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Abstract

Stope layout optimization is an important feature of underground mining that maximizes the economic value of the project
while taking mining limits into account. The large number of parameters and constraints makes it difficult to obtain the
optimum condition. Several algorithms have been created to address these problems using a variety of methods. However,
the circulating method has not explicitly included stope dimension stability analysis, resulting in a solution that is not
stability-proven, which can result in a suboptimal solution. This study integrates the Mathews stability graph into the stope
optimization algorithm so that the optimized stope layout considers stability conditions directly through an assessment of the
available geomechanical data within the block model. The proposed algorithm is validated through a case study of a synthetic
block model created by considering variations in grade and the geomechanical conditions of the rock. Furthermore, several
scenarios are created to compare the performance of the algorithm that applies variations in stope sizes with the common
case study of stope sizes that remain fixed. A more detailed assessment is also conducted on each final stope layout wall
to ensure the successful application of stability analysis in the proposed algorithm through back analysis on the Mathews
stability graph. The optimization results show that all walls in the final stope layout fall into the stable condition. Also, the
proposed algorithm is also capable of maintaining the project’s economic value. Ultimately, the proposed algorithm can be
deemed applicable and suitable for use in the initial stages of mining as a comprehensive assessment of the optimal stope
layout, taking into account the stability conditions of the stope.

Keywords Stope optimization - Heuristic algorithm - Mathews Stability Chart - Stope layout - Underground mine

1 Introduction creates challenges regarding stope design. Poorer rock con-

ditions result in smaller stopes, which then limit reserve,

Underground stope stability analysis methods have been
widely developed using various techniques such as empiri-
cal [1], analytical [2, 3], and numerical [4, 5] in line with
the increasing complexity of rock conditions with deeper
mining. The increasing complexity of underground mines
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while better rock conditions tend to accommodate bigger
stope dimensions [6]. To accommodate the complexity and
further simplify the stability analysis, Critical Span Graphs
[7] and Mathews Stability Chart [8—10] are two of the empir-
ical approaches that are still widely used as industry stand-
ards. These approaches could help engineers determine the
stability of stope designs faster, thus making the generation
of specific stope designs in certain geomechanical conditions
possible. While varying stope dimensions to their specific
geomechanical properties could have significant impacts on
mine reserves, thus creating more value in mine projects,
stope design is often limited in a conservative way, such
as when poorer geomechanical data is chosen as the basis
for the stope dimension. Furthermore, research integrating
stability topics with stope optimization is still limited while
such studies are imperative [11].

@ Springer
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Many stope optimization algorithms have been devel-
oped to assist engineers in solving optimization problems
[12-14]. Various optimization techniques, such as stochastic
[15-17], exact algorithms, and heuristic algorithms [18-20],
have been used to ensure that the stope optimization results
in maximum NPV with stope dimensions as constraints.
The exact algorithm is formed from a mathematical model,
ensuring the best solution is obtained. Some algorithms
falling into this category include Branch and Bound [21],
Dynamic Programming [22], and Downstream Geostatistical
Approaches [23]. Dynamic Programming stope optimization
was introduced by Riddle [22] in a block-caving case study,
which also has its weaknesses due to limitations in its appli-
cation to that method. Deraime et al. [23] introduced the
downstream geostatistical approach to determine parts of the
ore body with the best economics. However, the application
of this algorithm is limited to cut-and-fill or sublevel stoping
methods. The solutions generated by this algorithm cannot
yet be considered optimal as they have not been proven with
practical mining designs. Ovanic and Young [21] further
developed the Branch and Bound algorithm applied to inte-
ger programming. Generally, Integer programming requires
considerable resources for problem-solving, making it often
unfeasible for large case studies. The integration with the
Branch and Bound algorithm allows problems to be broken
down into smaller ones, making the problem-solving pro-
cess more efficient. Nevertheless, the effectiveness of solv-
ing problems in large case studies remains a weakness, so
this algorithm has not been applied beyond one-dimensional
case studies.

