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Abstract: Similarity-based biclustering (SBB) algorithm consists of four main 
phases, transforming data, the construction of row (gene) and column 
(condition) similarity matrices, the clustering of each similarity matrix and the 
extraction of the bicluster. In this study, we modified the SBB algorithm  
at the stage of data transformation using min-max normalisation to identify 
significant biclusters in diabetic nephropathy and retinopathy microarray data 
after genes are selected using relative deviations and absolute deviations. Based 
on the comparison of the silhouette index validation experiments, SBB using 
partitioning around medoids (PAM) provided better clustering of genes and 
samples than K-means and agglomerative hierarchical clustering (AHC) 
(Ward’s linkage). Furthermore, the proposed technique identified a meaningful 
non-overlapping bicluster on a real dataset. Using gene ontology (GO) 
enrichment analysis and the Bonferroni correction, we have identified 
biological evidence in each bicluster that is significant in terms of gene 
functions and biological processes. 

Keywords: agglomerative hierarchical clustering; biclustering; diabetic 
nephropathy; diabetic retinopathy; gene expression; K-means; microarray data; 
PAM; partitioning around medoids; SBB; similarity-based biclustering. 
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1 Introduction 

Global increases in the prevalence of diabetes mellitus (DM) are accompanied by the 
increased prevalence of diabetic microvascular disorders, such as diabetic nephropathy 
(DN) and diabetic retinopathy (DR). DN is a kidney abnormality that leads to decreased 
renal function in subjects with a history of DM. DM, particularly type II diabetes,  
is the sixth most common cause of death due to kidney failure in western countries. 
According to a microalbuminuria prevalence study (MAPS) in Asia, nearly 60% of 
patients with type 2 diabetic hypertension suffer from DN, with macroalbuminuria and 
microalbuminuria accounting for 18.8% and 39.8% of cases, respectively. DN is 
characterised by proteinuria (microalbuminuria), which precedes DN by months to years. 
Therefore, Foster (1994) has suggested that the early detection of microalbuminuria 
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allows interventions that inhibit further decline in renal function. DR currently affects 
more than 20 million diabetic people in the US The associated microvascular damage to 
the retina is characterised by the death of retinal neurons and decreased retinal 
vascularisation (Eldred and Katz, 2008). Although not lethal, this condition can decrease 
vision and lead to permanent blindness (Wilardjo, 2001). 

Recent technological advances in molecular biology have greatly facilitated analyses 
of diverse biological phenomena. For example, microarray technologies have been used 
to profile changes in relative gene expression levels associated with DN and retinopathy. 
Microarray technology utilises gene sequences determined in the genome project to 
analyse specific organisms at any given time and under specific conditions. The 
microarrays return expression matrices for specific biological conditions, with genes in 
rows and expression levels in columns (Madeira and Oliveira, 2004). 

Gene expression analyses can be performed in various ways, including by grouping 
data using clustering and co-clustering (biclustering) algorithms. Liu et al. (2014) have 
described clustering as a data classification process that partitions the data according to 
various criteria to find patterns. However, clustering is limited by the assumption that 
genes have the same expression levels under all measurable conditions. To address this 
limitation, bioinformatics analyses are conducted using biclustering or co-clustering 
algorithms. Prelić et al. (2006) simultaneously applied biclustering algorithms in two 
dimensions to identify subset pairs of genes and conditions of gene expression. Cheng 
and Church (2000) were the first to apply the metric block correlation method mean 
residual score (MRS), which measures the quality of the biclusters found. Subsequently, 
several studies have proposed algorithms based on MRS, such as that by Divina and 
Aguilar-Ruiz (2006). Several studies have shown the successful implementation of 
biclustering algorithms on Alzheimer’s microarray data, such as Setyaningrum et a1. 
(2019), Wibawa et al. (2019) and Wutun et al. (2019). 

One biclustering technique that can detect sets of genes with similar expression levels 
under certain conditions extracts biclusters according to biological functions and is 
known as similarity-based biclustering (SBB). Hussain and Ramazan (2016) generated 
biclusters that show gene expression levels in cellular processes. Their analyses define 
medically relevant groups of genes under certain conditions and can be used to inform 
prevention and treatment strategies. 

