Advances in Green Science, Engineering and Built Environment

Edited by Md Azree Othuman Mydin

TTP TRANS TECH PUBLICATIONS

Advances in Green Science, Engineering and Built Environment

Selected, peer reviewed papers from the International Conference on Science, Engineering and Built Environments (ICSEBS 2014), November 24-27, 2014, Bali, Indonesia

Edited by

Md Azree Othuman Mydin

Applied Mechanics and Materials

ISSN: 1660-9336, ISSN/ISO: Applied Mechanics and Materials

Editors:

Publishing Editor: Thomas Wohlbier, 105 Springdale Lane, Millersville, PA 17551, USA, t.wohlbier@ttp.net

Xi Peng Xu, Huaqiao University, Ministry of Education Engineering Research Center for Brittle Materials Machining, Xiamen, 361021, China, xpxu@hqu.edu.cn

Aims and Scope:

Applied Mechanics and Materials is a book series specialized in the rapid publication of proceedings of international conferences, workshops and symposia as well as state-of-theart volumes on topics of current interest in all areas of mechanics and topics related to materials science.

Internet: The periodical is available in full text via www.scientifc.net

Subscription Information:

Irregular: approx. 80-100 volumes per year. First volume in 2015: Vol. 695

The subscription rate for web access is EUR 1089.00 per year. Standing order price for print copies: 20% discount off list price plus postage charges.

ISSN print 1660-9336 ISSN cd 1660-9336 ISSN web 1662-7482

Trans Tech Publications Ltd

Churerstrasse 20 • 8808 Pfaffikon • Switzerland Fax +41 (44) 922 10 33 • e-mail: ttp@ttp.net http://www.ttp.net http://www.scientific.net

Copyright © 2015 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of the contents of this publication may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Trans Tech Publications Ltd Churerstrasse 20 CH-8808 Pfaffikon Switzerland http://www.ttp.net

Volume 747 of Applied Mechanics and Materials ISSN print 1660-9336 ISSN cd 1660-9336 ISSN web 1662-7482

Full text available online at http://www.scientific.net

Distributed worldwide by

Trans Tech Publications Ltd Churerstrasse 20 CH-8808 Pfaffikon Switzerland

Fax: +41 (44) 922 10 33 e-mail: sales@ttp.net

and in the Americas by

Trans Tech Publications Inc. PO Box 699, May Street Enfield, NH 03748 USA

Phone: +1 (603) 632-7377 Fax: +1 (603) 632-5611 e-mail: sales-usa@ttp.net

printed in Germany

Table of Contents

Preface

Chapter 1: Architecture and Urban Planning in the Context of Built Environment

Challenges of Green Highway Concept towards Implementation of Green Highway F. Najwa Mohd Nusa, I.R. Endut and S.Z. Ishak	3
The Application of Principles of Green Building in Traditional Housing in Iraq M. Qays Oleiwi, A. Ali, N. Utaberta and M. Surat	7
Green Façade (Vertical Greening): Benefits and Threats M. Rakhshandehroo, M.J. Mohd Yusof and M. Deghati Najd	12
Living Wall (Vertical Greening): Benefits and Threats M. Rakhshandehroo, M.J. Mohd Yusof and R. Arabi	
Parametric Visualization Tools for Land Use Planning towards Improved Green City F.U. Sjarifudin	
Green Architecture and Islamic Architecture: The Islamic Arabic City and the Traditional Islamic House A. Ali, N. Utaberta, M. Surat and M. Qays Oleiwi	24
The Genius Idea of Using Local Material on Javanese House Architecture Hardiyati, J. Prijotomo and M. Rachmawati	28
Green Agenda: A Socio-Cultural Response to Sick Building Syndrom (SBS) and Building Related Illness (BRI) in African Domestic Architecture E. Eghosa Noel and A.A. Babajide	
A Critical Analysis of 20 th Century Modern Terrace Housing in Malaysia N. Utaberta, N.F. Elina, M.T. Mohd Rasdi and M.A. Othuman Mydin	
Kuala Lumpur Chinatown Pre-War Shophouses (Adaptive Re-Use) and City Image Y.S. Toong and N. Utaberta	
Opportunity for New Entrepreneurial Ventures from Sustainable Public Open Space Adaptive Used Implementation (Case Study: Taman Fatahillah, Jakarta Old City) W Hary Susilo	44
Post Modern Cross Comparative Analysis on the Mosque Ornamentation in Malaysia: (A Case Study of Charles Jencks) N. Utaberta, A.N. Handryant and M.A.O. Mydin	
Understanding the Potential of Modern Community Center as Social Architectural Spaces in Malaysia N. Utaberta and N. Spalie	
Evaluating the Customs and Rituals of the Malay Culture and its Contribution on Space Design in Modern Terrace House N. Utaberta, N.F. Elina and M.T. Mohd Rasdi	