Contrary to exact algorithms, heuristic algorithms do
not focus on mathematical models; thus, the solutions they
generate do not fully achieve the global optimum but are
close enough to the global optimum. Some algorithms fall-
ing into this category include Octree Division [24], Floating
Stope [25], Multiple Pass Floating Stope [26], Maximum
Neighborhood [27], Topal and Sens [28], and Sandanayake
[29]. The Octree Division algorithm introduced by Chei-
manoff et al. [24] is capable of working in three-dimensional
case studies where the “optimum” part of the block model
is determined based on mining constraints and economics.
In practice, this algorithm approaches the optimal condition
by producing a 3D stope layout. However, the structure of
the algorithm, which allows waste blocks to enter the final
stope layout, reduces the economic value of the final stope
layout. Hence, the optimal solution has not been achieved
yet. The next development in stope algorithms, which is
quite applicable and adopted in commercial software, is the
Floating Stope by Alford [25]. The approach used is simi-
lar to other algorithms in open-pit case studies, such as the
Floating Cone. Similar to the Floating Cone, one advantage
of this algorithm is its simplicity, where a stope of prede-
termined dimensions is floated on the block model, and an

@ Springer

assessment of the stope is conducted to determine its eco-
nomic feasibility. However, a weakness of this algorithm
lies in not considering the important concept of overlapping
stopes. Overlapping stope solutions result in double-counted
reserves, leading to increased economic feasibility. Adjust-
ments have to be made to ensure that the mined material
truly represents the actual mine and its economic value. The
need for manual intervention in this algorithm means that
the solution from the Floating Stope algorithm cannot yet
be considered optimal. To address this weakness, Cawrse
[26] developed the Multiple Pass Floating Stope, provid-
ing additional information to engineers and making the
assessment of the Floating Stope output easier. However,
the main weakness of the overlapping stope concept has not
been resolved, causing this algorithm to still be unable to
produce an optimal solution. Still based on the principle
of the Floating Stope, the Maximum Neighborhood algo-
rithm was developed by Ataee-Pour [27]. A more detailed
approach, aggregating blocks into stope shapes and, in the
process, eliminating blocks with negative economic value,
makes this approach better. However, the solutions generated
are highly dependent on the initial location of the optimiza-
tion iterations, causing this algorithm to not yet produce an
optimal solution. Later, the heuristic approach developed
by Topal and Sens [28] changes geological blocks into eco-
nomic blocks of uniform size and then forms stopes of spe-
cific dimensions in each block model, assessing the stope
attributes to see their feasibility. One breakthrough of this
approach is the final output of the stope in three dimensions.
The structure of the algorithm that sequentially eliminates
sets of stopes is a weakness of this approach, making the
optimal stope layout not necessarily achievable. Bai [30]
developed a heuristic algorithm applied to the sublevel min-
ing method. The limitation of this approach lies in the min-
ing method’s conditions and its application, which can only
be applied to small ore bodies. Finally, Sandanayake [29]
developed a heuristic algorithm by modifying the Floating
Stope, where first, the block economic value (BEV) is deter-
mined by calculating all economic and geological compo-
nents within the block. Then, stopes of specific sizes are
floated within the block model, while the economic value
of the stope is calculated based on the cumulative BEV val-
ues entering the stope. Elimination is then carried out on
stopes with negative economic value, while sets are formed
on stopes with positive values that do not overlap. The set
of stopes with the best economic value is chosen as the best
solution. However, calculating BEV at the beginning of opti-
mization is one of the weaknesses of this algorithm because
economic parameters are independent of mining scenarios,
thus the possibility of hidden positive economic value stopes
not being further assessed.

The early stope optimization algorithm presented has a
common way to express stable stope dimension. The stope,
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as a mineable area, is typically simplified into a box-shaped
dimension with floating width, length, and height [26, 31,
32]. To address practical requirements, dimensional con-
straints were implemented to ensure that the optimization
outcomes met geotechnical and technical conditions [33,
34]. Dimension considerations in optimization are focused
on two approaches: fixed dimensions [29, 31] and variable
dimensions [35-38]. Fixed dimensions impose uniform, pre-
defined stope dimensions at the initial optimization stage.
This constraint limits the algorithm’s flexibility in selecting
the best stope due to the predetermined size set by the user
at the start of optimization. Meanwhile, variable dimensions
were applied by setting the maximum and minimum dimen-
sion constraints allowed for the stope layout. By providing
maximum and minimum dimension constraints, the opti-
mized stope layout fulfills both geomechanical and opera-
tional considerations. However, both approaches require
users to determine the generally allowable stope size in
each optimization domain. Furthermore, variations in rock
conditions are not directly considered in the optimization
algorithm.

The use of stability analysis in stope optimization algo-
rithm is still limited, used separately from optimization
steps, where the most pessimistic geomechanical data is
usually used as the basis for determining mining design in
a wider area. Limited geomechanical data provides a large
amount of uncertainty and eliminates economic potential,
as some areas may have marginal value when mined with
different stope dimensions. The latest study that adopted
stability analysis in optimization algorithms was conducted
by Esmaeili et al. [39] by applying stability analysis to the
Caving Graph [40] as mining constraints combined with a
network flow algorithm. The algorithm was successfully
applied to the sublevel caving mining method with lim-
ited block numbers. As stope stability analysis methods
are widely available, the potential of integrating stability
analysis with currently available optimization algorithms is
significant. The advantage of this methodology lies in the
ability of the algorithm to read and analyze geomechanical
data that is already quantitatively available to create stope
dimension recommendations. This study aims to integrate
Mathews stability analysis [41] into a mining optimization
algorithm [32].

