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Abstract
This research proposed a single port microwave sensor designed for permittivity 
detection of both solid and vegetable samples, utilizing an Electric Field Coupled 
(ELC) resonator combined with an Interdigital Capacitor (IDC) structure. The sen-
sor operates at a centre frequency of 1.9 GHz and adopts a single-port configuration 
with a reflection coefficient (S₁₁) maintained below − 10 dB. Permittivity measure-
ment is achieved using perturbation theory, where a shift in the resonant frequency 
occurs when a material is introduced into the sensing region. This sensing region is 
defined by the location of maximum electric field concentration within the resona-
tor. A polynomial fitting equation, derived from measurements on known dielectric 
materials with permittivity values ranging from 1 to 9.8, is used to estimate the 
permittivity of vegetable samples. The proposed sensor demonstrates high perfor-
mance, with a measured accuracy of 98.94%, normalized sensitivity of 0.69%, and 
a frequency deviation rate (FDR) of 0.014  GHz. These results indicate that the 
sensor offers reliable and precise permittivity detection, particularly for vegetable s 
materials. Therefore, the proposed microwave sensor is well-suited for food-related 
applications, such as evaluating the quality and freshness of perishable vegetable 
goods.

Keywords  Microwave sensor · Single-port · Interdigital capacitor · 
Electromagnetic coupled · Permittivity
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1  Introduction

Microwave sensors have emerged as a highly promising solution for various sens-
ing applications due to their ability to perform accurate, non-contact, and real-time 
characterization of materials [1]. These sensors operate by exploiting the interaction 
between microwave electromagnetic fields and materials under test, where the mate-
rial’s electrical properties such as relative permittivity, permeability, and loss tangent 
(tan δ) affect the behavior of the transmitted or reflected signal [2]. This principle has 
led to the development of numerous microwave-based sensors for a wide range of 
fields, including non-destructive testing [3], biomedical diagnostics [4, 5], material 
analysis [6], chemical sensing [7], and environmental monitoring [8]. The increas-
ing demand for rapid, cost-effective, and highly sensitive material characterization 
methods has placed microwave sensors at the forefront of modern sensor research 
and development.

One of the most significant advantages of microwave sensors is their ability to 
provide label-free, contactless measurement of material properties [9]. Microwave 
sensors allow direct interaction with the target material, preserving its physical and 
chemical integrity [10]. Furthermore, these sensors are capable of penetrating dielec-
tric materials, making them suitable for applications involving layered or embed-
ded structures [11]. Additionally, microwave sensors can be integrated with planar 
circuits, allowing for compact and cost-effective system designs, which are compat-
ible with modern printed circuit board (PCB) fabrication technologies [12]. Their 
sensitivity to dielectric changes enables detection of even small variations in material 
composition, which is crucial for monitoring chemical reactions, detecting biological 
specimens, or distinguishing between different material types [13].

Recent developments in microwave sensor technology have focused primarily on 
enhancing sensitivity, expanding the range of detectable permittivity, and improving 
selectivity toward various types of materials. Resonator-based structures, including 
T-resonator [14], split-ring resonator (SRR) [15] and complementary split-ring reso-
nators (CSRR) [16, 17] have been proposed to increase the field interaction with test 
materials and to enable multi-band operation. These advances are particularly useful 
for applications requiring precise dielectric characterization, especially in the detec-
tion of materials with known or limited permittivity ranges.

However, most existing microwave sensor designs predominantly focus on detect-
ing known permittivity materials such as RO-5880, RO-4003, RO-3006, FR-4, and 
TM-10. While these standard dielectric substrates are useful for calibration and 
benchmarking, they do not reflect the diversity and complexity of real-world materi-
als. Particularly, these designs fall short in handling vegetable samples whose dielec-
tric properties are less predictable and vary with factors such as water content, aging, 
and degradation. As a result, they are generally not equipped to determine the permit-
tivity or assess the quality of vegetable samples. Sensors in [18–22], for example, 
primarily focus on solid materials, and their normalized sensitivity remain relatively 
low (≤ 0.042), particularly when considering detection of low-permittivity or lossy 
materials. Vegetable samples such as carrot, cucumber, tomato, and potato are impor-
tant to observe due to their sensitivity to freshness and spoilage. The ability to detect 
changes in permittivity for such samples can provide valuable insights into their 

1 3

    7   Page 2 of 23



Sensing and Imaging            (2026) 27:7 

internal condition and overall quality [23]. For example, the degradation of vegetable 
matter due to moisture loss or microbial activity alters its dielectric properties, which 
in turn affects its microwave response [24]. Therefore, a sensor with the capability to 
detect vegetable samples is critically needed for determining their permittivity and 
assessing whether the samples remain suitable for consumption.