v

Heritage Buildings Conservation Issues of Shophouses in Kuala Lumpur Chinatown Y.S. Toong and N. Utaberta	
Changing Transportation System in University Campus by Cycling and its Impact on Socio-Cultural Characteristics S. Vosoughi, M.J. Mohd Yusof and N. Baharuddin	64
The Transformation of the Traditional Balinese House in Tourist Villages: Maintaining the Culture and Obtaining Economic Benefit 1.D.G.A.D. Putra, M. Lozanovska and R. Fuller	68
Significance of the Application of Universal Design in Mosque Buildings in Malaysia M. Dabbagh Niya, N. Utaberta and S. Maulan	
Unique Elements of the Traditional and Vernacular Masjids in Malaysia; Traditional Elements Acquainting Practical Sustainability R. binti Othman, L.H. Mahamod and S. Aripin	
Value-Based Architectural Conservation Practice as an Alternative Solution to Sustainability Problems P. Praptidita Suratman and Denny	
The Conservation of Balinese Traditional Architecture: The Integration of Village Pattern and Housing Pattern in Indigenous Villages N.M. Yudantini and D. Jones	
The Aspects of Visual Privacy and Interior Design Elements of Malay Dwelling (MD) in Melaka N.H. binti Mohd Razali and A. bin Talib	
Historic Urban Areas in Heritage Tourism: Kuala Lumpur Historic City Centre, a Potential Asset M. Deghati Najd, N.A. Ismail, M.Y. Mohd Yunos and S. Maulan	93
Post Occupancy Evaluation of Putra Perdana Park N. Talib, N. Mohamed, M.K. Hussein and S.F. Abd Shukor	97
Measuring Ecological Values of Green Open Space Using Normalized Different Vegetation Index Parameter R.B. Budiyanti	101
The Characteristics of Residents at Low Cost Housing in Jakarta - Indonesia and their Culture to Green Principles N. Nurdiani	105
Visual Landscape Management of Scenic Peucang Island and Ujung Kulon Peninsula in Ujung Kulon National Park, Indonesia I. Krisantia and N.I. Mangunsong	109
Transport Policy in the Klang Valley, Malaysia: The Sustainability Agenda R.N. Raja Ariffin, R. Khairi Zahari and M. Tumin	
Green Infrastructure Development in Sustainable Water Resources Management System O. Uniaty	
Attributes and Characteristics of Place Attachment B. Karsono and J. Wahid	
Brigdeheader Space for Dwell in Jakarta Deni and Salwin	136

Identifying Functional Factor for Developing the Community Centre in Kuala Lumpur
Sustainability is Important Part of the Identity in the Dimension of Regionalism Architecture
M.I. Hidayatun, J. Prijotomo and M. Rachmawati145
The Integration of Universal Design in Interior Design as a Green Design Approach for Diverse Users in Malaysia N. Mansor, R. Ibrahim and A.R. Awang
Importance of Preserving the Non-Use Value of the Cultural Heritage: Case Study of George Town, Penang World Heritage Site N.F. Mohd Ariffin, Y. Ahmad and A. Alias
A Study on African Vernacular Mosque: A Lesson from Tradition M.M. Osman, B. Hassanpour and N. Utaberta
Perceived Pedestrian Environment Functional Factors which are Associated with Walking in Tropical University Campus B. Afsar, M.Y. Mohd Yunos, M.A. Othuman Mydin and M.J. Mohd Yusof
Preference on Social Spaces in High Density Condominiums in Malaysia P. Amini Fard, M.K. Mohd Shariff, M.Y. Mohd Yunos and M.A. Othuman Mydin
Spiritual Values in Urban Residential Garden: A Mitos or Reality? N.A. Ismail and M.Y. Mohd Yunos168
Cross-Cultural Ethnic Identity in Urban Residential Area: An Epistemology N.A. Ismail and M.Y. Mohd Yunos172
Evaluating Mobility in Marketing Places for Entrepreneurial Disabled, Case Study: Central Market Area Kuala Lumpur B. Fardnia, N. Abdul Rahman, M.Y. Mohd Yunos and M.A. Othuman Mydin
Assessing the Residents' Preference of Awareness Regarding Urban Agriculture at Rooftop Garden
Landscape Architects' Perspective on Public Participation Technique in Landscape Planning and Design: A Case Study of Kuala Lumpur M.Y. Mohd Yunos, N.K. Mohd Isa, J. Hillier and N.A. Ismail
Non-Structural Elements of the Traditional Malay Houses in the East Coast and Northern Peninsular Malaysia: Similarities and Differences M. Ismail, A.H. Abu Bakar, N.F. Abas, R. Roosli and S. Abdullah
Considering Ephemeral Monuments: Towards a Greener Architectural Theory R. Budi Santosa, J. Prijotomo and M. Rachmawati
Legal Provision Allied to Conservation of Heritage Buildings in Penang M.A. Othuman Mydin, S. Jasme, M.N. Mohd Nawi, N. Utaberta and M.Y. Mohd Yunos
Landscape Heritage Conservation along Sanur Beach Borderline in Bali: Perspectives of the Local Government and Visitors T. Anggraini Prajnawrdhi, S. Karuppannan and A. Siyam