2 Proposed Algorithm

Stope designs that represent variations of rock conditions
are needed to maximize the project values. In this study,
the stope optimization algorithm [31] was modified by add-
ing a stage of stope dimension recommendation based on
the Mathews stability graph [41], making the overall algo-
rithm stages as shown in Fig. 1. The approach was carried

out by calculating the stability number () based on the
geomechanical parameters available in the block model,
which include factor A, factor B, factor C, and Q' value.
N numbers are generated throughout iteration based on the
available stopes walls that are constrained within the ore
body. Further, the maximum allowable hydraulic radius is
determined to limit the maximum stope dimension in each
block location in the block model. Optimization was then
carried out on a similar basis, but with the addition of the
geomechanical constraint that was newly proposed.

In this study, the application of the proposed algorithm
was limited to the open-stope or sublevel method for metal
mines, as the Mathews Stability Chart suggested. Further,
consideration of dip angle, thickness, fault, and aquifer of
the ore body was considered in the parameters utilized in
the Mathews Stability Chart that were already presented in
the block model in the form of factor A, B, C, and Q' value,
while stope wall orientation was limited to vertical as the
base of the algorithm was limited to [31].

As for the mathematical models become very complex,
Table 1 summarizes the notations, parameters, and decision
variables that were used for the subsequent sections.

2.1 Objective Function

The objective function of this study is to maximize the
stope economic value by accumulating the block economic
value inside the optimum stopes. This was done by utilizing
Eq. (1). In order to determine the stopes economic value,
two main parameters were used: the geological parameter,
including metal grade, and the economic parameter, includ-
ing metal price and cost components. The block value is cal-
culated in some sequences. First, block tonnage was deter-
mined by block lengths and rock density via Eq. (2). After
the tonnage values of the blocks are known, the economic
value of the block is calculated using Eq. (3) by applying
economic parameters such as commodity price, mining cost,
processing cost, and selling cost.

MAX )’ v, X tags (1)
tr = Ho X Lo X Wo X do 2)
vV, = [(p - rr) ><gr Xy— (er + Cr)] X tr (3)

2.2 Stope Height Constraint

The stope height constraint limits the maximum optimized
stope height by ensuring that the cumulative height of min-
ing blocks on the z-axis (nzs; ;) does not exceed the allow-
able stope height. Stope height is determined by considering

@ Springer
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Fig. 1 General algorithm steps
Input
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Optimum Stope Reporting

Determination

A 4
Maximum allowable Dimension

the mining method that is applied in the area and set by the
user. Allowing one axis to be fixed decreases the complexity
of the algorithm as it will only optimize the stope length and
span. However, full consideration needs to be given by the
user, as the stope height will also dictate the mining level. A
shorter stope will generate many levels and further impact
the need for mine access while also creating the opportu-
nity to do selective mining. On the contrary, a higher stope
will generate fewer levels, but the production rate could be
higher, further impacting the production cost. This condition
is displayed in Fig. 2 where the stope’s origin, positioned
at the lowest elevation of the block model (marked by the
green-colored box), is the determining block for the stope’s
height constraint (nzs;; ), which also defines the number
and location of levels. Nevertheless, the final layout will
be driven by the rock conditions, as this constraint only
enforces one of the three axes.

In the proposed algorithm, the stope shape is controlled
via block quantity relative to its axis. Thus, conversion from
allowable stope height to allowable mining block is needed.
Equation (4) implies that the maximum stope height is con-
verted by dividing the maximum height by the block height.

@ Springer

The calculation was possible because of the regularity of
the block size.

nzs;;x = Hmax/Ho

“

2.3 Maximum and Minimum Width Constraint

The maximum and minimum constraints limit the stope
size during the optimization process, ensuring that the
optimal stope meets operational and geomechanical cri-
teria. The dimensions of mining equipment are consid-
ered the minimum operational width defined by the user
(Wmins). The stope’s width should accommodate the
equipment size operating in that area. The use of mechani-
cal equipment tends to require a larger minimum width
for the stope compared to traditional mining. In some
cases within narrow veins, the equipment width may con-
flict with the vein width, necessitating a wider stope to
compensate for the mechanized mining activities in that
location, further impacting the increase in planned dilu-
tion, thus reducing the economic feasibility of the stope.