To address the limitations found in previous microwave sensor designs, this work 
proposes a single-port microwave sensor operating at 1.9 GHz, capable of detecting 
both solid and vegetable samples (which are determined based on polynomial equa-
tion) across a broad permittivity range of 1 to 9.8. The proposed design adopts a sin-
gle port configuration with ELC combined with IDC resonator to achieve excellent 
sensing performance, high accuracy and sensitivity. It not only supports the detection 
of conventional dielectric substrates but also extends its capability to characterize 
vegetable samples, filling a critical gap in current sensor applications. The primary 
contributions of this work include the design and implementation of a compact 
microwave sensor based on a single-port architecture, which enables efficient charac-
terization of both solid and vegetable samples. In particular, the simplified structure 
reduces fabrication complexity while preserving high measurement accuracy over a 
broad permittivity range. Furthermore, the sensor exhibits strong capability in detect-
ing the dielectric properties of vegetable samples, which is critical for evaluating 
the quality and freshness of perishable goods. As a result, the proposed sensor offers 
a practical, versatile, and high-performance solution suitable for advanced material 
characterization in real-world applications.

2  Working Principle of Microwave Sensor for Permittivity Detection

In this paper, the microwave sensor is proposed for the detection of material permit-
tivity using a resonant frequency shift approach. The overall detection scenario is 
illustrated in Fig. 1, where the sensor structure, experimental setup, and measurement 

Fig. 1  Proposed scenario for permittivity detection using single port microwave sensor
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flow are comprehensively depicted. The sensor is designed to operate at a resonant 
frequency of 1.9 GHz using an FR-4 substrate, which possesses a relative permit-
tivity (εr) of 4.3, a substrate thickness of 1.6 mm, and a dielectric loss tangent of 
0.0265. A primary reason for employing microwave frequencies below 2  GHz in 
the dielectric characterization of vegetable materials is the significantly improved 
penetration depth achieved in high-moisture, high-loss biological samples. At fre-
quencies above several gigahertz, the strong relaxation behaviour of water and the 
associated dielectric loss mechanisms result in rapid attenuation of the electromag-
netic wave, limiting the effective sensing volume and degrading the signal-to-noise 
ratio. In contrast, operation below 2 GHz reduces these losses substantially, allowing 
the field to penetrate deeper into the bulk of the vegetable tissue and enabling a more 
representative measurement of its internal dielectric properties. This advantage is 
critical for accurate assessment of moisture content, density variation, and internal 
structural inhomogeneity, all of which constitute key quality indicators in agricultural 
and food-engineering applications.

Morevoer, the use of FR4 as a substrate material offers several practical advan-
tages for microwave sensors operating below 2 GHz, primarily due to its low cost, 
wide availability, and mechanical robustness. At frequencies under 2 GHz, the dielec-
tric losses of FR4 although higher than those of specialized RF substrates remain suf-
ficiently low to maintain an acceptable quality factor and reliable resonant response, 
making the material suitable for low-to-mid-frequency sensing applications. In addi-
tion, FR4’s moderate dielectric constant (εr ≈ 4.3) enables compact sensor structures 
while preserving ease of PCB fabrication using standard industry processes, reducing 
manufacturing complexity and improving repeatability. These attributes make FR4 
particularly advantageous for agricultural and biological material characterization 
systems, where affordability, durability, and ease of sensor deployment often take 
precedence over ultra-high-performance requirements.

3  Design and Simulation

3.1  Development Model of Microwave Sensor

The proposed microwave sensor operates based on the principle of perturbation in 
the electromagnetic field distribution when a material under test (MUT) is introduced 
in the sensing region. This area is precisely dimensioned to be 10 mm × 10 mm x 
1 mm and is optimized to match the physical dimensions of the samples used in the 
experiment. The MUTs are solid form with identical length and width (a = 10 mm, 
b = 10 mm), ensuring full coverage of the sensing region and uniform interaction with 
the sensor.

Moreover, the sensing process involves placing the sample on the patch region 
of the antenna, which is connected via a coaxial cable to a Vector Network Analyzer 
(VNA). The VNA is employed to measure the S11 parameter, which reflects the input 
reflection coefficient of the antenna with resonant frequency of 1.9 GHz. The antenna 
is connected to port 1 of the VNA, and the S11 data is transferred in real time to a per-
sonal computer (PC) via a USB connection. Furthermore, when a material is placed 
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on the sensing area, the effective dielectric constant of the region increases depend-
ing on the permittivity of the sample. This change results in a shift in the antenna’s 
resonant frequency toward lower frequencies, as illustrated in Fig. 1. The degree of 
this shift is directly related to the dielectric constant of the sample. Higher permittiv-
ity materials cause greater shifts, while lower permittivity materials induce smaller 
or negligible changes.

The proposed microwave sensor is developed into three different models to opti-
mize its performance for permittivity sensing. Each model features a structural modi-
fication aimed at enhancing resonance characteristics and improving electric field 
(E-field) concentration in the sensing region.

The development of the microwave sensor models is illustrated in Fig. 2a, begin-
ning with model 1, which comprises a microstrip patch antenna with a rectangular 
sensing area (interdigital capacitor) directly connected to the feedline. To enhance 
sensitivity, model 2 is derived by rotating the IDC of model 1 by 90° to the right, 
effectively increasing the current path within the sensing region and improving elec-
tric field interaction. Building upon this, Model 3 is developed by rotating only the 
sensing area of model 2 by 90° to the left, a structural refinement that enhances 
impedance matching and promotes stronger localization of the electric field within 
the sensing zone, making model 3 structurally the most optimized configuration.