Chapter 2: Green Building Materials

Appraisal of Thermal Comfort of Paper Waste as Wall Element in Building A. Fikriarini Muchlis, A.D. Aziiz, M. Ishomuddin and A. Barata	209
Residual Compressive Strength of Lightweight Foamed Concrete after Exposure to High Temperatures M.A. Othuman Mydin, M.Y. Mohd Yunos, M.N. Mohd Nawi and A.I. Che Ani	213
Durability Performance of Oil Palm Shell Lightweight Concrete as Insulation Concrete E. Serri, M.Z. Sulieman and M.A. Othuman Mydin2	217
Green Materials Comparison of Sawdust and Coconut Fiber Acoustical Waffle Panel E. Setyowati, G. Hardiman and S.T. Atmaja2	221
The Influence of Compressive Strength of EPS Concrete Using Fiberglass with Curing and Non Curing Treatment I. Hidayat and J.D. Halim	226
Thermal Properties of Foamed Concrete with Various Densities and Additives at Ambient Temperature S. Ganesan, M.A. Othuman Mydin, M.Y. Mohd Yunos and M.N. Mohd Nawi2	230
The Mechanical Performance of Waste Concrete Ash as Cement Replacement Materials in Concrete A.H. Husain and N.F. Abas	234
Polyacrylate Modified Binder for Sustainable Asphalt Pavement Performances Using Superpave Mix Design W.A. Ismail, I.R. Endut and S.Z. Ishak	238
Compressive Strength Improvement of Stabilized Peat Soil by Pond Ash - Hydrated Lime Admixture Z. Md Yusof, S.N. Mohd Harris and K. Mohamed	242
The Potency of Waste Paper "Egg Tray" as a Noise-Reduction Material E. Setiyowati and I. Nasrullah	246
Prefab Materials for Self Build Housing System in Malaysia W.S. Wan Mohamed, Y. Ahmad, N.F. Nik Mat and A. Azlan	250

Chapter 3: Technologies and Decisions for Providing of Environmental Sustainability

Affordable Onsite E. coli Testing Device for Community Engagement	
A. Kikuchi, M. Syafinas, Romaidi, A.M. Mahmood, W.E. Putra, B. Muchtaromah,	
E.S. Savitri, I.A.I. Nangkula Uaberta, M.I. bin Abd Aziz and M. Musa	
Preliminary Study on Climate Change Biomitigation by Improving CO2 Removal	
and CO2 Utilization Efficiency Using Microalgae Culture in Photobioreactor	
A. Nugroho, E. Kardena, D.I. Astuti and K. Dewi	

Tackling CO ₂ Emission in a City N.J. Abdul Aziz, M.Y. Mohd Yunos, N.A. Ismail and M.A. Othuman Mydin
To Develop a Greener Recycled Paper Production by Determining Potential Environmental Impacts through Life Cycle Perspective N.F. Mohd Ghazali, S.Y. Wong and A. Hamzah Sharaai
Facilitate Recycle Activities via ICT and Physical Approach W.N. Wan Ab Rahman and J. Ng Yi Shien
Optimizing Multi Response Green Machining Using Taguchi Method Based on Grey Relational Analysis M I. Mutaiih, T. Prasetua, H.A. Illamach, B. Sacuaka and Sucience
Towards a Green Quail Meat Production through Life Cycle Perspective A. Hamzah Sharaai, M.Z. Mat Zainol and K.I. bin Muhammad
Preparation Model of Allergen Inhalant Reduction Level on House Dust in the Rural Based Built Environment Using Structural Equation Modeling Technique
Carbon-Capability Framework for Malaysia: Towards Encouraging Low-Carbon Community Lifestyles A.S. Abas, M.Y. Mohd Yunos, N.K. Mohd Isa, N.A. Ismail and F. Abdul Aziz
Fish Distribution and Composition of Kelantan River Systems, Kelantan, Malaysia R. Hashim, M.R.P. Aźlan, W.M.A. Mohd Zainuddin, S.A. Jusoh and A.S.R. Md Sah
The Influence of Land Use in Controlling Potential Damage of the Upper Brantas River Basin S. Harini
Community Participation in Management of Mangrove Villages with Renewable Energy in Teluk Naga District of Tangerang A. Gunarsa, I. Krisantia and N.I. Mangunsong
Traditional and Local Ecological Knowledge for Land Use Mapping
14. Mond Ayoo, 14. Isinan and 1. Masion
Land Use Diversion in the Tourism Area at Sub Watershed Konto Hulu T. Kusumadewi
Land Use Diversion in the Tourism Area at Sub Watershed Konto Hulu T. Kusumadewi
 In Aryon, Ayoo, N. Ishah and T. Maston
N. Mohd Ayoo, N. Ishah and T. Maston 306 Land Use Diversion in the Tourism Area at Sub Watershed Konto Hulu 310 An Analysis of Grey Water Treatment System in the National University of 310 An Analysis of Grey Water Treatment System in the National University of 310 Malaysia Mosque 310 N. Utaberta, A.N. Handryant and M.A. Othuman Mydin
N. Mohd Ayoo, N. Isman and T. Maston 306 Land Use Diversion in the Tourism Area at Sub Watershed Konto Hulu 310 T. Kusumadewi 310 An Analysis of Grey Water Treatment System in the National University of 310 Malaysia Mosque 310 N. Utaberta, A.N. Handryant and M.A. Othuman Mydin. 313 The Application of Rain Water Harvesting Method on a Low Income Flat in 317 Cengkareng, Jakarta 317 Y. Mariana, J. Ngadinata, R. Katili and R. Hendarti 317 Maintenance Performance Quadrant for Rainwater Harvesting System 321 Green Renewable Energy – Risk Need to Be Tackled in Going Green for Air 321 Transportation 325