Hussain and Ramazan (2016) implemented an SBB algorithm using agglomerative 
hierarchical clustering (AHC) to find biclusters. They also compared it with other 
bicluster algorithms such as ISA, SAMBA, Bimax, Cheng and Church algorithm and the 
other. The results of his research that AHC (Ward’s linkage) produces the highest 
accuracy than other bicluster algorithms. However, AHC has a high complexity of 

3( )O n , where n is the number of data points. Therefore, it is less suitable for application 
in large-scale gene expression datasets (Sasirekha and Baby, 2013). This paper explains 
that the weakness of the SBB algorithm lies in the clustering stage, namely the AHC 
method, and recommends using partition-based clustering methods. Partition-based 
clustering consists of several grouping methods, such as k-means clustering and 
partitioning around medoids (PAM). Popular clustering techniques, including K-means 
clustering and PAM, have been used to classify gene expression data. 

Unlike hierarchical clustering algorithms, partition-based clustering methods begin by 
classifying the entire dataset into k partitions. After initial partitioning of data into  
k-clusters, heuristics are used to improve the grouping based on some objective functions. 
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The K-means clustering algorithm is designed to partition objects in the dataset into 
subsets so that all the points in particular subsets are closest to a given centre (Macqueen, 
1996). The advantages of this approach include ease of implementation, comparatively 
less time to run the algorithm and adaptability. This algorithm has been commonly used, 
for example, by Wu and Kumar (2009). PAM is a widely used and powerful clustering 
technique (Park and Jun, 2009) and has the advantage of efficiency during application to 
large datasets. Bustamam et al. (2018) conducted clustering research using AHC and 
produced the best grouping accuracy. Therefore, we compared the PAM, K-means 
partitioning and AHC (Ward’s linkage) methods to implement the SBB algorithm and 
identify significant biclusters in gene expression data. 

We used a min–max normalisation method to transform the data. According to  
Chin et al. (2015), the main advantage of the min–max normalisation method is that it 
reflects a balance of comparative values before and after the normalisation process, thus 
eliminating biases in the data. 

The remainder of this paper is organised as follows. The datasets and study method 
are described in Section 2. The results and the analysis are presented in Section 3.  
The purpose of this paper is to modify the clustering part of the SBB algorithm with  
k-means and PAM algorithm and compare their performance with the original one, i.e., 
SBB using AHC (Ward’s Linkage) to obtain the biclusters from microarray gene 
expression data. Further, we extract important biological information from the biclusters 
which the Bonferroni correction provided by the database for annotation, visualisation 
and integrated discovery (DAVID) by Huang et al. (2009). 

2 Datasets and methods 

Diabetic gene expression data from the Gene Expression Omnibus (GEO) at the National 
Center for Biotechnology Information (NCBI) can be accessed at https://www.ncbi. 
nlm.nih.gov/geo. The DN dataset was used with the GSE1009 ID, which contains gene 
expression profiles of kidney glomeruli from DN patients and comprises 12,626 genes 
from six samples. The DR dataset comprises 45,102 genes, and five samples and can be 
accessed using the code GSE12610 ID. 

The following steps in the data analysis comprise the matrix of gene expression data 
A. We selected genes using absolute and relative deviation methods. We then used the 
min–max normalisation method to transform matrix A into matrix An and the chi 
similarity measure to generate a similarity matrix of gene, i.e., rows (SR) and a similarity 
matrix of condition, i.e., column (SC). This similarity matrix was then clustered into k 
and l clusters using PAM and K-means, and the best cluster was determined using the 
index silhouette method. The extract bicluster method was then applied to this cluster to 
determine the regulatory expression levels of each bicluster. The following flowchart 
(Figure 1) shows the data analysis steps. 

2.1 Gene selection 

Microarrays produce large-scale data that generally have experimentally generated noise 
due to, for example, transformation of the image, image segmentation, selection of 
parameters, different numbers of Cy3 and Cy5 on labelling mRNAs and inequality of 
initial RNA quantities. Such noise has a strong effect on the accuracy of grouping. In 



   

 

   

   
 

   

   

 

   

    Biclustering of diabetic nephropathy and diabetic retinopathy 347    
 

    
 
 

   

   
 

   

   

 

   

       
 

addition, greater numbers of features (genes) increase the time and cost of computing 
required to process the data. Therefore, genes are selected according to significant 
differential gene expression levels. We used two popular and simple selection techniques 
involving relative deviations and absolute deviations. In relative deviation techniques, 
selected genes have relative deviations that are greater than the threshold (δ), and genes 
with smaller deviations are considered noise, as described by Klebanov and Yakovlev 
(2007). The formula for relative deviations is as follows: 

max( )
min( )

i

i

a
a

δ ≤ . (1) 