Fig. 2  Development models and simulation result of proposed single port microwave sensor; (a) De-
velopment models, (b) Simulation of S11, (c) E-field for model 1, (d) E-field for model 2, (e) E-field 
for model 3
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The simulated return loss (S₁₁) results shown in Fig. 2b provide insight into the 
resonance behavior of each model. Model 1 resonates at 1.62 GHz with a return loss 
of − 16.58 dB, indicating strong impedance matching and effective coupling, initially 
suggesting it as the most optimal design. In comparison, model 2 exhibits dual reso-
nances at 1.91 GHz and 2.3 GHz but with higher return loss values of − 7.65 dB and 
− 7.92 dB respectively, suggesting weaker matching and less stable resonance. Model 
3 resonates at 1.9 GHz with a return loss of − 11.8 dB, slightly inferior to model 1 
in terms of coupling strength. Based solely on return loss, model 1 appears superior. 
However, further analysis through electric field distribution reveals a deeper perspec-
tive on their sensing capabilities.

Figure 2c displays the electric field (E-field) distribution for model 1, where the 
field intensity is relatively weak and poorly confined within the IDC region, ranging 
only from 0.0001 V/m to 0.025 V/m. This low E-field magnitude limits interaction 
with the material under test, indicating insufficient electric coupling for effective per-
mittivity sensing. To overcome this limitation, model 2 incorporates a rotated IDC 
structure as shown in Fig. 2d, which results in improved E-field intensity reaching up 
to 0.07 kV/m and better concentration along the IDC region, enhancing sensitivity. 
Nevertheless, the field distribution remains somewhat dispersed and lacks uniformity 
which can impact sensing precision.

A more significant improvement is observed in model 3 illustrated in Fig.  2e, 
which exhibits the highest electric field concentration among the three designs. With 
E-field intensity peaking at 15 kV/m, the field is highly localized within the cen-
tral sensing area, ensuring robust interaction with the sample material. This strong 
field confinement greatly enhances permittivity detection accuracy and reliability, 
especially for identifying subtle dielectric variations. Thus, while model 1 shows 
the best return loss, model 3 ultimately emerges as the most effective configuration 
overall when both electromagnetic and sensing performance are considered, com-
bining improved coupling, structural refinement, and high electric field localization 
essential for advanced sensing applications.

Moreover, to show relation between resonance frequency, capacitance and the per-
mittivity of proposed sensor, the equivalent circuit based on R, L and C component 
has been proposed in the revised paper as shown in Fig. 3.

Figure 3a illustrates that the proposed sensor can be represented using lumped 
R–L–C elements. The equivalent circuit is implemented in AWR MWO 2009, where 
the microstrip line at the input port (characteristic impedance 

Z0 = 50 is modeled by L1 = 1.642nH and 
C1 = 0.00841 nF. The inductive branches of the ELC structure are character-
ized by L2 = 4.4 nH, L3 = 1.52 nH, L4 = 0.000218 nH, L5 = 0.000781 nH, 
L6 = 0.000244 nH, L7 = 20.26 nH, L8 = 0.246 nH, and L9 = 0.00542 nH. To 
avoid a short circuit between the resonator and the ground plane, a coupling capaci-
tance Cg = 0.001nF is incorporated into the model.

The interdigital capacitor section of the sensor is modeled by 
Rr = 153 O, Cr = 0.00106nF, and Lr = 1.66 nH, along with the inductive ele-
ments L10 = 4.597 nHand L11 = 1.84 nH. In this analysis, the dielectric under 
test is treated as a capacitive load Csconnected in parallel with the intrinsic sen-
sor capacitance Cr. Variations in the sample’s permittivity modify the value of Cs, 
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thereby changing the total capacitance of the resonator and consequently shifting its 
resonance frequency. Hence, the resonant frequency of the proposed structure can be 
evaluated using the following expression:

	
fr = 1

2π
√

L (Cr + CS) � (1)

Furthermore, Fig. 3b demonstrates that the Finite Element Method (FEM) simulation 
results exhibit excellent agreement with those obtained from the equivalent circuit 
model, with both predicting a resonant frequency of fr = 1.9 GHz. This consis-
tency confirms that the proposed equivalent circuit accurately replicates the behav-
iour observed in the FEM-based analysis.

3.2  Determination Location of Sensing Area from Proposed Microwave Sensor

Figure 4 illustrates the simulation results and the structural layout of the proposed 
microwave sensor. As depicted in Fig. 4a, the reflection coefficient S11 of the antenna 
remains below − 10 dB within the operational bandwidth, indicating good imped-
ance matching and minimal signal reflection at the resonant frequency. The structural 
configuration of the microwave sensor is shown in Fig. 4b, while the overall dimen-
sions of the antenna and its structural parameters such as lengths, widths, and gap 
spacings are annotated in the figure and further detailed in Table 1. The dimension 
of the sensor antenna is defined by its resonant frequency and the properties of the 
substrate material. The patch antenna’s width (W) and length (L) are calculated using 
the following equation:

Fig. 3  Simulation circuit model of proposed sensor; (a) equivalent circuit of proposed sensor, (b) com-
parison between Finite Element Modelling (FEM) and Equivalent Circuit (EQC)
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Parameters Dimension (mm)
Wg 50
Lg 50
W 38
L 29
Wr 10
Lr 10
W1 2.5
W2 1.3
W3 3
Wp 4
Lp 17