Mining, Metallurgy & Exploration

Table 1 List of notations for the mathematical models and methodol-
ogy

Symbol Descriptions

Notations

1 Index position of x

J Index position of y

K Index position of z

Parameters

Ar Factors A Mathews stability graphs in block
Br Factors B Mathews stability graphs in block
Cr Factors C Mathews stability graphs in block
Dr Rock density

gr Metal grade in block

gs Metal grade in stope

Hmax Maximum stope height

Ho Block height

HRIr Hydraulic radius on the 1-th wall of the stope
HR2r Hydraulic radius on the 2-th wall of the stope
HR3r Hydraulic radius on the 3-th wall of the stope
HR4r Hydraulic radius on the 4-th wall of the stope
Lmaxs Maximum length of stope determined by user
Lmins Minimum length of stope determined by user
Lo Block length

mr Metal weight in block

ms Metal weight in stope

Nir N number on the 1-th wall of the stope

N2r N number on the 2-th wall of the stope

N3r N number on the 3-th wall of the stope

N4r N number on the 4-th wall of the stope

ni Number of blocks in x-direction

nj Number of blocks in y-direction

nk Number of blocks in z-direction

nxs N-blocks towards x are allowed on the stope
nys N-blocks towards y are allowed on the stope
nzs N-blocks towards z are allowed on the stope
or Q' value Q-system in block

tr Ore tonnage in block

ts Ore tonnage in stope

Vs Stope economic value

Wo Block width

Wmins Minimum width of stope determined by user
Wmaxs Maximum width of stope determined by the user

Decision variables

tagr Tag for ore block

Tags Tag for ore block in stopes
Ys Positive stope tag database
Fs Optimum stope tag database

Differing from the minimum width (Wmins), the minimum
stope length (Lmins) is typically determined based on the
length of the stope advancement, where its width is no

smaller than the minimum stope advancement length. This
constraint ensures that no stope design is created smaller
than the stope advance length.

A significant factor affecting the maximum stope width
and length (Wmaxs and Lmaxs) is geomechanics. Solid
rock, limited water presence, and favorable stress condi-
tions are indicators of favorable rock conditions where
stope sizes can generally be larger to meet production
needs. Furthermore, in the design aspect, the orientation
of the structure and stope walls can be a determining fac-
tor for stability/safety in stope design. Mathews [42] pro-
posed an empirical approach applicable to open stopes or
sublevel stoping, where the hydraulic radius and stability
number (N') are used as indicators for the maximum stable
stope dimensions. The application and integration of the
geomechanical constraint model into the stope dimension
constraints are explained in more detail in Section 4.

Geomechanical constraints are established by ensuring
that the stopes have dimensions smaller than the allowed
hydraulic radius at the location where the stopes will be
formed. Meanwhile, operational constraints ensure that
the dimensions of the stopes are larger than the minimum
allowed dimensions at a block model location. Both of
these constraints are combined in a unified constraint that
regulates the maximum and minimum dimensions along
the x-axis (nxs;; ), y-axis (nys;; ), and z-axis (nzs; ; ;). The
stope size is limited by Eq. (5) to (6), which add up the
indices of the mined blocks (tags) in the stope layout and
compare them to the stope size limits. Equations (5), (6),
and (7), respectively, operate on the x-axis, y-axis, and
Z-axis.

I j ok
nxs; > ZZZtagsVie {1..I}Lje{l..Thke(l..K)
©)

J k
nys; > YLD Ytagsvie {1...1},j€ {1...T} ke {1..K]}

(6)

i K
k> 2, D Y tags¥ie (1..1},j € (1...T},k € {1..K)

(N
The application of these equations serves as a constraint
in the stope optimization phase, as depicted in Fig. 3. The
green-colored blocks depict the block origin’s position
where the stope dimension constraints are applied, while
the dashed red lines represent the boundary of the stope
layout’s location with the application of stope dimension
constraints. With the integrated application of geomechan-
ical considerations in the stope dimension constraint at
each stope location, the stope dimensions can be deemed
representative as they meet the rock conditions.
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Fig.2 Stope height constraint
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2.4 Stope Overlapping Constraint

“Overlapping stopes” is a condition where the optimized
stope layouts intersect with each other [33]. This condition
arises due to the formation of another optimal stope shape
in a nearby location. Overlapping stope results in repeated
calculations of volume and tonnage, which then raises the
value of the mined material and leads to an overly optimis-
tic assessment of the project’s feasibility. Figure 4 depicts
an illustration of overlapping stopes where the red-colored

HNXS; j g o HNYX; J-'k,k+nzs,- ik

ful = { Oiftags,_ ;- j—, =1

lotherwise

’»‘?
'y

AN IR

b R

Fig.4 Overlapping stopes

blocks represent the area where both stopes intersect. In
this case, the material attributes within the red blocks will
be counted twice, potentially resulting in inaccurate mined
material and economic calculations for both stopes.