Golub and Van Loan (1999) have suggested that absolute deviation techniques considers 
the range of ranges of absolute values for all conditions. Genes that are selected using this 
technique have absolute deviations that are greater than the threshold (θ). Absolute 
deviation is calculated as follows: 

max( ) min( )i ia aθ ≤ − . (2) 

Figure 1 Flowchart of the data analysis 

  

2.2 Min–max normalisation 

In this normalisation technique, data are transformed using minimum and maximum 
values. Min–max normalisation alters matrix entries to the interval [0,1], as indicated by 
Chin et al. (2015). The min–max normalisation formula reported by Patro and Sahu 
(2015) is as follows: 
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( , )

( , ) max min min

min( )
( )

max( ) min( )
a b a

a b
a a

x x
x new new new

x x
−

′ = × − +
−

, (3) 

where '
( , )a bx  is the element value ( , )a b  in the data matrix after normalisation, ( , )a bx  is the 

element value ( , )a b  in the data matrix before normalisation, min( )ax  is the minimum 
value in the thA  row of the matrix before normalisation, max( )ax  is the maximum value 
in the thA  row of the matrix before normalisation, maxnew  is the limit of the new 
maximum value and minnew  is the limit of the new minimum value. 

2.3 Χ-Sim similarity measure 

The χ-Sim similarity measure is a co-similarity-based approach that simultaneously uses 
two similarity matrices of similarity matrix between row (SR) and similarity matrix 
between column (SC). χ-Sim is calculated iteratively by updating these SR and SC 
matrices, and the resulting updated SR and SC matrices are interrelated so that each 
matrix construct has a similarity given by another co-similarity measure, as suggested by 
Hussain et al. (2010). 

Let A be the data matrix representing a gene expression microarray with r rows 
(genes) and c columns (conditions). The intensity of gene activities between the Ith row 
and the Jth column is denoted by :ia 1,  ,i ica a… =   , which is the row vector representing 

the gene i, and : 1,  ,j j jca a a… =   , which is the column vector corresponding to condition 

j. In these computations, SR and SC represent square and symmetrical row and column 
similarity matrices of size r x r and c x c, respectively, with , 1... , [0,1]iji j r sr∀ = ∈  and 

, 1... , [0,1]iji j c sc∀ = ∈ . In this equation, (...)sF  is a generic function that takes the 
elements ila  and jna  of A and returns a measure of similarity ( , )s il jnF a a  between them. 

The similarity (or distance) measure between two genes :ia  and :ja  is defined as a 
function and is denoted as : :( , )i jSim a a  to calculate the SR matrix (Hussain and Ramazan, 
2016), as follows: 

( ) ( ) ( ) ( ): : 1 2 2, , , ,i j s i ji s i j s ic jcSim a a F a a F a a F a a= + + + . (4) 

Given a matrix SC with entries that provide a measure of similarity between columns 
(condition) of microarray data, we introduce a pseudo-norm λ that is analogous to the 
norm Lλ (Minkowski distance). Equation (4) can then be rewritten as follows without 
changing its meaning if 1llsc =  and λ = 1 (Hussain and Ramazan, 2016): 

( ) ( ) ( ) ( ): : 1 11 2 2 22, , . , . ... , .i j s i ji s i j s ic jc ccSim a a F a a sc F a a sc F a a sc= + + +  (5) 

( ) ( )( ): :
1

, ,i j s il jl ll
l

Sim a a F a a sc
λλ

=

= × . (6) 

Equation (5) generalises (6) so that all possible pairs of features (genes) occurring under 
conditions :ia  and : ja  can be accounted for. The overall similarity between genes :ia  and 
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: ja  is defined in the following equation (7), in which the terms for l n=  are those in 
equation (6): 

( ) ( )( ): : ln
1 1

, ,
c c

i j s ll jn
l n

Sim a a F a a sc
λλ λ

= =

= × . (7) 

Assuming that the function ( , )il jnSim a a  is defined as a product of the elements ila  and 

jna  ( ( , )il jn il jnSim a a a xa= , as with the cosine similarity measure), we can rewrite 
equation (7) as follows: 

( ) ( ) ( ): : : :, T
i j i jSim a a a sc a

λλλ λ= × × , (8) 

where ( ) ( ) ( ): ...i ij ica a a
λλ λ =   

 and :
T
ja  denotes the transpose of the vector :ja , as 

described by Hussain and Ramazan (2016). 