Table 1  Dimension of proposed 
microwave sensor
 

Fig. 4  Simulation result and design of proposed microwave sensor; (a) Simulation of S11, (b) structure 
of proposed single port microwave sensor, (c) E-field concentration at fr = 1.9 GHz, (d) H-field con-
centration at fr = 1.9 GHz
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W = c

2f
√

εr + 1
2

� (2)

	
εreff = εr + 1

2
+ εr − 1

2

(
1 + 12 h

W

)−1/2
� (3)

	
∆L = 0.412 × h ×

(εreff + 0.3)
(w

h + 0.264
)

(εreff − 0.258)
(w

h + 0.8
) � (4)

	
Leff = c

2fo
√

εreff
� (5)

	 L = Leff − 2 ∆L� (6)

W and L represent the width and length of the patch respectively (mm); fo refers to 
the resonant frequency (GHz); εr is the dielectric permittivity of the substrate; εreff 
denotes the effective permittivity of the substrate at the given resonant frequency; h 
represents the thickness of the substrate (mm); and ΔL accounts for the edge effects 
caused by fringing fields around the patch (mm).

The electric field (E-field) distribution at the resonant frequency fr = 1.9 GHz as 
shown in Fig. 3c is concentrated at both the edges and central region of the IDC struc-
ture, indicating peak intensity areas during operation, with field magnitude reaching 
up to 15 kV/m (red regions denote maximum intensity).

Complementing this, Fig. 4d shows the distribution of the magnetic field (H-field) 
at the same resonant frequency. The H-field is observed to be primarily concentrated 
within the microstrip channel gap, particularly around the feedline and the mean-
dered sections of the patch. Although the H-field distribution follows the current flow 
path, its maximum intensity, represented in amperes per meter (A/m), is lower com-
pared to the peak E-field intensity. This contrast indicates that the microwave sensor 
exhibits predominantly capacitive behaviour due to the stronger electric field compo-
nent. Therefore, the structure of the proposed microwave sensor is more suitable for 
use as a microwave sensor rather than as an antenna

3.3  Simulation of Microwave Sensor for Detection of Permittivity, tan delta and 
Thickness of SUT

Furthermore, Fig. 4 presents a comprehensive simulation analysis of the proposed 
microwave sensor designed for microwave sensing applications, particularly target-
ing permittivity detection within the range of 1 to 10. Utilizing the High Frequency 
Structure Simulator (HFSS), simulations were conducted to evaluate the sensor’s fre-
quency response and its correlation with the varying dielectric properties of materials 
under test. As shown in Fig 5a, the return loss (S₁₁) characteristics of the sensor dem-
onstrate a distinct resonance frequency shift as the relative permittivity (εr) increases, 
with the resonance frequency decreasing from 1.984 GHz at εr = 1 to 1.904 GHz at 
εr = 10. This monotonic and predictable shift highlights the sensor’s high sensitiv-
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ity to the dielectric environment in its sensing region, confirming its suitability for 
microwave sensing especially in distinguishing materials based on their permittivity.

To further quantify this behavior, Fig. 5b introduces a polynomial fitting curve 
that models the relationship between resonance frequency and relative permittivity 
by equation:

Fig. 5  Simulation using proposed single port microwave sensor; (a) Correlation between frequency 
and permittivity, (b) Fitting curve for frequency detection, (c) Fitting curve for permittivity detection, 
(d) ΔF of proposed microwave sensor, (e) FDR of proposed microwave sensor, (f) Simulation detection 
of tan delta with range of 0–0.1
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	 fr = 0.0008 (εr)2 − 0.0203 (εr) + 2.0116� (7)

Where fr is resonant frequency (GHz), and εr is relative permittivity. This equation 
exhibits a strong correlation (R² = 0.9947) which validates the reliability of the sen-
sor for accurate, frequency-based dielectric measurements. Complementing this, 
Fig. 5c provides an inverse polynomial model aimed at direct sensing applications, 
enabling the estimation of unknown material permittivity from measured resonance 
frequencies.

	 εr = 526.09 (fr)2 − 2126.9 (fr) + 2150.4� (8)

This is the inverse of Eq. (7), allowing the estimation of unknown material permit-
tivity from measured resonant frequency values. The higher accuracy with an R² 
value of 0.9992, reinforcing the robustness of the model across the tested permit-
tivity range. Moreover, Fig. 5d continues this analysis by illustrating the absolute 
frequency shift (Δf) in response to permittivity changes (Δεr), revealing a nonlinear 
but consistent trend described by the polynomial:

	 ∆f = − 0.0008 (∆εr)2 + 0.0186 (∆εr) + 0.0039� (9)

Δf stands for frequency shift (GHz), and Δεr is the change in relative permittivity. 
The R² value of 0.9947 affirms the sensor’s dependable frequency responsiveness. 
Moreover, Fig. 5e evaluates the frequency detection resolution (FDR), indicating that 
the sensor becomes increasingly sensitive at lower permittivity values, a highly desir-
able trait for applications requiring fine detection of materials with low εr.

