas on the edges of the metal lines. Fig. 4(b) shows the simulation using 
FEA indicating good agreement to the experimental stress maps.

Fig. 3. Schematic of the fast waver curvature measurement using laser methodology.

Table 1 Crack Lines Detection Results using Object Detection based on YOLO v3 and ResNet 18 – Reordered By Rank

Using a public dataset, the SFSP program indicates that 75.4% of all the crack lines belong to 
the angles (+/- 45°, +/- 6° and +/- 13°) that may be correlated with certain crystallographic planes 
of the single crystal silicon of the solar cell as shown in Table 1. This implies that crack 
propagates along certain preferred crystallographic planes at least 75.4% of the time, which has 
important role in crack prediction.

Semiconductor Wafer Stress Mapping
Wafer-to-Wafer Bonding requires highly precise alignment between chips on one wafer to the 
chips on the other wafer it is to be bonded on, as illustrated in Fig. 2. Our proposed solution is 
Crack Catcher AI – Smart Fracture Mechanics Approach in Thin Silicon Semiconductor 
Wafers for Enabling Wafer-to-Wafer Bonding in 3D Semiconductor Integrated 
Devices/Packages which uses local stress metrology tool that would allow rapid mapping of local 
stresses in a silicon semiconductor wafer which enables use in high volume manufacturing or 
packaging assembly environments. With the local stress map in each wafer, each potential 
misalignment on every chip on the wafer may be mapped and optimization of alignment process 
of each wafer in the Wafer-to-Wafer Bonding process

Fig. 2. Schematic illustration of Wafer-to-Wafer Bonding process and the key issue of 
misalignment due to local stresses in the large, thin silicon semiconductor wafers
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