2.4 The generic χ-Sim co-similarity measure 

In general, expansion of all row and column pairs is achieved by matrix multiplication 
from SR and SC matrices. According to Hussain et al. (2010), the steps of this method 
are as follows: 

a Similarity matrices of the gene or row (SR) and similarity matrix of condition or 
column (SC) are initiated with the identity matrix. We can write these matrices as 
SR(°) and SC(°), where the superscript is the iteration number. 

b At each iteration t, we calculate the new similarity matrix between genes SR(t) using 
the similarity matrix between conditions SC(t − 1), and we do the same thing for the 
columns’ similarity matrix SC(t), as follows: 

( ) ( 1) ( )t t TSR A SC Aολ ολ−= × × , (9) 

( ) ( 1)( )t T tSC A SR Aολ ολ−= × × , (10) 

where ,(( ) )ij i jA aολ λ=  is the element-wise exponent of A. Furthermore, each SR 
and SC matrix is normalised using the following pseudo-normalisation: 

( )
( )

( ) ( )2
, 1... ,

t
ijt

ij t t
ii jj

sr
i j r sr

sr xsr

λ

λ
∀ ∈ = , (11) 

( )
( )

( ) ( )2
, 1... ,

t
ijt

ij t t
ii jj

sc
i j c sc

sc xsc

λ

λ
∀ ∈ = . (12) 

c SR(t) and SC(t) are updated iteratively (t = 4 is sufficient). 
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2.5 Partitioning around medoids 

PAM uses the k-medoid method to identify clusters and chooses a medoid by calculating 
minimum total distances from others (Mondal and Choudhury, 2013). According to 
Cahyaningrum et al. (2017), a medoid is a representative of each group, and the number 
of medoids is the same as the number of clusters. The data distance formula with  
n-dimensional data is calculated using Euclidean distance, a distance matrix that adopts 
the Pythagoras principle. This is because the calculation pattern uses the rules of rank and 
the square root. Euclidean computations give relatively small distances because they use 
the square root rule, as follows: 

2

1
( , ) ( )

n

a b ak bk
k

d x x x x
=

= − . (13) 

The purpose of PAM is to determine a representative object–a medoid–for each cluster 
that has a minimum total distance to other objects. PAM is performed in two stages, 
building and swapping. The building stage is a sequential object selection process that 
continues until the object is found. The swap stage is performed to improve group quality 
by exchanging selected objects for unselected objects (Mondal and Choudhury, 2013). 

Kaufman and Rousseeuw (1990) have described the steps of the building stage as 
follows: 

1 Suppose object i has not been selected. 

2 Identify the unselected object j and calculate the difference between Dj (distance of 
object j from the previously selected object) and j (distance between objects j and i). 

3 If the distance in step 2 is positive, then object j will contribute to the selection of 
object i. Then count 

max( ( , ),0)ji jC D d j i= −  (14) 

4 Calculate the total gain from the selection of object i. 

ji
j

C  (15) 

5 Select an object that has not been selected i. 

maximising ji
i i

C  (16) 

6 Repeat steps 1 to 5 until k objects are found. 

These steps can be used to calculate the effects of swapping between i and h objects on 
clustering results, as described by Kaufman and Rousseeuw (1990) in the following 
instructions: 

1 Assume that object j was not selected and count the contribution of jihC  to the swap 
as follows: 

a If the distances between objects j, i and h are greater than between j and one of 
the representative objects, then ( )ijihsil xC  0. 
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b If the distance between objects j and i is further than the distance between j and 
any other selected representative objects ( ( , ) jd j i D= , then the following two 
conditions must be fulfilled: 

1) The distance of object j is closer to object h than to the second nearest 
representative object, as follows: 

( , ) jd j h E< , (17) 

where jE .is the distance between object j and the second-nearest representative object. 
Under these conditions, the contribution of object j to the swap between objects i and h is 
calculated as follows: 

( , ) ( ( , ))jihC d j h d j i= − . (18) 

2) The distance of object j to h is at least equal to that between j and the 
second closest representative object, as follows: 

( , ) jd j h E< . (19) 

Under these conditions, the contribution of the object to the swap is calculated as follows: 

jih j jC E D= − . (20) 

For condition 1), if object j is closer to object i than to object h, which contributes 
positively, then the swap with object j is not favourable. 

c If the object distance j to i is greater than the object distance j to at least one of 
the other representative objects but closer to h than the distance of object j to 
any representative object, then the contribution of j to the swap is calculated as 
follows: 

( , )jih jC d j h D= − . (21) 

2 Calculate the total result of a swap by adding a contribution. 

3 To determine whether a swap has occurred, select the (i, h) pair in the following 
equation: 

minimising
, ihi h T . (22) 

4 If the minimum value of ( )iihT sil x  s negative, then the swap has occurred, and the 

swap stage returns to step 1. If the minimum value of ( )iihT sil x  s positive, then the 
swap has not occurred, and the stages are stopped. 

