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ABSTRACT During phagocytosis, phagocyte cells discharge reactive oxygen species referred to as respiratory bursts,
inducing a rise in pro‐oxidants and subjecting the cell to oxidative stress. Such stress is a biological mechanism related to
an imbalance in pro‐oxidant/antioxidant homeostasis, which generates toxic reactive oxygen. Encapsulation is a coating
process to improve the stability of bioactive compounds from lemongrass extract. Therefore, this study aims to determine
the encapsulation activity of lemongrass leaf extract with chitosan X. gideon (LEChXg) to reduce the oxidative stress of
fibroblasts. The research used the human dermal fibroblast (HDF) cell line, comprising negative and positive controls and
use of LEChXg 100, 200, 300, 400, and 500 µg/mL. HDF cell migration was evaluated by employing the scratch wound
healing method and the wound closure was oberseved at 0, 2, 4, 6, and 24 h intervals. The cell proliferation was observed
at 24, 48, and 72 h using CCK‐8 at a 450 nm wavelength. The results showed that the observations at 0, 2, and 4 h did not
demonstrate any significant difference on the cell migration (p > 0.05) among the groups. However, the wound closure at
4 and 6 h showed a significant difference (p < 0.05) with LEChXg 300 µg/mL. Despite the lack of any significant variation
observed up to 24 h, fibroblast subjected to the stressor did not achieve complete closure. The groups treated with LEChXg
were more stable in maintaining fibroblast proliferation up to the end of the observation than those with stressors at 24,
48, and 72 h. Fibroblast induced with a stressor was also more stable in maintaining migration and proliferation in groups
receiving LEChXg 300 µg/mL.
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1. Introduction

Mouth or oral ulcers are generally known as discontinu­
ities of oral mucosa characterized by epithelial tissue dam­
age and connective tissue in lamina propria of the mucosa
in oral cavity (Zakiawati et al. 2020). About 40% of peo­
ple have been estimated to suffer from oral ulcers disease
(Zakiawati et al. 2020) due to trauma during medical treat­
ment. Fibroblast is a crucial cell for mouth ulcers heal­
ing, which undertakes essential functions like synthesis
and replenishment of the connective fibers and the amor­
phous substance during tissue repair (Lendahl et al. 2022).
By the primary defence mechanism, the ulcer disappears
through the healing process, which is divided into three
phases, namely inflammation, proliferation, and remod­
elling (Toma et al. 2021). In inflammation, neutrophils

and macrophages migrate to the ulcer area, resolve respi­
ratory bursts using high oxygen during phagocytosis, and
increase reactive oxygen species (ROS), such as superox­
ide and hydrogen peroxide (Arief andWidodo 2018). Fur­
thermore, high ROS production can cause a pro­oxidant
increase and oxidative stress (Bhattacharyya et al. 2014;
Phaniendra et al. 2015). This condition interferes the cells
communication and causes damage to influence the ulcer
healing process (Pisoschi and Pop 2015), such as length­
ening the inflammation phase as well as hindering migra­
tion process and fibroblast proliferation (Buranasin et al.
2018).

Herbal medicine for the ulcer healing process has
been widely used, such as lemongrass (Cymbopogon cit­
ratus DC) (Veronica et al. 2021). Lemongrass is one of
the spices growing in the tropics and is widely used in
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Southeast Asia, including Indonesia (Maria et al. 2021).
Lemongrass leaf is often discarded without being utilized,
whereas its stem serves as a highly valued spice in culi­
nary applications. The leaf contains valuable active com­
pounds, including alkaloids, flavonoids, tannins, steroids,
triterpenoids, and saponins, which possess notable antiox­
idant properties (Comino­Sanz et al. 2021). Natural in­
gredient with antioxidant content is proven to accelerate
the ulcer healing process (Ozougwu 2016) by reducing fi­
broblast oxidative due to respiratory burst from phagocytic
cells (Deng et al. 2021) and to accelerate migration and
proliferation (Grgić et al. 2020).