In this study, the overlap constraint is applied by utilizing
the mined block index (tags) assigned to each block falling
within a stope. The stope layout is deemed feasible when,
during stope determination, all blocks within that stope
have a mined block index (tags) equal to 0. This constraint
application ensures that no stope can form in that location if
even a single block has a mined block index (tags) equal to
one. Equation (8) shows the mathematical form of the stope
overlap constraint, where fags; ; is the mined block indexes.

=lvie(l..1,je (1.0}, ke {1...K} (®)
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3 Maximum Width and Span by Mathews
Stability Chart

3.1 Mathews Stability Chart

Mathews [42] introduced a stability graph based on 26 cases
collected from open-stope underground mining. This data
was later supplemented and recalibrated by Potvin [43],
which became widely used in the industry as the basis for
mine planning that considers rock geomechanics conditions.
The stability graph represents a plot of the stability number
(N') against the shape factor (S) or also known as the hydrau-
lic radius (HR). The calculation of N' is done by considering
Rock Quality Designation (RQD), joint set number (J,,), joint
roughness number (J,), joint alteration number (J,), stress
factor (A), joint orientation factor (B), and gravity factor
(C) through Eq. (9). Meanwhile, HR is generally the ratio
between the area and the perimeter, which is determined
based on the length (L) and width (W) of the stope wall, as
shown in Eq. (10). Both of these variable results are plotted
on the stability graph to determine the stability condition of
the wall through three zones depicted on the graph: stable,
unstable, and cave, as seen in Fig. 5.

_(ReDY (L

N/_< T >x<Ja>><A><B><C 9)
WXL

MR X WxD) (10

This study employs the stability graph developed by Pot-
vin [43] and Nickson [44] as a stability analysis tool within
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Fig.5 Potvin-modified Mathews stability graphs [43]

the optimization algorithm. Equation (11) represents the
boundary between the stable and unstable areas on the sta-
bility graph which was statistically calculated by Nickson
[44] based on 175 case studies of stope stability in Potvin
[43]. The stope wall dimensions allowed fall within the area
above this boundary line. Through the use of this stability
graph, it is also assumed that the stopes used in this algo-
rithm are unsupported.

HR = 100-573+0.338logN") an

3.2 Mathews Stability Chart Application in Stope
Dimensional Constraint

In this study, improvements to the existing stope optimiza-
tion algorithm were made by incorporating stability analysis
using Mathews Stability Chart into the algorithm as dimen-
sional constraints. Thus, the proposed algorithm has the abil-
ity to directly address rock conditions. This was done by
assessing the Mathews attribute data provided in the block
model. The analysis is conducted at block locations by iterat-
ing steps as follows:

1. Assessing the maximum of each stope wall domain by
looking for the ore domain.

2. Calculate the N stability number based on Q' value, fac-
tor A, factor B, and factor C within the wall domain.

3. Determine the stable condition for the wall domain by
correlating the hydraulic radius and the N stability num-
ber.

4. Assessing a smaller domain until a stable condition is
met

5. Determine the allowable stope wall dimensions by
choosing the lowest hydraulic conditions between each
wall.

The algorithm steps are handled by several equations, as
follows: Egs. (12) and (13) are used for the first step, to deter-
mine which part of the rock is the ore body, so that subsequent
iterations of the equation will be limited to the controlled by
the i, j, and k indices of the block. The difference between the
two equations lies in the orientation in which each equation
is applied. Equation (12) is utilized on the stope wall oriented
towards the east, while Eq. (13) is applied on the stope wall
oriented towards the north. The calculation of the N stability
number in the second step is performed by utilizing Eqgs. (14)
to (17). Each of the equations represents the different calcula-
tions performed for the four walls. As seen in the equations,
all four equations have different block location indices, rep-
resenting calculations for block data in different domains of
the stope walls. The N stability number for each of the stope
wall domains is then used to calculate the allowable hydraulic
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radius for the corresponding stope wall via Egs. (18) to (21). i Lmax/Lo
Each of the hydraulic radius equations corresponds to the wall ~ 7Sijx = Z Z
j=1

where it belongs, as the indices specifically emphasize where '

k
Ztagr‘v’ie (1..1Lje{l..I,ke {1...K}

i=1 k=1

. 13
the calculation is performed. (13)
Wmax/Wo j  k _ ij+ % nzs .. .
nsg = Y Y Y tagrtie (1..1)j € {1..J} ke {1..K) Nlr =MINNr_, 2 Vie (1. 1L je{1..J}.ke{l...K}
' i=1  j=1 k=1 (14)
(12)
i Wna | Lnax (15)