2.6 K-means algorithm 

The K-means algorithm is a partitioning method to partition existing data into one or 
more clusters and is performed using the following steps: 
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1 Determine the numbers of clusters ( )k  and centroids. 

2 Determine the distance between each object and the centroids using the Euclidean 
distance formula, as follows: 

2

, 1
( )

n

ik i k
i k

d x c
=

= − , (23) 

where ikd  s the distance of object ( )isil x  and centroid., n  is dimensional data, ix  

is a coordinate of objects i an ( )isil x  kc  is the centroid coordinate. 

3 Cluster the objects based on the minimum distance. 

4 Determine new centroids using the following formula: 

1

p
iji

kj

x
C

p
==  , (24) 

where ( )iij sx il x∈  s the.-cluster an ( )isil x  p  is the number of the member of the 
cluster. Iterate the above steps until no object moves from its assigned group. 

2.7 Index silhouette 

The silhouette method is used to determine the number of clusters and to measure the 
accuracy of grouping results (Rousseeuw, 1987). The silhouette method measures how 
similar an object is to other objects in its group relative to similarities between other 
groups. Silhouette values are calculated as follows: 

( ) ( )( )
max{ ( ), ( )}i

b i a isil x
a i b i
−= , (25) 

where a(i) is the average dissimilarity (Euclidean distance) value of the ith data point to 
all members of the cluster containing data., and b(i) is the smallest average dissimilarity 
of ith data to all members of the group not containing the data i. In this study, the 
silhouette index ( )isil x  as used to determine the number of groups by choosing the 
highest value of ( )isil x  as reported by Kaufman and Rousseeuw (1990). 

2.8 Extract bicluster 

The translation of mRNAs produces proteins and leads to the production of various other 
components. Therefore, genes are upregulated or downregulated depending on the 
cellular requirements of these components. 

Clustering in SR and SC matrices using hard clustering algorithms produces  
non-overlapping bicluster or checkerboard structures. Elements of the checkerboard are 
average values of the set of genes in cluster under the conditions in cluster ˆ jy , as shown 
in Table 1. The most significant biclusters are the non-overlapping bicluster. The number 
of most significant biclusters is the number of obtained biclusters. 
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The bicluster extract algorithm of SBB extracts significant biclusters containing an 
upregulated gene cluster under one cluster of conditions only. Therefore, biclusters show 
greater variation under various conditions occurring in a cluster of genes. 
Mathematically, we can express this as a, in which the cluster gene is highly regulated 
under the cluster condition. For every cluster condition, m as low regulation, and the 
algorithm is written as ˆ ˆ( ,i m jx y ≠ 1, , )m l∀ ∈ … . 

Table 1 Identification of significant biclusters from gene expression data 

Condition clusters 

 1ŷ . 2ŷ   .  max – min 


1x   

1 1x y

 
1 1x y  

 1 2x y  
 .   ( )  ( ), 1...1 1i imax x y - min x y i l∀ ∈  


2x   

12x y   
2 2x y   .   ( )  ( )2 2 , 1...i imax x y min x y i l− ∀ ∈  

       

Gene 
clusters 


kx   

1kx y   
2 2x y   .   

3 Results and discussion 

Gene expression matrices for DN and DR after selection were 6320 6×  and 3689 5,×  
respectively. The analyses were performed using R version 3.3.1 (an open-source 
programming tool) on a computer with an Intel® Core™ i5 CPU@ 2.40GHz processor 
and 4 GB of memory (RAM). Gene selection techniques are required to filter out 
informative genes by choosing those with values that are greater than each threshold and 
discarding those with lower relative and absolute deviations. The present relative and 
absolute deviation values of diabetic data are shown in Table 2. 

The range of gene expression data values varied greatly for each row. This variation 
follows differences in sample conditions associated with patients, necessitating 
normalisation to produce datasets with uniform scales. Microarray data for DN and DR 
were subjected to min–max normalisation and are shown as a heat map in Figure 2. 