A Biomimicry Approach on an Architectural Design and Planning Case Study: The Application of Photovoltaic and Green Roof Technologies	
R. Hendarti and Y. Mariana	.333
Integration PV and Wind into the Grid to Supply Electricity in Palu (Indonesia) S. Dewi	.337
Soil Arthropods Diversity in Manggis Natural Reserve and Coffee Agroforestry	
System Kediri Regency, Indonesia	
D. Suheriyanto, Soemarno, B. Yanuwiadi and A.S. Leksono	.341

Chapter 4: Monitoring and Assessment of Facilities, Disaster Prevention

Condition Survey Protocol: A System for Building Condition Assessment A.I. Che-Ani, I. Ismail, S. Johar, M.Z. Abd-Razak and N. Hamzah
Flat Roof Defect: Preliminary Condition Survey for Water Ponding Monitoring A.E. Hashim, M.I.F. Maruzuki, N. Mohd Tawil, M.Z. Abd-Razak and A.I. Che-Ani
Building Defects or Building Failures: Misconception and Understanding S. Abdullah, E. Iskandar and A. Abdul Razak
Common Defects on Floating Mosque: Tengku Tengah Zaharah Mosque, Kuala Ibai, Kuala Terengganu E.M. Mazlan, A.I. Che-Ani, A. Mohd Sarman, M.A. Othuman Mydin and I.M.S. Usman
The Conceptual Framework of Building Performance-Risk Indicators (PRI) for Buildings Users in Higher Education Institutions N. Khalil, S.N. Kamaruzzaman, A.H. Nawawi, H.N. Husin and A.E. Hashim
Well-Being of Malaysia's Disaster-Affected Coastal Communities R.K. Zahari, R.N. Raja Ariffin, M.Z. Asmawi and A.N. Ibrahim
Sustainable Urban Drainage System to Land Use/ Land Cover Change in Samarinda, Indonesia E.S. Butar Butar, A. Sabar and M. Handajani
Dynamic Analysis on PCI Girder Bridge M. Suangga and Santi
Development of Microcontroller Based Potentiometric Transduction Circuit for a Continuous Fluid Level Sensor F.N. Mohd Nusa, M.F. Abdullah, S. Setumin, S. Mohd Firdaus, A.I. Che Ani and N. Mohd Tawil
Keyword Index
Author Index

CHAPTER 1:

Architecture and Urban Planning in the Context of Built Environment

Visual Landscape Management of Scenic Peucang Island and Ujung Kulon Peninsula in Ujung Kulon National Park, Indonesia

Ina Krisantia^{1,a} and Nur Intan Mangunsong^{2,b}

^{1,2} Department of Landscape Architecture, Faculty of Landscape Architecture and Environmental Technology, Trisakti University ,Indonesia

^ainakrisatia@yahoo.com, ^bintansimangunsong@yahoo.com

Keywords: visual landscape, visual quality, visual research management

Abstract. National Park consists of core zone, buffer zone and utilization zone. Utilization zone can be used for recreational activities. This area has an outstanding beauty, high visibility and natural values inevitability attract development which is the potential development of physical, social, visual which can support tourism activities. The base long term management plan of Ujung Kulon National Park (2001-2020) is maintaining its natural beauty and preserving the critical habitats. Scenic landscape quality and character must be included in the management plan because these factors are valuable resources in need of protection and management. This paper will discuss on study conducted to evaluate visual landscape for manage the scenic Peucang Island and Ujung Kulon Peninsula. The method comprehensive assessment in this research were used through Landscape Description and Classification, Visual Quality and Visual Resources Management. The result shown the scenic quality of UjungKulon Peninsula much better than Peucang Island. Area Cibom at Ujung Kulon Peninsula entered in the class 1 category including preservation in the management class.

Introduction

Ujung Kulon National Park covering an area of 120.551 hectares consisting of 76,214 hectares of land and 44,337 hectares of marine waters. Can be broadly divided into three regions namely Triangles that make up the Ujung Kulon peninsula, Mount Honje region in east and Panaitan Island in the northwest peninsula of Ujung Kulon.

Ujung Kulon National Park is an interesting natural attractions, the beauty of the various forms of natural phenomena such as rivers with cascade rapids, waterfalls, white sand beaches, hot springs, marine parks and cultural heritage / history. They are all natural charm that is very interesting to visit and difficult to find elsewhere.

The national park is the west end of the National park area is famous in the world. National park has a core zone, buffer zone and the zone inside utilization. Utilization zone can be used for recreational activities. In reviews, these area has an outstanding beauty and high visibility and natural values inevitability attract development which is the potential development of physical, social, visual which can support tourism activities.

Some researchers have found that visual are aspect is very important in order to increase the tourism industry, for examples Allan (1983) supported with his statement 'viewing scenery is an important sub component in recreational activity. The intangible "Amenity" value of scenery has often places it in priority below commodity values such as tourism development, scenery has become recognized as significant natural and recreational resources (Daniel et al 1989, Magill 1982).