The pharmacological activity of the active compound
has bioavailability and absorption limitations in the body
that can be controlled with encapsulation technology
(Rahim et al. 2022), i.e. by protecting the active compound
from oxidation to improve its therapeutic potential (Negi
and Kesari 2022). The common polymer material used as
a trapping matrix for encapsulation is chitosan (Andikop­
utri et al. 2021), which is a natural polymer compound ob­
tained from insect exoskeleton (Baharlouei and Rahman
2022), such as horn beetle (Xylotrupes gideon) (Veronica
et al. 2021). Thus, it can be developed to facilitate a drug
delivery system due to its biocompatible, biodegradable,
low toxicity level (Agarwal et al. 2018), and simple prepa­
rationmethod (Mohammed et al. 2017). Chitosan physical
modification also increases the absorption, diffusion, and
penetration to the mucosal layer better than its normal size
(Detsi et al. 2020).

Chitosan is a polymer widely used as an active com­
pound trap of a natural ingredient. Previous studies show
that Prunus avium L. extract encapsulation using nanochi­
tosan and gallic acid can decrease oxidative stress on en­
dothelium cells (Beconcini et al. 2018) and 3T3 fibrob­
last cells (de Paiva et al. 2021), respectively. Further­
more, the active compound encapsulation of lemongrass
with chitosan polymer reduces ROS production of fibrob­
last by inducing hydrogen peroxide stressor (Fitria et al.
2022). The observation with 2’7’ dichlorodihydrofluo­
rescein diacetate (H2DCF­DA) staining using a fluores­
cent microscope also shows the intensity of green fluores­
cent cells, indicating reduced ROS production (Andikop­
utri et al. 2021; Veronica et al. 2021).

This study assesses the activity of chitosan­
encapsulated active compounds of lemongrass leaf
ethanol exctract. The chitosan was derived from X.
gideon through the ionic gelation method. It mitigates
fibroblast oxidative stress induced by hydrogen peroxide
to promote a decrease in oxidative stress. This reduc­
tion in oxidative stress can be demonstrated through
enhanced migration and proliferation of fibroblast during
the healing process in mouth ulcers. Encapsulation of
the lemongrass bioactive compounds is an innovative
approach allowing protection against oxidation, thermal
degradation and increasing bioavailability. Encapsulation
is promising to improve the performance of medicines in
oral health, such as mouthwashes.

2. Materials and Methods

2.1. Polymeric materials
The source of chitosan in this studywasX. gideon obtained
from Cangkurawok, Damaga, and Balumbang Jaya, Bo­
gor, East Java. All parts of X. gideon body were detached,
followed by drying for five days, and then continied to the
processes of demineralization (3N HCl), deproteinization
(3N NaOH), discoloration (4% H2O2) and deacetylation
(50% NaOH) (Komariah et al. 2019).

2.2. Lemongrass extract (LE) preparation
Lemongrass (Cymbopogon citratus) was collected from
Balai Penelitian Tanaman Rempah dan Obat (BALITRO),
Indonesian Medicinal and Aromatic Crops Research Insti­
tute (IMACRI), West Java, Indonesia. The determination
was carried out at Pusat Riset Biologi, Badan Riset dan Or­
ganisasi Nasional (BRIN), Cibinong, West Java, Indone­
sia. The leaves were dried in an oven at a temperature of
45 °C for one week and extracted using the maceration
method (Felicia et al. 2022). They were soaked in 70%
ethanol at a 1:10 (w/v) ratio for 24 h at room temperature.
Themaceratedmixture was filtered using a filter paper and
evaporated with a rotary vacuum evaporator at a tempera­
ture of 40 °C at 100 rpm for 2 h (Fitria et al. 2022).