3.1 Comparison of clustering techniques 

We ran the SBB algorithm for hard clustering and tested the K-means and PAM 
clustering techniques to obtain cluster genes and cluster conditions for SR and SC. After 
normalising the data, we constructed two matrices of the similarity between SR and SC 
using the χ-Sim co-similarity measure. Determinations of λ  in pseudo-normalisations 
can be used to control the data distributions. The accuracy of grouping was affected by 
the silhouette index method. This method is needed to determine which clusters are 
optimal for grouping objects. Table 3 shows silhouette values for similarity matrices of 
SR and SC using the PAM and K-means algorithms. 
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Table 2 Description of gene expression datasets 

Dataset DN DR 
Number of original genes 12,626 45,102 
Number of samples 6 5 
Number of sample classes 2 2 
Sample class names Diabetic (3) 

Normal (3) 
Diabetic (3) 
Normal (2) 

Relative deviation threshold 15 5 
Absolute deviation threshold 4000 2000 
No. of selected genes 6320 3689 

Figure 2 Heat map normalisation of genes in: (a) DN and (b) DR (see online version for colours) 

 
                                            (a)                                                                    (b) 

Table 3 Silhouette values using PAM 

Threshold λ   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
SC 0.251 0.491 0.670 0.759 0.805 0.830 0.793 0.728 0.636 DN 
SR 0.230 0.294 0.381 0.417 0.498 0.538 0.438 0.362 0.294 
SC 0.463 0.512 0.658 0.764 0.785 0.623 0.587 0.473 0.388 DR 
SR 0.295 0.315 0.476 0.506 0.548 0.492 0.361 0.308 0.245 

Based on Tables 3–5, the maximum threshold value of λ from both clustering algorithms 
for DN data in the similarity matrices of SR and SC was 0.6, whereas the maximum 
threshold of λ for DR was 0.5. Therefore, 0.6λ =  was used in χ-Sim co-similarity 
measures for DN data, and 0.5λ =  was used for DR data. For each value of λ < 1, where 
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0.1,0.2,...,0.9λ = , the number of clusters of the condition with the highest silhouette 
index value for diabetic data (DN and DR) was 2. Similarly, the number of gene clusters 
with the highest silhouette value was 2. Therefore, the number of optimal clusters of 
cluster genes and cluster conditions was 2 for the diabetic data. The silhouette index for 
the number of clusters for 2,3, 4,...,10k =  is shown in Table 5; the number of clusters 
was selected based on the maximum value of the silhouette index (optimal). 

Table 4 Silhouette values by using K-means 

Threshold λ   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
SC 0.232 0.472 0.592 0.684 0.743 0.824 0.781 0.674 0.601 DN 
SR 0.226 0.285 0.376 0.372 0.785 0.522 0.425 0.351 0.288 
SC 0.418 0.485 0.646 0.748 0.762 0.601 0.577 0.452 0.364 DR 
SR 0.288 0.291 0.456 0.482 0.539 0.487 0.329 0.256 0.237 

Table 5 Silhouette values by using AHC (Ward linkage) 

Threshold λ   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
SC 0.228 0.463 0.558 0.641 0.726 0.754 0.731 0.653 0.587 DN 
SR 0.218 0.263 0.358 0.362 0.736 0.520 0.418 0.337 0.252 
SC 0.385 0.468 0.623 0.708 0.648 0.585 0.551 0.447 0.324 DR 
SR 0.277 0.284 0.447 0.453 0.528 0.475 0.318 0.236 0.208 

Using PAM for clustering in SBB gave higher silhouette values than K-means and AHC 
in the range of λ < 1 for SR and SC matrices, indicating the greater clustering accuracy of 
the PAM method. Although the K-means algorithm has some advantages, it has a number 
of drawbacks. For example, K-means is sensitive to outliers and lacks a definite method 
for identifying optimal partition counts in the initial cluster determination, and  
the iterative procedure does not ensure movement toward a point of convergence,  
as described by Rui and Wunsch (2005). Because PAM gives better accuracy in SBB, we 
used this clustering algorithm for further analyses of genes and conditions. Plots of 
silhouette values for cluster conditions and cluster genes using PAM are shown in 
Figures 3 and 4. The horizontal axis represents numbers of clusters, and the vertical axis 
represents corresponding index silhouette values. 