The base long term management plan of Ujung Kulon National Park (2001-2020) is maintaining its natural beauty and preserving the critical habitats which prepare by Directorate

General of Forest Protection and Nature Conservation- the Ministry of Forestry. Scenic quality and landscape character must be included in management plan, because these factors are valuable resources in need of protection and management.

Furthermore this paper will discuss on study conducted to evaluate visual landscape for manage the scenic Peucang Island and Ujung Kulon Peninsula .

Figure 1. Ujung Kulon National Park (Source: http://www.peucangisland.com/id/ujung-kulonnational-park.htm)

Methodology

The survey was done at Peucang Island and Ujung Kulon Peninsula to get information for this research . Data collection for this research was divided into primary data and secondary data. The primary data were collected by doing take pictures and some observation in the site in 2013. These observation were also conducted to achieve the first objective of the research which is to determine visual quality . Secondary data were collected from centre of Ujung Kulon Nasional Park. The second objective of the research is to managed the visual quality in Peucang Island and Ujung Kulon Peninsula.

The method comprehensive assessment in these research were used through Landscape Description and classification, Visual Quality and Visual Resources Management. Visual Quality Analysis based on a modification of the Visual Resources Assessment Procedure (VRP) (Richard C.Smardon, James F, Palmer. Alfred Knof and Kate Grinde ,1988), Predication and assessment of visual impacts (Smardon,Plamer and Felemean 1986 written in the Environmental Impact Aassessment (Larry W.Canter 1996) is the sum of the variable water, land form, vegetation,land use, user activity and special consideration). To calculate the variable using a Likert scale as ordinal data with scale 1 - 3. (Distinct, Avarage,Minimal)

Scenic quality criteria : 1.Water, 2.Land Form,3.Vegetation, 4.Land use 5.User activity, 6.Special consideration : a. Does this zone contain any Cultural or Historical Landmarks ?, b. Is This zone, or areas within, know for its distinct visual quality and or wildlife observation, c. Is this zone free from pollution and litter ?, d. Are there other aesthetic elements that add to this resources

Level of Visual Quality

a.) Visual Resources assessment Procedure (VRAP)(Richard C. Smardon, james F. Palmer, Alfred Knof and Kate Grinde, 1988)

DISTINCT :

Something that is considered unique and is an asset to the areas. Its typically recognized as a visual / aesthetic asset and may have many positive attributes. Diversity and variety are characteristics in such a resources. (Unique, Diversity and variations of each variable) AVERAGE:

Something that is common in the area and not known for its uniqueness, but rather is representative of typical landscape of the area. (General, representing the typical landscape of the region)

MINIMAL :

Something that maybe looked upon as a liability in the area. It is basically lacking any positive aesthetic attributes and may actually diminish the visual quality of surrounding areas. (no value aesthetic)

View point assessment analysis based variable filled in accordance with the level of visual quality of each variables were obtained from the visual input resort.

Especially for special consideration: Total ** a) > 3 or more = Distinct, b) 1-2 = Average c) = Minimal.

b).Modification of Visual Resources assessment Procedure (VRAP)(Richard C. Smardon, James F. Palmer, Alfred Knof and Kate Grinde, 1988), Prediction and Assessment of Visual Impacts (Smardon, Plamer and Felemean 1986) in Environmental Impact Assessment book (Larry W.Canter 1996)

VALUE WATER		LAND FORM	VEGETATION	LAND USE	USER ACTIVITY
3. DISTINCT	Resources 5 item Scale (lake >50 acres. Shoreline configuration, reflect major feauters, islands, shoreline vegetation or rock forms) Movement (streams , Falls, rapids, pools and meanders of large volume)	5 item or 60% slope(ridges or dominant features)or Bold hill, mountains	High degree of patterns in vegetation or Large old growth timber Diversity in plants species. Variety of vegetative interesting form, texture and pattern	5 item or Wilderness, Grazed	< 3
2. COMMON	Resources 3 Item Scale (lake 5 to 50 acres ; shoreline irregularly; minor reflection. Shoreline vegetation) Movement (streams . common meandering , flow characteristics	3 item or 30 – 60% slopes (moderately dissected or rolling) or Hill country Plateau up land	Continuous vegetative Mature but not outstanding old growth Or common diversity in plant species Some variety but only one or two types	3 item or Lumbering, forest, mixed recreation	<1
1.MINIMAL	Resources < 3 item Scale (lake <5 acres, No irregulry or reflection) Movement (stream, no flustion in flow or fsll, rspids or mesdering	< 3 item or 0 - 30 % slopes (little variety No dissection No dominant features) or low up land and low land	Continuous vegetative cover with little or no pattern. Or No understory, over story or ground cover. No variety or contrast in vegetation	< 3 or urbanized	-

Management Class	Total Visual Quality
Preservation	> 17
Retention	14 - 16
Partial Retention	11 – 13
Modification	8 - 10
Rehabilitation	< 7

Results and Discussion

(i) Landscape Description and Clasification

Ujung Kulon national park covering an area of 120.551 hectares consisting of 76 214 hectares of land and 44,337 hectares of marine waters. Can be broadly divided into three regions namely Triangles that make up the Ujung Kulon peninsula, Mount Honje region in east and Panaitan Island in the northwest peninsula of Ujung Kulon.