N2r,;, = MINNr_ ", 2"

i (T ] k=1

Vie{l..1},je{l..Ike{l...K}

. Wmax
I+ =0 Nz

N3ri’i’k = MINerZl‘/.:Lk:l

vie{l...I},je{l...]},ke {1...K}

(16)

Nar = MINNAS 5 e (1. 1) € (1,01, € (1...K) (17)
HR1r,;; = 1007+0388osNlndyi € (1..1),j € {1...T},k € {1...K} (18)
HR2r,;; = 1007+0388X0s00,0y5 € (1. 1},j € {1...]},k € {1...K} (19)
HR3r, ;= 1007370388X0e®n00vi e (1.1}, j € {1...]}, k€ {1...K} (20)
HR4r,;, = 100377038 doe®Mnlyi @ (1.1}, j € {1...J} .k € {1...K} an

The selection of the lowest hydraulic radius is then per-
formed on opposing walls to ensure that the lowest value to be
used is indicated by Eqgs. (22) and (23). The allowable length
for stope walls is then determined based on the hydraulic

HR1r;; if HR1r; ;, < HR2r

HRI7; { HR2r,; otherwise
_ HeriJ’klfHR:;ri,j,k < HR4r,
HR3r; ;= { HR4r,;; otherwise

| ZHeri‘i’k X nzs; ;. X Hoyj
nysl.., =
Yk = (nzs, . x Hoy ) — 2HRr,
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radius of the corresponding wall through Egs. (24) and (25).
In the last stage, Eqs. (26) and (27) are making sure that the
allowable length for the stope wall has already met operational
constraints.

iWkvie (1...1},je{1..7,ke {1...K} (22)

Wkyie (1. 1},je{l.. I}, ke {l...K} (23)

XLoj,Yie{1...1},je{1...J},ke {1...K} (24)



Mining, Metallurgy & Exploration

ijk X Hojjy

) 2HR3r,; ; X nzs
nxsl.., =
WK (nzsjy % Hoyyy) — 2HR3r,

. Lmins
ngnxsij,k > o

NXS; ; i nxsll-‘/’,<
nxs; ; yotherwise

Wmins

Oifnys; ;o > =

XLoVie{l..1},je{l...J},ke {1...K} (25)

ifnxs;; > nxsly > 2 vie (1. 1Lj € (1. ke {1...K} (26)

nYySijiy myslyjifnys; ;o > nysl; ;> Wmins i € {1...1},je€ {1...T},ke {1...K} 27

Lo
nys; ; xotherwise

4 Optimization

Nhelko A [45] emphasizes the limitations of exact algo-
rithm application in large-scale cases such as stope opti-
mization. Although the resulting solutions may achieve
the global optimum, the problem-solving time typically
increases exponentially with problem complexity, making
this algorithm category infeasible for large-scale cases.
Heuristic algorithms are commonly employed solutions
for addressing complex problems like stope optimization,
ensuring fast problem-solving while still focusing on opti-
mization objectives. This study applies heuristic algorithms
in optimization techniques, enabling large-scale cases to
serve as a benchmark for algorithm validation. One of the

Fig.6 Block model for Au
grade

100 -

previously developed heuristic algorithms is Sandanayake
[29, 31]. Sandanayake [29] introduces a heuristic algorithm
for stope optimization with the following general steps:

Initialization of all data, parameters, and variables
Stope formation through mining block aggregation
Update of stope attributes based on mined blocks
Extraction of subsets with economic values greater than 0
Identification of overlapping stopes

Creation of a set containing non-overlapping stopes
Calculation of economic value for each non-overlapping
stope set

8. Selection of sets and determination of stopes with the
highest economic value.

Nk L=

Grads |git) -

=]
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The algorithm was modified by incorporating Mathews’ sta-
bility considerations into the stope dimension constraints (nys,
nxs, nzs). The varying dimension constraints are held by each
block within the block model in line with the geomechanical
conditions of that block. Hence, the stope dimensions will vary
according to the geomechanical conditions at that location.
These constraint applications are implemented in the initial
stage of stope creation. The subsequent stage remains relevant,
where non-overlapping stopes are created, and ultimately, the
stope set with the highest economic value is selected.

5 Case Study

To test the validity of the algorithm proposed in this study, a
block model was created by considering several case studies
of underground gold mines in Indonesia. Prasetyo et al. [46]
modeled a gold vein deposit at one of the mines in Indone-
sia using the fractal method and compared it to the classi-
cal method. In that study, the gold and silver reserves were
divided into two zones that were delimited at an elevation
of 500 m above sea level. Another study [47] provided an
overview of rock mass classes at some underground mines
with narrow vein ore types in Indonesia, which were domi-
nated by moderate-to-weak rock. The block model was then
created to represent the same conditions.