3.2 Analysis of gene clusters 

In this study, we generated a heat map to show high gene activities in the microarray 
dataset under certain conditions, where gene rows and column conditions were grouped 
simultaneously. Biclusters of similar gene expression values under certain conditions are 
evident in the heat map in Figure 5, which shows that the bicluster structure generated 
using the SBB algorithm is non-overlapping. 
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Figure 3 Silhouette index plots in: (a) SC and (b) SR matrices of DN 

  
                                            (a)                                                                    (b) 

Figure 4 Silhouette index plots in: (a) the SR matrix and (b) the SC matrix of DR 

 
                                            (a)                                                                    (b) 

Furthermore, the present biclusters were analysed according to expression levels using 
the extracted bicluster, which is the final stage of the SBB algorithm and indicates 
regulation that occurs in the bicluster–whether upregulation or downregulation–in 
quantitative terms. To support the results of our qualitative bicluster heat map (Figure 5), 
we conducted gene ontology (GO) enrichment analyses of cluster generation using the 
DAVID database at https://david.ncifcrf.gov/site. 

Based on clustering using the PAM algorithm, gene expression data for DN in row 
and column similarity matrices are grouped into two clusters. The clusters comprised 
3615 genes (cluster-1) and 2705 genes (cluster-2) in SR and SC matrices, respectively, 
under three conditions. 

Each cluster of genes corresponding to each sample becomes a bicluster. For 
example, in Figure 5, the cluster gene 1, which are also from the normal sample, is a 
submatrix from the microarray data is a bicluster. This is also applied for the cluster  
gene 1 and diabetic sample, cluster gene 2, and each normal sample and diabetics sample. 
Therefore, there are four biclusters in Figure 5 as the output. 

In GO enrichments of the biological processes for each of the identified gene clusters 
(Table 6), cluster gen-1 under diabetic conditions had a high expression rate compared to 
under normal conditions. Genes in cluster-1 were identified as contributing to increases 
in blood glucose (hyperglycaemia) and glomerular hypertension, leading to kidney 
inflammation and major conditions of DN (such as high glucose and oxidative stress), 
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high expression of advanced glycation end-products (AGEs), angiotensin II, TGF-β, 
CTGF, protein kinase C, the receptor for advanced glycation end-products (RAGE) and  
NF-κB (Brennan et al., 2013). In contrast, under normal conditions, cluster gen-2 had 
higher gene expression levels than under diabetic conditions. This indicates that genes 
grouped using the SBB algorithm are enriched in terms of biological processes related to 
cellular energy metabolism, as may be expected in the diabetic dataset. Given the 
differences in expression levels of these genes, the diabetic sample network with 
expression levels that mathematically differ from those in normal tissue samples may 
indicate a useful focus for medical practitioners. 

Figure 5 Heat map of the DN bicluster (see online version for colours) 

 
 
 

 

CLUSTER GENE - 1 

CLUSTER GENE - 2 

DIABETIC SAMPLE NORMAL SAMPLE  

In the DR dataset, differences in gene expression levels were evident between diabetic 
and normal conditions. In particular, genes in cluster-1 are upregulated in diabetic 
samples but downregulated in normal samples. The genes in cluster-2 are upregulated in 
normal samples but downregulated in diabetic samples. These gene clusters contained 
highly discriminative genes, many of which have been previously identified. Differences 
in gene expression levels between diabetic and normal conditions are shown in Figure 6. 
Genes of cluster-1, which were overexpressed under the conditions of DR, are known to 
affect blood glucose levels. Tables 7 and 8 show the biological functions of each gene 
cluster in diabetic nephropathy and retinopathy microarray respectively. 

According to Servat et al. (2013), genetic variants in DR include those of the polyol 
pathway (hyperglycemia), AGE, hypoxia through vascular endothelial growth factor, 
RAGE, endothelial nitric oxide synthase, angiotensin I-converting enzyme and others. In 
contrast, genes in cluster-2 had higher expression levels in normal samples than in 
diabetic samples and included genes that control protein synthesis and immune activity.  
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Furthermore, these differences suggest the presence of novel sub-types of DR. The two 
bluslustering methods that we have developed, namely SBB PAM and SBB  
K-Means, work for gene expression data in the form of microarrays. The results of the 
biclusters that we obtained can be analysed further by getting the RNA sequencing (Wen 
et al., 2019) or Single-cell RNA (Wilson et al., 2019) data of each gene in each bicluster 
for accompanying cell-specific changes in gene expression. 