Peucang Island Area

The unique and delightful island of Peucang lies in clear blue waters off the north western coastline of the Ujung Kulon Penninsula. Its white sand beaches and coral reef shore hold a fascinating world of marine life while Peucang's impressive forest shelters an abundance of wildlife, some of which graze and play around the lodges.

A tall closed canopy forest occurs on Gunung Payung, on Pulau Peucang; vegetation of the Telanca Plateau and central lowlands is a more open secondary forest.

Peucang island's beach is superb for swimming and shallow snorkelling reefs are also found all along the shore. For deeper snorkelling there are coral reefs to the east, widway between the island and mainland. Scuba diving areas are also found to the west and at several other locations off Peucang island.

Coral Copong done with high trees through the woods and ends on the coral reefs with corals cavities (Copong) in Coral Copong. Through the trail to the peak height of the reef enjoying the beautiful sunset. From this place there is an alternative trail to head back to the inn.

Ujung Kulon Peninsula

Ujung Kulon Peninsula region is the habitat of the Javan rhino (*Rhinoceros sondaicus*), so that in the management of natural attractions for this location is very limited. This is because in order not to disturb the Javan rhino habitat. The total area of the Ujung Kulon Peninsula is \pm 38,000 ha. Nature tourism activities that can be done at this location include trackking, camping and wildlife viewing. At Ujung Kulon Peninsula there are lines that can be used for trackking. Other facilities are security post that there is some point such as the Coral Beds, Cibunar, and Cidaon. Besides trekking, travel activities that can be done is a wildlife viewing on pasture Cidaon and Cigenter, camping in the Cape Screen, and cultural tourism in Goa Sang Hyang Sirah.

Cidaon located in Ujung Kulon Peninsula, dealing with Peucang Island. There are Pasture Cidaon is quite extensive grazing fields and in complete with watch towers for observing wildlife - animals buffalo, pigs, monkeys, and peacocks. Java rhino at the moment - currently very rare across the grazing fields. Morning and evening are the best time to visit this desert grazing.

River East Ciujungkulon Cidaon was right in the groove forming a navigable river by canoe. The river is peaceful impressed with the muddy swamps and plants.

The walkways Cibunar are available to traverse the peninsula of Ujung Kulon. From Cidaon through the rain forest, across a low area, then Cibunar river, the open pastures and ends on sloping rocky areas on the south coast. westbound right there Cibunar estuaries and Guard post Ujung Kulon national park. This path is the path primate species, bull, boar and the Javan rhino are often found through his footsteps. The state of the forest consists of various types of vegetation are attractive.

Cibom beach located in Ujung Kulon Peninsula.

To reach Tanjung Layar can use a motor boat from the Peucang island to the Cibom beach then walking more than 3 miles to the west of the peninsula. In Cibom will be found the remains of failure by the boat dock construction because of political turmoil and the outbreak of disease at that time. There is a shelter that provides information about the region. The path to the screen has been provided along the Cape coastline toward the West. At this location available lighthouse with views of the rocky peninsula and islands - a beautiful little island. Not so far from the location mecusuar, there is rest - the rest of the building which was first established in the form of a staircase leading up to a height of 40 meters historic location of Tanjung screen with two first lighthouse buildings and staff houses were built in the 1800s. In addition, we also can see the Dutch colonial historical sites such as the former lighthouse tower and pier construction in the Cape Screen and Cibom.

Citerjun Teracces. Located in the north-eastern peninsula of Ujung Kulon. Citerjun terrace is formed by limestone and stalagmites as a result of water flow Citerjung. These conditions are the result of spectacular geological formations. According to the former sailors, this terrace has been destroyed by a tidal wave when Krakatau erupted in 1883

A. Landscape Structure.

Ujung Kulon National Park forms the largest remaining lowland tropical rain forest ecosystem in West Java. The three main ecosystem types in the Park are marine, coastal and terrestrial.

Ujung Kulon National Park an interesting natural attractions, the beauty of the various forms of natural phenomena such as rivers with cascade rapids, waterfalls, white sand beaches, hot springs, marine parks and cultural heritage / history (Ganesha statue, at the Mount of Mercury Panaitan Island). They are all natural charm that is very interesting to visit and hard to find elsewhere.

Landscape character explain base on land form, topografi, Estuaris, rivers, land use, shoreline and land mark

Peucang Island :

The unique and delightful island of Peucang lies in clear blue waters off the north western coastline of the Ujung Kulon Penninsula . Characteristk of land form were flat landscape. Characteristik of shoreline were white sand beaches, coral reefs, attractive crystal clear blue sea water for swimming, diving, fishing, snorkelling, and plant and animal observation. There were lodge , graze , coral copong and a tall closed canopy forest occurs on Gunung Payung vegetation of the Telanca Plateau and central lowlands is a more open secondary forest.