2.3. The preparation of LE‐loaded on chitosan X.
gideon (LEChXg)

Chitosan with 83% degrees of deacetylation and a weight
value of 0.5 g was dissolved in 1% acetic acid (Merck,
Germany). Subsequently, 2 mL of 10% lemongrass leaf
extract (LE) and 100 mL of distilled water were added
(Veronica et al. 2021). Stirring was conducted using a
magnetic stirrer (IKA RH basic 2, Germany) and heating
at 40 °C with a speed of 2,500 rpm for 20 min and was
subsequently carried out without heating for 100 min. Fol­
lowing the previous step, 40 mL of 0.1% tripolyphosphate
(Sigma­Aldrich, USA) was added dropwise while stir­
ring for one hour. Subsequently, 0.1 mL of 0.1% Tween
80 (Merck, France) was introduced, and the mixture was
stirred again at a speed of 2,500 rpm for 30 min (Andikop­
utri et al. 2021; Veronica et al. 2021). The particle size
of lemongrass extract was determined using a particle size
analyzer (PSA) (Horiba Scientific, Nano Particle Analyzer
SZ­100, UK) (Budi et al. 2020).

2.4. Culture of fibroblast
Human dermal fibroblast (HDF) was obtained from the
Biorepository of StemCell Research Center, Yarsi Univer­
sity, Indonesia (Fitria et al. 2022). Fibroblast was planted
in a cell culture dish and incubated at 37 °C with 5% CO2
for 24 h. The growth medium was replaced by media
containing DMEM, 10% FBS, and antibiotic­antimycotic
(penicillin, streptomycin, and amphotericin B). The cul­
tured cells were divided into eight treatment groups as fol­
lows: (1) without any treatment or stressor, (2) treated
with hydrogen peroxide stressor (H2O2) as a negative con­
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trol, (3) treated with H2O2 plus ascorbic acid as a posi­
tive control, (4–8) treated with H2O2 plus nanochitosan­
encapsulated lemongrass (LEChXg) at concentrations of
100, 200, 300, 400, and 500 µg/mL, respectively. The
stressor was given as the addition of 100 µM H2O2 (Li­
onetti et al. 2019) followed by incubation at 37 °C with
5% CO2 for 60 min (Fitria et al. 2022).

2.5. Proliferation assay
Fibroblasts planted at a density of 1 × 103 cells/well in a
96­well plate were incubated at 37 ºC for 24 h. After 24,
48, and 72 h of treatment with a various concentration of
LEChXg, the cells were washed by PBS 1×, and 100 μL of
CCK­8 solutionwas added. The absorbancewasmeasured
at 450 nm using a microplate reader (Tecan Group Ltd.
Mannedorf, Switzerland) and the percentage of fibroblast
proliferation was calculated as shown below (Felicia et al.
2022).

proliferation rate (%) =
absorbance of sample

absorbance of negative control
×100

(1)

2.6. Migration assay
The cells were planted in a 24­well plate (2.9 × 103
cells/well) (Kauanova et al. 2021) and incubated until con­
fluent. After reaching confluency, the monolayer was
scratched gently using a white tip perpendicularly to the
bottom of the monolayer. After the first scratch was con­
ducted, a second scratch was made by crossing the first
one. Thus, a cross patternwould be formed. Next, the cells
were washed in PBS once and subsequently were treated
(Felicia et al. 2022). The cell migration was observed af­
ter 0, 2, 4, 6, 24, and 48 h after the that and photographed
using a microscope (EVOS FLc Cell Imaging System). At
the end of the experiment, the wound closure was analyzed
using ImageJ.

2.7. Data Analysis
Statistical quantification was conducted using SPSS ver­
sion 2.3 and the data were presented as mean ± standard
deviation (SD). Meanwhile, MANOVA was used to com­
pare the groups against several dependent variables (times)
in migration and proliferation assays. For a significant dif­
ference (p < 0.05), Post Hoc’s Tukey test was performed.

3. Results and Discussion

3.1. Characteristics of LEChXg particle
Characteristic of LEChXg particle was used to estimate
and determine the particle size and distribution of parti­
cle size. Meanwhile, particle size was measured using a

TABLE 1 Characterization of LEChXg nanoparticles.

Sample Particle size (nm) PDI Zeta Potential (mV)

LEChXg 489.57 ± 3.44 0.69 ± 0.06 31.2 ± 0.87
PDI: poly dispersity index.