Table 6 Number of clusters selected based on the maximum value of the silhouette index 
(optimal) 

SBB–PAM SBB–K-means SBB-AHC (Ward) 
DN DR DN DR DN DR 

Number 
of 
clusters SR SC SR SC SR SC SR SC SR SC SR SC 
2 0.538 0.830 0.548 0.785 0.522 0.824 0.539 0.762 0.520 0.754 0.528 0.648 
3 0.464 0.485 0.455 0.543 0.457 0.376 0.441 0.533 0.458 0.743 0.517 0.612 
4 0.433 0.434 0.424 0.421 0.426 0.428 0.406 0.415 0.447 0.443 0.493 0.384 
5 0.405 0.176 0.397 – 0.389 0.157 0.396 – 0.445 – 0.473 – 
6 0.386 – 0.366 – 0.374 – 0.359 – 0.377 – 0.452 – 
7 0.364 – 0.356 – 0.358 – 0.344 – 0.368 – 0.439 – 
8 0.339 – 0.331 – 0.324 – 0.328 – 0.360 – 0.367 – 
9 0.346 – 0.317 – 0.335 – 0.311 – 0.321 – 0.328 – 
10 0.332 – 0.329 – 0.323 – 0.320 – 0.125 – 0.171 – 

Figure 6 Heat map of the DR bicluster (see online version for colours) 
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Table 7 Gene ontology enrichment in DN 

Cluster Biological process 
Number of 

gene 
Percentage 

(%) p -Value 

Cluster 1 Phosphoprotein 1.385 53.1 573.3 10−×  

 Disease mutation 530 20.3 395.2 10−× . 

Kinase 189 7.5 251.6 10−×  

Response to salt stress 19 0.8 35.2 10−×  

Cellular response to glucose stimulus 58 2.7 56.3 10−×  

TGF-beta signalling pathway 43 1.3 53.1 10−×  

Protein Kinase C binding 27 1.2 43.6 10−×  

Regulation of insulin secretion 34 1.9 51.9 10−×  

Blood coagulation 18 2.7 52.1 10−×  

 

Virus receptor activity 14 2.6 11.6 10−×  

Cluster 2 mRNA splicing 91 3.8 233.8 10−×  

 Extracellular exosome 484 20 141.5 10−×  

Transcription regulation 382 15.8 145.4 10−×  

Regulation of mRNA stability 33 1.4 62.4 10−×  

GTPase activity 54 2.2 55.9 10−×  
 

Transcription coactivator activity 69 2.9 92.4 10−×  

Table 8 Gene ontology enrichment in DR 

Cluster Biological process 
Number 
of gene 

Percentage 
(%) p-Value 

Extracellular exosome 266 17.9 191.2 10−×  

RNA-binding 73 4.9 102.9 10−×  

Focal adhesion 55 3.7 93.6 10−×  

Glycoprotein 270 18.2 62.3 10−×  

Angiogenesis 27 1.8 31.9 10−×  

Cellular glucose homeostatis 47 2.8 46.8 10−×  

Glycolytic process 11 0.7 53.0 10−×  

Response to hypoxia 46 2.8 53.1 10−×  

Regulation of vascular endothelial 
growth factor 

40 2.7 23.1 10−×  

Stress response 14 1 41.5 10−×  

Cluster 1 

Insulin like growth factor binding 6 0.4 39.8 10−×  
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Table 8 Gene ontology enrichment in DR (continued) 

Cluster Biological process 
Number 
of gene 

Percentage 
(%) p-Value 

Immunity 32 2.2 23.3 10−×  

Cell body 26 1.8 103.9 10−×  

Respiratory chain 17 1.2 89.5 10−×  

ATPase activity 29 2.0 52.6 10−×  

Biosynthesis of antibiotics 28 2.0 31.3 10−×  

Regulation of cell growth 11 0.8 32.0 10−×  

Cluster 2 

ATP metabolic process 9 0.6 32.1 10−×  

4 Conclusions 

Several possible values of λ, where λ < 1, were determined to reach the maximum 
silhouette index value for accurate grouping of DN and DR microarray data. The results 
of these computations showed higher acquisition of silhouette indexes using PAM than 
using the K-means partition algorithm. Therefore, SBB–PAM gives better clustering 
accuracy than K-means. 

Overall, SBB algorithms extracted important biological information from microarray 
gene expression data through biclustering, as demonstrated through regulation in each 
bicluster. The present heat map analyses show that differentiating genes have 
significantly different expression levels in different sample conditions. These 
observations may inform medical practitioners about genes that tend to affect disease. In 
addition, the detected genes corresponded with respective biological functions, and these 
were relevant to the conditions of DN and DR, as indicated by significant enrichment in 
GO analyses. Good clustering results can be used by medical experts to determine 
prevention and treatment strategies for patients with disorders characterised in terms of 
groups of genes that are affected by certain conditions, such DN and DR. 

The limitation of the SBB algorithm is that it is only capable of producing non-
overlapping biclusters. We intend to learn more about the SBB algorithm to find 
overlapping biclusters. 
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