Ujung Kulon Peninsula :

a) Cidaon :

The characteristic of land form were Undulating land, flat landscape. The other characteristic were pasture Cidaon is quite extensive grazing fields and rain forest. River East Ciujungkulon and The walkways Cibunar are available to traverse the peninsula of Ujung Kulon. From Cidaon through the rain forest, across a low area, then Cibunar river, the open pastures and ends on sloping rocky areas on the south coast. westbound right there Cibunar estuaries and Guard post Ujung Kulon national park.

b) Cibom :

The characteristic of land form were Rolling Hill, Undulating Hill, characteristic of shoreline were white sand beaches, coral reefs and rocky peninsula and cape coastline. The other characeristik there were a shelter, mercusuar and Dutch colonial historical sites such as the former lighthouse tower and pier construction in the Cape Screen. Citerjun terrace is formed by limestone and stalagmites as a result of water flow Citerjung.

B.View and viewpoint

Particular places and routes that offer panoramic or distinctive view from island and sea and viewsheds defined, together with the landscape setting of tourist resorts and recreational areas.

Peucang island

- Resort areas

Distictive view from lodge to graze and play around the lodges

- Beaches

Panoramic view from island and sea

Figure 2. Panoramic view from island and sea (Source: http://ina)

Distictive view white Sand and coral blue

- Forest

Distictive tracking and plant arrangement and detail of plant

Ujung Kulon Peninsula

Cidaon Pasture Cidaon is quite extensive grazing fields

Panoramic view from forest to grazing field

Figure 3. Grazing field (Source: http://ina)

Forest

- a) Distictive tracking and plant arrangement and detail of plant
- b) Panorama from forest to sea

- Cibom

Distictive island to rocky beach and sandy beach

Figure 4. Rocky and sandy beach (Source: ina)

- Forest Distictive tracking in the forest and river

- Tower Distictive tower and land form

- Citerjun Terrace Panoramic view from grazing fild to Tanjung Layar

C.Landscape Unit

Peucang Island

a)Resort areas

There are lodges, cafetaria, meeting room and some of which graze and play around the lodges.

b)Peucang island's beach

Clear blue waters off the north western coastline of the Ujung Kulon Penninsula. Its white sand beaches and coral reef shore hold a fascinating world of marine life . Peucang island's beach is superb for swimming and shallow snorkelling reefs are also found all along the shore. For deeper snorkelling there are coral reefs to the east, widway between the island and mainland. Scuba diving areas are also found to the west and at several other locations off Peucang island...

c)Forest

Peucang's impressive forest shelters an abundance of wildlife, with high tree and bushes

d) Coral Copong

The Coral Copong done with high trees through the woods and ends on the coral reefs with corals cavities (Copong) in Coral Copong. Through the trail to the peak height of the reef enjoying the beautiful sunset. From this place there is an alternative trail to head back to the inn.

Ujung Kulon_Peninsula

A.Cidaon

- a) Pasture Cidaon is quite extensive grazing fields
- b) Rain Forest

B. Cibom .

a) Cibom beach

There is a shelter that provides information about the region. The path to the screen has been provided along the Cape coastline toward the

b)Forest

Rain Forest shelters an abundance of wildlife, with high tree and bushes

c) Citerjun Teracces.

Located in the north-eastern peninsula of Ujung Kulon.

Citerjun terrace is formed by limestone and stalagmites as a result of water flow Citerjung. These conditions are the result of spectacular geological formations. According to the former sailors, this terrace has been destroyed by a tidal wave when Krakatoa erupted in 1883

(ii)Scenic Quality Analysis

Relative scenic quality analysis

Scenic quality in Ujung Kulon Peninsula shows in Cibom scenic quality reached 18 and Cidaon 11 while in Peucang Island scenic quality reached 12. This shows that the scenic quality of UjungKulon Peninsula much better than Peucang Island.

This is because in Ujung Kulon Peninsula, especially in Cibom have a source of water that is shoreline configuration element, reflect major features, islands, shoreline vegetation and rock forms, land forms 60% slope (ridges) and high degree of patterns in vegetation and large old growth timber, species diversity in plants, wilderness and grazed. There are user activity such as viewing tower and bull herders activities. There are also special consideration such as the historical landmarks in the form of the castle and its distinct visual quality view of the forest to the sea and wildlife observation. Free from pollutants and there have aesthetic elements such as Citerjun terrace is formed by limestone and stalagmites as a result of Citerjung water flow. These conditions are the result of spectacular geological formations. While in Cidaon although the characteristic form of the land were flat, but the other landscape characteristic were pasture. Cidaon is quite extensive grazing fields and rain forest and River East Ciujungkulon contribute to the scenic quality in Ujung Kulon Peninsula.

Scenic quality in Peucang reached number 12 achieved from source of scenic shoreline configuration elements namely water, reflect major feauters, islands, shoreline vegetation, white sand beaches and coral reef and blue waters. Although the majority landform is flat but Peucang has a high degree of patterns in vegetation and large old growth timber, species diversity in plants.

No		Peucang	Ujung Kulon Peninsula	
	Variable	island	Cidaon	Cibom
1	Water	3	2	3
2	Land Form	2	1	3
3	Vegetation	3	2	3
4	Land Use	1	2	3
5	User Activity	1	2	3
6	Special Consideration *	2	2	3
	a. This areas contain cultural and			V
	historical landmarks			
	b. This areas within, know for its distinct		v	V
	visual quality and Wildlife observation			
	c. Free from pollution and litter	v	V	V
	d. There are other aesthetic elements that	v		V
	add to this resources			
	TOTAL Visual Quality	12	11	18

Table 1, Scenic Quality

(iii)Visual Sensivity

a.Visibility and Visual Accessbility

Define view point (resort, beach, forest, pasture grazing field, tower and Citerjun Terrace) and route (tracking) are mapped and categories in four level of visual accessibility.