PSA with a repetition of three times. The result of particle
measurement and polydispersity index (PDI) LEChXg is
shown in Table 1.

The LEChXg particle measurement indicated that the
average size was 489.57 nm. Therefore, LEChXg fulfilled
the requirements as a nanoparticle with a size range be­
tween 50–500 nm particle (Ismail and Harun 2019). Ac­
cording to Idacahyati et al. (2021), a nano­size particle
should range from 1–1000 nm. PDI is a value that shows
particle size distribution with a range of 0–1. A sample
with a bigger and smaller size range has higher PDI values
(Karmakar 2019). The result of particle distribution with
PDI values 0.035 to 0.05 is considered to have monodis­
perse particle distribution (Clayton et al. 2016). Poly­
dispersity is a macromolecule with various good weights,
sizes, andmass distribution (Kim et al. 2019). The zeta po­
tential value of LEChXg was 31.2 mV. Nanoparticles with
zeta potential values smaller than 31.2mV and greater than
+30mV also indicated good stability (Prakash et al. 2014).
A dispersion system with a small zeta potential value was
easier to form, such as the Van der Waals style in particle
interaction (Juliantoni et al. 2020).

3.2. Migration of fibroblast
The migration test was conducted using scratch by mak­
ing an artificial gap (scratch) in confluent monolayer cells.
The gap allowed cells to communicate with each other.
It also showed the ability of fibroblasts to move toward
the ulcer, carry out proliferation, and form an extracellu­
lar matrix. The results of fibroblast migration showed that
migration in 0 and 2 h did not indicate a significant differ­
ence (p = 0.222). However, at the observations of 4 and
6 h, there was a significant difference (p < 0.05) between
the group with a stressor and the LEChXg group at a con­
centration of 300 µg/mL. The group treated with LEChXg
showed a good migration activity by closing the most sig­
nificant gap compared to those treated with a H2O2 stres­
sor only. At 24 h, all study groups had no significant dif­
ference (p > 0.05). However, the fibroblast group treated
with stressor showed less optimal migration due to an open
gap of 0.51 ± 0.88 µm2. The average fibroblast migration
ability is shown in Table 2. Microscopic observation of
the cell migration can be seen in Figure 1.

The observation of fibroblast migration when closing
the gap is related to the ulcer healing process. The inflam­
mation cells are stimulated to release various mediators
(Chen et al. 2018) and growth factors such as the trans­
forming growth factor­beta 1 (TGF­β) factor of fibroblast
when oxidative stress is reduced (Jimi et al. 2020). H2O2
is one of the most critical compounds in ROS signaling
studies due to its physicochemical properties, relatively
low reactivity, and ability to diffuse through membranes.
The addition at low concentrations increases intracellular
ROS levels without causing oxidative stress. It also in­
creases the migration of mesenchymal cells through extra­
cellular signal­regulated kinases (ERK) 1/2 and focal ad­
hesion kinase (FAK) pathways. Cellular abnormalities are
increased when cells experience oxidative stress (Waheed
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FIGURE 1 Fibroblast migration at 0, 2, 4, 6, and 24‐h observation after the scratch wound. The yellow arrow shows a shaped artificial gap.
The red arrow shows the artificial gap closing caused by the fibroblast migration. A: negative control, B: H2O2 only. C‐H received H2O2 with
treatment as follows: C: ascorbic acid as positive control, D: LEChXg 100 µg/mL, E: LEChXg 200 µg/mL, F. LEChXg 300 µg/mL, G. LEChXg
400 µg/mL, and H LEChXg 500 µg/mL. The observation was at 1,000× magnification. Scale bar = 1000µm.

194



Komariah et al. Indonesian Journal of Biotechnology 28(4), 2023, 191‐199

TABLE 2 Fibroblast migration.