Further analysis depicted in Fig. 5f examines the effect of the dielectric loss tangent 
(tan δ) on the sensor’s performance, a key factor in distinguishing between resistive 
and capacitive loading. While resistive components cause energy dissipation, capaci-
tive components primarily store energy without substantial losses, and this difference 
significantly affects the reflection characteristics of the sensor. The downward trend 
in the S₁₁ curves as tan δ increases reflects greater microwave energy absorption 
by lossy materials, resulting in a reduced reflection magnitude. This trend confirms 
the sensor’s sensitivity to dielectric loss variations, making it particularly applicable 
for detecting lossy substances such as biological tissues or food products. Table 2 
supplements this analysis by presenting quantitative S₁₁ values at resonance for each 
corresponding tan δ, thereby reinforcing the sensor’s practical utility in diverse per-
mittivity and loss measurement scenarios.

Tan δ S11 (dB)
0 −13.68
0.02 −14.06
0.04 −14.44
0.06 −14.84
0.08 −15.25
0.1 −15.67

Table 2  S11 values from the 
simulation results of dielectric 
Tan δ SUT iterations
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For a lossless material (tan δ = 0), the S₁₁ is recorded at − 13.68 dB. As the tan δ 
increases incrementally to 0.02, 0.04, 0.06, 0.08, and finally to 0.1, the S₁₁ decreases 
progressively to − 14.06 dB, − 14.44 dB, − 14.84 dB, − 15.25 dB, and − 15.67 dB, 
respectively. This systematic change in the S₁₁ value suggests that the sensor exhibits 
a high degree of sensitivity to dielectric loss, which can be leveraged to distinguish 
materials with similar permittivity but different loss tangents.

Moreover, Fig. 6 illustrates the simulated S₁₁ response of the proposed microwave 
resonator when loaded with samples of identical permittivity but varying thicknesses 
(h = 1.0 mm, 1.2 mm, 1.4 mm, 1.6 mm, and 1.8 mm). The results show that as the 
sample thickness increases, the resonant frequency exhibits a slight downward shift. 
This behavior occurs because a thicker dielectric sample increases the effective per-
mittivity in the sensing region, which in turn increases the effective electrical length 
of the resonator, thereby lowering the resonant frequency. Although the frequency 
shift is not large, the trend is consistent: thicker samples induce slightly stronger per-
turbations and hence deeper resonance responses. In addition, the magnitude of S11 
at resonance becomes marginally more pronounced (more negative) with increasing 
thickness. This is expected because a thicker sample enhances the electromagnetic 
coupling between the resonator and the material under test, producing a stronger 
interaction and deeper reflection coefficient minima. Despite these variations, the 
overall shape of the S₁₁ curves remains stable, demonstrating that the sensor main-
tains predictable behaviour for the range of thicknesses examined. These results 
confirm that while thickness variation does influence both the resonant frequency 
and the resonance depth, the effect is gradual and manageable. Therefore, using a 
fixed sample thickness such as the 1.58 mm adopted in this work ensures measure-
ment consistency and minimizes additional uncertainty in the extraction of dielectric 
permittivity.

Fig. 6  Simulation results of 
proposed sensor using dif-
ferent sample thickness with 
h = 1–1.8 mm
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4  Validation and Measurement

4.1  Measurement Process of Proposed Single Port Microwave Sensor

Figure 6 illustrates the experimental validation of the proposed microwave sen-
sor’s capability for permittivity detection. Figures 6 and 7a shows the physical setup 
employed to perform permittivity detection using the fabricated microwave sensor. 
The sensor is connected to a vector network analyzer (VNA) through port 1 to mea-
sure the reflection coefficient S11. The antenna is mounted on a standard PCB sub-
strate, and various test materials are placed over the sensing region. These materials 
include both dielectric materials such as RO-5880, RO-4003, RO-3006, FR-4, and 
TM-10, as well as vegetable samples including cucumber, tomato, potato, and car-
rot. The measurement was conducted at an ambient temperature of 25 °C, within a 
frequency range of 1 to 3 GHz. A frequency sweep step of 0.004 GHz was used. All 
samples had identical dimensions of 10 × 10 mm and identical thickness.

To evaluate the accuracy of the fabricated sensor, a comparison between the 
simulated and measured S11 responses for a reference dielectric material is pre-
sented in Fig. 7b. Both results display a similar resonant behaviour, confirming the 

Fig. 7  Measurement of proposed single port microwave sensor for known permittivity materials; (a) 
Setup for detection using microwave sensor, (b) Simulation and measurement result, (c) Response of 
frequency with permittivity changes, (d) Fitting curve for permittivity detection
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sensor’s accuracy. In simulation, the resonant frequency is 1.98  GHz with an S11 
value of − 11.814 dB, while the measured result shows a slightly higher frequency 
of 2.04 GHz and an S11 of − 10.96 dB. Therefore, to assess the performance of the 
fabricated sensor and identify any deviations from the simulated behaviour, an error 
analysis is performed by comparing the resonance frequencies obtained from both 
simulation and measurement.