5.1 The Block Model

Figure 6 explains the uniform dimension block model cre-
ated from the minimum and maximum ranges of easting,
northing, and elevation, respectively, of 100, 100, 35 to 145,
267.5, 102.5. The number of blocks on the x, y, and z axes
is 18, 67, and 27, respectively, so the total block model is
32,562. The rock density is set at 2.36 tons/m>, while the
gold grade in the block is divided into six zones, namely
upper-high, upper-mid, upper-low, lower-high, lower-mid,
and lower-low. The upper and lower zones are separated at
an elevation of 60 m above sea level, while the high and mid
zones and the mid and low zones are separated at a northing
of 210 and 150, respectively. The gold grade in each zone
was then created using Eq. (28), where the base grade for
each zone (upper-high, upper-mid, upper-low, lower-high,
lower-mid, lower-low) is 18.8 g/t, 9.4 g/t, 4.7 g/t, 9.9 g/,
4.9 g/t, and 2.5 g/t. To better represent the real condition,
a random number is introduce to randomize the base Addi-
tionally, Table 2 shows the economic parameters used in the
block’s economic calculation.

The same method is applied to the creation of Q' values
in the block model. The Q' model is not divided into upper
and lower zones but only into high, mid, and low zones that
are delimited by the same northing as previously described.
Equation (29) explains how the Q' value is created in the
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Table 2 Economic parameter

Parameter Value

Metal price ($/gram) 54.8
Mining cost ($/ton) 358
Processing cost ($/ton) 1.6
Refining cost ($/ton) 3.9
Global recovery (%) 80

block model, where the Q' base in the high, mid, and low
zones is set to 10.1, 1.1, and 2.7, respectively. Sulistianto
et al. [48] determined the rock mass class conditions at one
of the underground gold mines in Indonesia, which was used
as a basis for the value of 0.5 for factors A and B. Factor C is
set to 8 because the assessment in this algorithm is only done
on the stope walls that have a vertical orientation.

AuGrade! = randomnumber X Augradebase (28)

Q! = randomnumber X Qlbase 29)

5.2 The Test Methodology

A number of scenarios are used to see the performance of
the Mathews analysis in the algorithm that can produce the
stope dimension variable in the algorithm. In this valida-
tion, three scenarios are used, including the fixed maximum
stope dimension, the fixed minimum stope dimension, and
the proposed algorithm, which are subsequently referred to
as scenarios 1, 2, and 3. The three scenarios were created
to explore the optimization potential of stopes with varied
shapes due to the variations in rock conditions compared to
the commonly practiced optimization based on fixed dimen-
sions. Scenarios 1 and 2 represent optimization with fixed
dimensions, while scenario 3 represents stopes with varied.
Nevertheless, to enable a comparison between scenarios, the
stope height for each scenario is set at 5 m.

In scenario 1, the stope dimension is set according to the
maximum dimension allowed based on best geomechanical
conditions found in the block model data. The calculations
are performed based on the N’ value for the best rock con-
dition found in the block model. The largest dimension is
determined by calculating the HR value for that rock con-
dition. Because the stope height is fixed, the width (/) and
length (w) of the stope can be determined. It is known that

Table 3 Validation scenarios

Scenario Stope dimen-
sion (IXw X h)
(m)

Scenario 1 7.5%x7.5%5

Scenario 2 5X5x%5

Scenario 3 Variable
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Table 4 Optimization results

Parameter Scenario 1 Scenario 2 Scenario 3
Number of stopes 195 711 302

Mined tonnage (ton) 238,777 214,161 165,658
Mined metal (grams) 864,736 949,086 856,880
Mined average grade (g/t)  3.62 4.43 5.17
Economic value ($) 26,283,967 30,640,495 28,700,093

the width and length of the stope based on the rock condi-
tion in the block model are 7.5 m. Compared to scenario 1,
the minimum stope width and length allowed in scenario
2 is based on operational considerations set at 5 m. This
minimum dimension is also applied in scenario 3 as the basis
for achieving operational considerations in the optimization
phase. The optimization application based on geomechanical
considerations is manifested in scenario 3, where the algo-
rithm is given the freedom to determine stope dimensions

according to the geological, economic, and geomechanical
considerations available in the block model. The scenarios
in this case study are seen in Table 3.