Group
Measurement Migration (µm2)
number (n) 0 h 2 h 4 h 6 h 24 h

Untreated 3 2.87 ± 0.14 2.71 ± 0.28 2.53 ± 0.18ab 2.50 ± 0.18ab 0.00 ± 0.00
H2O2 3 3.82 ± 0.88 3.75 ± 0.91 3.41 ± 1.04a 3.21 ± 1.04a 0.51 ± 0.88
H2O2 + Ascorbic Acid 3 2.99 ± 0.20 2.82 ± 0.18 2.74 ± 0.19ab 2.61 ± 0.17ab 0.00 ± 0.00
H2O2 + LEChXg 100 µg/mL 3 2.70 ± 0.27 2.55 ± 0.28 2.24 ± 0.49ab 1.88 ± 0.33ab 0.00 ± 0.00
H2O2 + LEChXg 200 µg/mL 3 3.31 ± 0.05 2.89 ± 0.23 2.58 ± 0.18ab 2.49 ± 0.18ab 0.00 ± 0.00
H2O2 + LEChXg 300 µg/mL 3 2.92 ± 0.08 2.61 ± 0.18 1.44 ± 0.20b 1.38 ± 0.16a 0.00 ± 0.00
H2O2 + LEChXg 400 µg/mL 3 3.99 ± 1.73 3.43 ± 1.50 3.16 ± 1.38ab 2.55 ± 1.11ab 0.00 ± 0.00
H2O2 + LEChXg 500 µg/mL 3 2.68 ± 0.04 2.32 ± 0.16 2.03 ± 0.21ab 1.94 ± 0.21ab 0.00 ± 0.00

a‐b in different columns migration shows a significant difference (p < 0.05), The superscript ’a’ indicates a higher migration compared to
group ’b,’ while ’ab’ indicates migration that is not different from groups ’a’ and ’b’.

et al. 2022). Buranasin et al. (2018) stated that gingival
fibroblast exposed to high glucose concentrations causes
oxidative stress by increasing ROS production and inhibit­
ing the migration process associated with inhibiting basic
fibroblast growth factor (bFGF) signaling.

3.3. Fibroblast proliferation
The results of fibroblast proliferation in 24 h showed that
the group treated with stressor was significantly differ­
ent (p < 0.05) from those without stressor, as well group
treated with ascorbic acid as a non­enzymatic antioxidant
and LEChXg. The group treated with stressors indicated
low cell proliferation compared to the others. Hydrogen
peroxide is a molecule with low reactivity but can easily
penetrate the cell membrane, generating the most reactive
type of oxygen, hydroxyl radical, and converting Fe2+ atau
Cu+ to OH (Nita and Grzybowski 2016).

Fibroblast proliferation without stressors had the high­
est proliferative compared to the other groups. The av­
erage proliferation is shown in Figure 2. Fibroblast can
counteract an elevation in free radicals by augmenting
the synthesis of endogenous antioxidants, thereby prevent­

ing any adverse impact on the proliferation of stressor­
unexposed cells (Tsuneda 2020) The group treated with
ascorbic acid showed good proliferation after exposing the
cells to stressors H2O2. Ascorbic acid is an antioxidant
that can neutralize oxidative stress by donating an electron
to prevent other oxidized compounds and scavenging su­
peroxide anion, hydroxyl radical, and lipid hydroperoxide
(Pehlivan 2017).

Fibroblast proliferation in 48 h of observation showed
that the group treated with H2O2 is significantly differ­
ent (p < 0.05) from those without stressor, as well as the
group treated with ascorbic acid, and LEChXg concentra­
tions at 200, 300, and 400 µg/mL. Meanwhile, the group
with stressors did not report a significant difference (p >
0.05) from LEChXg 100 and 500 µg/mL.