	
Error = (Measured frequency − Simulated frequency)

Simulated frequency
× 100%� (10)

The error result indicates a frequency deviation of approximately 3.03%, which is 
relatively small and within acceptable limits for practical sensor implementations. 
Slight discrepancy between the measured and simulated results can be attributed to 
several factors. First, fabrication tolerances inherently introduce minor dimensional 
inaccuracies during the production process. Variations in substrate thickness, conduc-
tor width, or misalignment during photolithography can alter the sensor’s effective 
electrical length, thus shifting the resonance frequency. Second, material property 
variability, particularly the dielectric constant (εr) of the FR4 substrate used also 
contributes significantly to this deviation. Although simulations often use a nominal 
permittivity value (typically εr ≈ 4.4), in reality, the permittivity of FR4 can vary 
from 4.3 to 4.6. These small changes in εr can have a measurable impact on the reso-
nant behavior of the sensor. Moreover, connector losses, soldering effects, and differ-
ences in boundary conditions between simulation and experimental setups may also 
influence the results. The close match of 3.03% between the two curves validates the 
sensor’s performance and confirms its effectiveness in practical permittivity sensing 
applications.

Building on this validation, Fig.7c demonstrates the sensor’s response to six differ-
ent dielectric materials with known permittivity values. The plot shows the measured 
S₁₁ responses for six different known dielectric materials, with their specifications 
provided in Table 3.

As evident from the plotted curves, increasing permittivity values cause a system-
atic shift in the resonant frequency toward lower frequencies. This trend is consistent 
with the simulation results and highlights the sensor’s strong dielectric sensitivity. 
Among the materials tested, Air exhibits the highest resonant frequency due to the 
absence of dielectric loading, while TM-10, possessing the highest relative permit-
tivity, results in the lowest resonant frequency. The downward shift in resonant fre-

Table 3  Specifications of materials under test
Materials Thickness Tan δ Relative Permittivity
Air 1.58 mm 0 1
Rogers RT/duroid 5880 (tm) 1.58 mm 0.0009 2.2
Rogers RO4003 (tm) 1.58 mm 0.0027 3.55
FR4_epoxy 1.58 mm 0.0265 4.3
Rogers RO3006 (tm) 1.58 mm 0.0025 6.15
Rogers TMM 10i (tm) 1.58 mm 0.002 9.8
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quency as permittivity increases further supports the sensor’s potential for precise 
dielectric property estimation.

To quantify this relationship, Fig. 7d displays a polynomial fitting curve that quan-
tifies the relationship between permittivity and resonant frequency based on the mea-
sured data. The inverse relationship is characterized by a linear trendline with a high 
coefficient of determination R2 = 0.9997, indicating excellent linearity given by the 
equation:

	 fr = − 0.0141(εr) + 2.0541� (11)

εr denotes the material’s relative permittivity, while fr represents the resonant fre-
quency (GHz). The high accuracy of this fitting model confirms the sensor’s reli-
ability and robustness for practical use. In conclusion, the results in Fig. 7 validate 
the simulation-based analyses and confirm the practical viability of the microwave 
sensor for permittivity detection. The experimental data not only align with simula-
tion trends but also prove the sensor’s accuracy in measuring both engineered and 
natural dielectric materials. The strong linear correlation between frequency shift and 
permittivity simplifies the detection process and provides a reliable basis for material 
characterization.

4.2  Validation and Performance of Microwave Sensor for Permittivity Detection

To validate the accuracy of the proposed sensor in detecting materials with known 
permittivity, a series of measurements were conducted using reference dielectric 
samples. The results demonstrated high consistency between the measured and refer-
ence permittivity values, thereby confirming the sensor’s reliability and precision. 
The accuracy of the sensor when using materials with known permittivity can be 
seen in Table 4.

The minimum error was observed with RO-4003 at only 0.02%, yielding a nearly 
perfect accuracy of 99.98%. Accuracy values for all samples are above 97%, with 
most exceeding 99%, confirming the sensor’s effectiveness in detecting subtle 
changes in dielectric properties.

To further assess the sensor’s precision and its responsiveness to dielectric varia-
tions, key performance metrics were calculated based on the frequency response of 
the microwave sensor to known permittivity materials. These metrics include the 
absolute frequency shift (Δf), normalized sensitivity (NS), and frequency detection 
resolution (FDR), which collectively evaluate the sensor’s sensitivity, accuracy, and 

Table 4  Comparison measurements from single Port microwave sensor for known permittivity materials
Samples Permittivity Error (%) Accuracy (%)
Air 1 0.05 99.95
RO-5880 2.2 3.03 96.97
RO-4003 3.55 0.02 99.98
FR-4 4.3 2.35 97.65
RO-3006 6.15 0.79 99.21
TM-10 9.8 0.14 99.86
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capability to detect minor changes in permittivity. The following equations describe 
how these parameters are derived and provide deeper insight into the sensor’s opera-
tional effectiveness [25].

	 ∆f = (funloaded − floaded)� (12)

The notation Δf represents the frequency shift (GHz), which is the difference between 
the unloaded resonant frequency and the loaded resonant frequency. This parameter 
quantifies the absolute change in frequency due to the introduction of a dielectric 
sample.

	
NS = 1

∆εr
×

(
funloaded − floaded

funloaded

)
%� (13)

Defines Normalized Sensitivity (%), which provides a dimensionless measure of 
the frequency shift relative to the change in relative permittivity Δεr and normalized 
against the unloaded frequency. This value is useful for comparing sensor sensitivity 
across different materials or designs, regardless of absolute values.

	
FDR = ∆f

∆εr
� (14)

Describes the Frequency Detection Resolution (FDR), which expresses how much 
the resonant frequency (GHz) changes per unit change in relative permittivity. A 
higher FDR value indicates the sensor’s enhanced capability to distinguish subtle 
variations in permittivity, making it especially effective for applications requiring 
high-resolution dielectric measurements.