To assess the validity of stability analysis application
within the stope optimization algorithm, a validation was
conducted through back analysis on the final stope walls.
Analysis on all four stope walls was carried out by plotting
the hydraulic radius (HR) of the stope wall against the stabil-
ity number (S). The optimization results can be considered
valid if all plots of the stope walls fall within the stable zone.
Further details are provided in Section 8.

6 Results

Table 4 shows the results of the optimization in the three sce-
narios, while the results of the stopes that have been optimized
are shown in Fig. 7. From Table 4, it can be seen that the
integration of the Mathews stability module into the algorithm
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in scenario 3 has a level of economy that is competitive with
the optimization of the fixed dimension stopes. In general, the
varied shape of the stope, following the ore shape, provides
an advantage in minimizing mined material waste, as indi-
cated by the highest mined grade among the three scenarios.
Furthermore, mining can be considered more efficient. The
smaller amount of mined material in scenario 3 indicates that
there is less material to be moved for a higher economic value.

In scenario 2, however, the value of the stopes is higher
than in scenario 3, which is considered normal for opti-
mization to be carried out on the same cost components
in each scenario. As optimization is carried out on the
same cost basis across all scenarios, the results will tend
towards smaller dimensioned stopes as they can maximize
the reserves. In actual case studies, smaller stopes can lead
to lower productivity, resulting in relatively smaller eco-
nomic value due to higher mining costs. The further rela-
tionship between the dimensions and the cost of the stopes
needs to be established for the algorithm to perform better.

Figure 7 shows the visualization of the optimized stope
in all three scenarios. Scenario 1 is unable to maximize the
reserves in areas with low grades because the large stope
size causes a lot of mined waste material, so the profit
from mining ore must compensate for this. This condition
is visible in Fig. 7a at low elevations in the southern part,
where no stopes are formed in those locations, indicating
stopes with negative economic value. In contrast, scenario
2 (Fig. 7b) and scenario 3 (Fig. 7c) showed the opposite
results, where the smaller stope dimensions in scenario
2 were able to accommodate ore grade variations better,
while the flexibility in dimension selection in scenario 3
had the same effect.
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7 Stability Confirmation with Mathews

Validation of stope stability was performed on each final
stope wall formed in scenario 3. The stability number (5)
values for each wall were plotted against the corresponding
hydraulic radius (HR) values of the stope wall to determine
the stability condition of each wall using Mathews’ stability
graph. Based on the back analysis plots conducted, all of the
optimized stope walls have stable conditions, as indicated by
the stability points plotted above the stability line in Fig. 3.
In the hanging wall and footwall areas, all stope walls can
be considered stable, as seen in Fig. 8 (left). The distribu-
tion of the plots tends to be vertical, indicating variations in
the rock conditions within the block model, while the tight
horizontal distribution indicates consistent stope wall areas.
A similar pattern is observed in the distribution of plots for
the front wall and back wall (Fig. 8 (right)), suggesting a
similar condition in those areas. The tight horizontal dis-
tribution also indicates minimal variations in the length or
width of the formed stopes, which is commonly observed in
narrow deposit formations as utilized in this case study. Fur-
ther, the application of the Mathews stability analysis to the
optimization algorithm was deemed successful, as indicated
by the good stope economic values and stable conditions at
each stope wall.

8 Conclusions
One of the significant challenges in underground mine

planning is determining the stope layout, which involves
the location, wall area, and stope size. The stope layout
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dictates the amount of material extracted, the metal con-
tent, and grade of minerals extracted, ultimately deter-
mining the aggregate economic value of all extracted
stopes. Addressing this challenge has been largely done
through the development of optimization algorithms,
enabling mining engineers to assess various stope layouts
more efficiently. However, the involvement of numerous
parameters renders optimization algorithms susceptible to
suboptimal conditions, wherein the stope layout produced
by the optimization process may not be the best solution
achievable for a given case study. Among the multitude
of parameters involved, rock conditions are one of the
dominant parameters considered in determining the stope
layout. The study’s proposed algorithm tried to combine
the steps of stope optimization with stability analysis
using the Mathews Stability Chart. This was done so that
a more complete design could be made, especially since
more field data about the geomechanical properties was
available.

Integration is suggested by establishing dimensional
constraint at the onset of optimization utilizing Mathews
stability analysis. This involves incorporating geome-
chanical data, such as rock mass classification Q’, factor
A, factor B, and factor C. The outcomes demonstrate the
effectiveness of this approach, evident in the optimization
outcomes that yield superior economic value compared
to employing fixed dimensions. Furthermore, the stabil-
ity of the optimized stope walls affirms the effectiveness
of stability analysis within the optimization algorithm,
ensuring the project’s financial feasibility. The results of
optimization by this algorithm could serve as preliminary
guidance for mine planners during the feasibility evalu-
ation phase.
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