The group treatedwithH2O2 at 48 h showed a decrease
in proliferation compared to the 24­h observation. It indi­
cates that the cells experienced oxidative stress could not
detoxify or repair the damage resulting from free radicals
(Phaniendra et al. 2015). Therefore, it caused cell damage
and affected proliferation. The ascorbic acid group and
those treated with LEChXg at all the the tested concentra­

FIGURE 2 Fibroblast proliferation. a‐c in different hours shows a significant difference (p < 0.05) The superscript ’a’ indicates higher prolif‐
eration compared to groups ’b’ and ’c,’ while ’b’ indicates higher proliferation than group ’c.’ Superscript ’ab’ implies no significant difference
between groups ’a’ and ’b,’ and superscript ’bc’ no significant difference between groups ’b’ and ’c’.
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FIGURE 3 Fibroblast proliferation at 24, 48, and 72‐h observation
as indicated. The yellow arrow shows the fibroblast, which is liv‐
ing with a clearly visible cell nucleus, while the red arrow shows
a dead fibroblast by shrinking in the cells. A: negative control,
B: H2O2 only. C‐H received H2O2 with treatment as follows: C:
ascorbic acid as positive control, D: LEChXg 100 µg/mL, E: LEChXg
200 µg/mL, F. LEChXg 300 µg/mL, G. LEChXg 400 µg/mL, and H
LEChXg 500 µg/mL. The observation was at 1,000× magnification.

tions could detoxify or repair the damages resulting from
increased free radicals to enable a relatively stable prolif­
eration.

The observation at 72 h showed that the group treated
with stressor was significantly different (p < 0.05) from
LEChXg concentrations 100, 200, 300, and 400 µg/mL.
The difference showed increased proliferation higher than
the group treated with a stressor. In contrast, the non­
stressor, ascorbic acid, and LEChXg 500 µg/mL groups
showed no significant difference (p = 1.000). Even though
there was no difference, these groups exhibited higher pro­
liferation cells than those treated with stressors. The pro­
liferation of fibroblast in 24, 48, and 72 h observation is
shown in Figure 3.

The results of the proliferation of the non­stressor,
stressor, and ascorbic acid groups experienced decreased
proliferation. However, a proliferation of the group treated
with LEChXg was relatively stable. LEChXg maintained
or stabilized proliferation until 72 h observation of fibrob­
last, which experienced oxidative stress. Pan et al. (2022)
showed that active compounds of lemongrass increase cell
proliferation power by reducing oxidative stress resulting
from high ROS. Similarly, Roriz et al. (2014) indicated
that lemongrass showed an antioxidant effect by improv­
ing the superoxide dismutase enzyme (SOD) activity and
reducing the production of ROS inmacrophages. Chitosan
plays a role in scavenging free radicals and inhibiting ox­
idative damage (Pellis et al. 2022). The leading functional
group, such as hydroxyl and an amino groups can reduce
free radicals after a reaction at C­2, C­3, and C­6 positions
of the pyranose ring to produce a stable macromolecule
(Muthu et al. 2021). At the end of our observation, there
was an aggregate formed in the LEChXg group due to
polydisperse particle distribution with various molecular
weights, sizes, and mass distributions, as well as zeta po­
tential value which was relatively greater than +30 mV
(Dipahayu and Kusumo 2021).

Our results were consistent with Beconcini et al.
(2018), where the encapsulation of Prunus avium extract
with chitosan and its derivatives reduces oxidative stress
in human umbilical vein endothelial cells (HUVEC). An
in vivo study on rat liver cells showed that encapsulated
Pinus merkusii extract with chitosan reduces malondialde­
hyde (MDA) levels. An increase in MDA levels indicates
hepatocyte cell membrane damage after exposure to ROS.
Meanwhile, the decrease showed that the encapsulation
of P. merkusii extract inhibits ROS production (Di Santo
et al. 2021).

Damage in the epithelium and lamina propria as con­
nective tissue with a predominance of fibroblast in mouth
ulcers accelerated the healing process by encapsulating
lemongrass leaf extract ethanol with chitosan X. gideon.
The acceleration of the process was determined through
increased migration and proliferation of fibroblasts after
experiencing oxidative stress during the inflammatory pro­
cess.
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4. Conclusions

In conclusion, encapsulation of lemongrass leaf extract
ethanol with chitosan X. gideon reduced fibroblast oxida­
tive stress and was shown with good migration and prolif­
eration at a range of 100–500 µg/mL, with the best con­
centrations at 300 µg/mL.
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