Based on this validation, the sensor was subsequently employed to evaluate the 
permittivity of various vegetable samples. A polynomial fitting equation in Fig. 6b, 
derived from the measured data of known permittivity samples, was used as the basis 
for this estimation. By applying the established equation, the dielectric properties 
of vegetable samples such as carrot, cucumber, tomato, and potato were success-
fully determined. This approach ensures that the permittivity values of the vegetable 
samples are estimated with high accuracy, leveraging the correlation developed from 
well-characterized reference materials.

Figure 8 illustrates the permittivity detection performance of the proposed micro-
wave sensor when applied to vegetable food materials. Figure 8a shows the relation-
ship between the frequency shift and the change in permittivity for various vegetable 
food samples. The linear fitting given by the equation:

	 ∆F = 0.0141(∆εr) − 4E - 05� (15)

ΔF represents frequency shift (GHz), while Δεr stands for change in relative permit-
tivity. With a high coefficient of determination R² = 0.9997 demonstrates that the 
sensor provides a predictable and stable response even when tested on biological 
materials with varying water content and internal structure. This result supports the 
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earlier simulation and measurement findings and confirms that the sensor maintains 
consistent performance across diverse material types.

To further confirm the accuracy of the proposed sensor, a direct comparison 
between predicted and reference permittivity values is presented in Fig. 8b. This com-
parison uses the polynomial fitting Eq. (11) and shows an excellent match between 
the two data sets. The close alignment, supported by an R² of 0.9997, indicates that 
the sensor can reliably estimate the dielectric constant of vegetable samples using a 
simple frequency-based approach.

The effectiveness of the sensor in distinguishing between different vegetable 
samples is shown in Fig. 8c, which displays the measured S₁₁ responses for several 
samples, including Air, carrot, cucumber, tomato, and potato. Each sample produces 
a unique resonance dip, and as the permittivity increases, a clear downward shift in 
resonant frequency is observed. Air produces the highest frequency response while 
potato shows the lowest, reflecting its higher moisture content. This consistent shift 
across samples highlights the sensor’s sensitivity and its capability to resolve small 
variations in dielectric properties. These results are also consistent with earlier dielec-

Fig. 8  Measurement of proposed single port microwave sensor for vegetable samples; (a) ΔF of pro-
posed microwave sensor, (b) Comparison permittivity from calculation and reference, (c) Response of 
frequency with permittivity changes, (d) Correlation between frequency and permittivity of vegetable 
samples
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tric measurements and confirm the sensor’s reliability in detecting complex biologi-
cal materials. The corresponding data for frequency shifts is summarized in Table 5.

Finally, to validate the mathematical model used in predicting permittivity from 
frequency readings, Fig. 7d presents the fitted curve relating resonant frequency to 
permittivity for the vegetable samples. The strong linear trend, based on the same 
Eq. (10): fr = −0.0141(εr) + 2.0541 and an R² of 0.9997, confirms that the sensor’s 
response is uniform across both engineered and vegetable samples. This further sup-
ports its practicality for real-time dielectric measurements with minimal recalibration 
or complex processing.

5  Comparison with Previous Work

In order to show the novelty of these works, Table  6 presents a comprehensive 
comparison of the proposed microwave sensor with existing designs in literature. 
Operating at 1.9 GHz, the proposed IDC-ELC microwave sensor supports a wide 
permittivity detection range from 1 to 9.8 and is capable for detecting both solid and 
vegetable samples using a single port configuration. This offers a distinct advantage 
over other reported sensors, which are generally limited to solid material detection.

For instance, the previous sensor [20], which employs a U-slot antenna structure, 
operates at 2.53 GHz and detects permittivity within a narrower range of 1 to 4.13. It 
is restricted to solid samples and achieves a frequency detection resolution (FDR) of 
0.012 and an accuracy of 96%, yet its normalized sensitivity (NS) is relatively low at 
0.0015. Similarly, the T-shaped and dual T-shaped resonator-based sensors reported in 
[19, 22] operate at multiple frequencies—1.64/2.43 GHz and 1.81/2.34 GHz respec-
tively to covering permittivity ranges up to 6.15. These sensors also utilize single port 
configurations and attain high accuracy levels of up to 99.31%. However, their NS 
values vary significantly while previous work [22] shows NS values of 0.009/0.006 
and [19]  reports 1.15/0.16, indicating variability in sensitivity performance. These 
sensors are also limited to solid sample detection. In contrast, dual-port designs such 
as the dual split-ring resonator (SRR) in previous work [18] and the nested CSRR 
[21] exhibit broader FDR values of 0.29 and 0.47, respectively, but lower accuracy 
levels of 85% and 87%. Their higher NS values of 0.039 and 0.042 suggest reduced 
precision in permittivity estimation, and like others, they cannot detect vegetable 
samples.

Overall, the sensitivity performance presented in Table 6 demonstrates that the 
proposed IDC–ELC microwave sensor exhibits competitive sensing performance rel-
ative to existing resonator- and antenna-based approaches. Most prior designs show 

Table 5  Frequency shifts of vegetable samples
Samples Frequency (GHz) S11 (dB) Calculated Permittivity
Air 2.04 −10.96 1.00
Carrot 2.00 −17.05 3.83
Cucumber 1.98 −19.4 5.25
Tomato 1.976 −25.13 5.53
Potato 1.964 −40.4 6.38
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frequency deviation ratios (FDR) ranging from 0.012 to 0.47, with nested CSRR and 
dual-SRR structures achieving high sensitivities at the expense of increased com-
plexity and dual-port configurations. In comparison, the proposed sensor achieves 
an FDR of 0.014 using simple single-port architecture, indicating that a comparable 
level of permittivity resolution can be obtained even with a compact, low-frequency 
(< 2  GHz) structure. Moreover, while previous works report narrow permittivity 
ranges (typically 1–4.3 or 1–6.15), the proposed design maintains high accuracy 
(98.94%) across a significantly broader permittivity span (1–9.8), confirming its 
robustness for heterogeneous materials. The normalized sensitivity (NS) value of 0.69 
further distinguishes the sensor from prior works, whose NS values remain below 
0.05, demonstrating substantially enhanced responsiveness to dielectric variations. 
Importantly, unlike earlier studies that are limited to solid engineering substrates, 
the proposed sensor uniquely supports real vegetable samples, validating their appli-
cability for high-loss, moisture-rich materials while preserving high sensitivity and 
measurement stability.

The proposed microwave sensor demonstrates a well-balanced performance, 
achieving an FDR of 0.014 and a high accuracy of 98.94%, along with a moderate NS 
value of 0.69 indicating a reasonable trade-off between sensitivity and measurement 
stability. Most notably, it is the only sensor in this comparison capable of accurately 
sensing both solid and vegetable samples. This capability is enabled by the imple-
mentation of a polynomial fitting equation derived from known permittivity samples, 
allowing for precise estimation of unknown vegetable food materials. This highlights 
the versatility and robustness of the proposed design for practical microwave sensing 
applications.

However, the present study is limited to the characterization of small, freshly cut 
vegetable samples, which were selected to ensure consistent placement, stable con-
tact with the interdigital capacitor (IDC) sensing region, and high repeatability dur-
ing the measurement process. While this approach is appropriate for validating the 
sensor’s fundamental performance, it does not fully represent real-world conditions 
in which whole vegetables with irregular shapes and varying surface curvatures must 
be assessed. Additionally, the current setup does not incorporate a dedicated fixture 
to maintain uniform coupling when evaluating larger or uncut samples, which may 
influence measurement accuracy. Future work will therefore focus on extending the 
proposed sensor to accommodate whole-vegetable characterization, including the 
development of mechanical fixtures to stabilize samples of varying geometries. Fur-
ther studies will also involve systematic investigations of freshness degradation over 
time to evaluate the sensor’s capability for real-time quality assessment in practical 
agricultural and supply-chain environments.

6  Conclusion

The proposed microwave sensor, which integrates an Electric Field Coupled (ELC) 
resonator with an Interdigital Capacitor (IDC) structure has proven to be an effective 
and accurate tool for permittivity detection of both solid and vegetable food materi-
als. Operating at a resonant frequency of 1.9 GHz and designed with a single-port 
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configuration maintaining an S₁₁ value below − 10 dB, the sensor ensures stable and 
efficient signal reflection characteristics. Utilizing perturbation theory, the sensor 
accurately detects permittivity changes by monitoring shifts in the resonant frequency 
when materials are introduced into the high electric field region of the resonator. A 
polynomial fitting model, developed from reference measurements on materials with 
known permittivity ranging from 1.0 to 9.8, enables precise estimation of unknown 
dielectric properties. The sensor achieved a high accuracy rate of 98.94%, a normal-
ized sensitivity of 0.69%, and a frequency detection resolution (FDR) of 0.014 GHz, 
reflecting its high responsiveness and precision in detecting even small changes in 
permittivity. These performance metrics affirm the sensor’s suitability for applica-
tions that demand reliable dielectric characterization, particularly in food technology, 
where it can be effectively used to assess the quality, composition, and freshness of 
perishable vegetable products.
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Abstract
This research proposed a single port microwave sensor designed for permittivity detection of both solid and vegetable samples, utilizing an Electric

Field Coupled (ELC) resonator combined with an Interdigital Capacitor (IDC) structure. The sensor operates at a centre frequency of 1.9 GHz and adopts

a single-port configuration with a reflection coefficient (S₁₁) maintained below − 10 dB. Permittivity measurement is achieved using perturbation

theory, where a shift in the resonant frequency occurs when a material is introduced into the sensing region. This sensing region is defined by the

location of maximum electric field concentration within the resonator. A polynomial fitting equation, derived from measurements on known dielectric

materials with permittivity values ranging from 1 to 9.8, is used to estimate the permittivity of vegetable samples. The proposed sensor demonstrates

high performance, with a measured accuracy of 98.94%, normalized sensitivity of 0.69%, and a frequency deviation rate (FDR) of 0.014 GHz. These

results indicate that the sensor offers reliable and precise permittivity detection, particularly for vegetable s materials. Therefore, the proposed

microwave sensor is well-suited for food-related applications, such as evaluating the quality and freshness of perishable vegetable goods. © The

Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
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