Level 1 : High – most frequently used or most popular route or places

Level 2 : Moderate – moderately used routes

Level 3 : Low – Infrequently used routes

Level 4 : Very low Accessibility

View distance (foreground, middle ground and background) are mapped to show various combination of accessibility and distance zone, which indicate landscape sensivity ie the relative visual significance to viewers of each part of the seen landscape. Foreground scenes reveal texture and detail. The middle ground scenes colour and contrast become dominant. At the background, scenes profiles are the major factors in view perception.

The result shown (Table 1) ,Peucang Island level 1 this indicated this area most frequently used and most popular places and route ,while Ujung kulon Peninsula level 2 this indicated this area moderatly used routes.

Table 1 : Visual Accessibility									
	Scenic Accessbility								
View Distance	High (1) Modate (2) Low (3) very low)								
	Peucang Island Ujung Kulon Peninsula								
	Cidaon			Cibom					
	AP1	AP2	AP3	AD1	AD2	AB1	AB2	AB3	AB4
Foreground	1	1	1	1	1	1	1	2	1
Middleground	1	2	2	2	2	2	2	2	1
Background	1	2	3	3	3	2	3	3	1
Avarge	1			2 2					

Note:Scenic accessibilityPeucang Island.:AP1 = Resort, AP2.= Beach, AP3=ForestCidaon:AD1= Pasture grazing field, AD2= ForestCibom::AB1= Beach, AB2= forest, AB3=Tower, AB4= Citerjun Terrace

b. Visual Absorption Capability

Visual Absorption Capability (VAC) indicates the capacity of the landscape to absorb visual changes without significant alteration of its landscape character and scenic quality.

The result shown (Table 2) Zone Cibom at Ujung Kulon Peninsula area have highest sensivity to landscape change, while the Cidaon are have lowest sensivity, and Peucang Island are have intermiditly sensivity to landscape change. These result indicated Cibom area have critical scenic value

							Vi	ew point				
	Factor	Variabel	Rating	Peucang Island			Ujung Kulon Peninsula					
							Cidaon		Cibom			
				VP1	VP2	VP3	VD1	VD2	VB1	VB2	VB3	VB4
	Foreground	$0 - \frac{1}{4}$ mil	1		1	1		1	1	1		1
Observer		¹ / ₄ - 1/2 mil	2	2						2		
Distance	Middleground	½ - 1 mil	3		3	3	3	3	3	3	3	3
		1-2 mil	4	4			4			4		
	Background	>2 mil	5		5			1	5			
		Feature	1	1		1				1		1
Landscape I	Description	Focal	2		2	2	2		2	2		2
		Enclosed	3	3			3	3		3	3	
		panoramic	4		4				4	4		
		Others	5									
	Very Steep	▶ 45%	1							1		
Slope	Steep	30-45%	2								2	
	Moderate	20-30%	3							3		
	Gentle	10 - 20%	4			4	4	4	4	4		4
	Very gentle	0-10%	5	5	5							
Lowest rating in the key view point					20	11	16	11	19	28	8	11
					15.3		13.5 16.5					
					15							
Visual Absorption capability 5-13 Low (L)			Ι	Н	Ι	Ι	L	Ι	Η	L	L	
14-16Iintermidiate (I)				I L			Н					
17-23 High (H)									Ι			

Table 2 : Visual Absorption Capability

Note: View point

Peucang Island. : VP1 = Resort, VP2.= Beach, VP3=ForestCidaon: VD1= Pasture grazing field, VD2= ForestCibom:VB1= Beach, VB2= forest, VB3=Tower, VB4= Citerjun Terrace

(iv)Visual Management Strategy

a. Visual Management Zone

The four set of mapped visual lanscape evaluation from lanscape unit, relative quality analysis, visibility and visual accessibility and visual absorption are then combined by matrix to difine three Visual resources Management Zones [Zone Peucang Island (A), Ujung Kulon Peninsula: Cidaon (B) and Cibom (C)].

View Distance					Scenic High (1) Modate	c accessbility	low)					
view Distance	Peucang Island (A)			Ujung Kulon Peninsula								
		-			Cidaon (B)		Cibom	Cibom (C)				
	AP1	AP2	AP3		AD1	AD2	AB1	1	AB2	AB3	AB4	
Foreground	1	1	1		1	1	1		1	2	1	
Middleground	1	2	2		2	2	2		2	2	1	
Background	1	2	3		3	3	2		3	3	1	
	+	+	+		+	+	+		+	+	+	
	Intermediate	High	Iintermed	liate	Iintermediate	Low	Intermediate]	High	Low	Low	
Visual Absorption	VAC	VAC	VAC		VAC	VAC	VAC	1	VAC	VAC	VAC	
Capacity	Intermediate			L	ow			Intermediate	e			
	VAC			V	AC			VAC				
					Intermediate							
					VAC							
Very High Scanic									(C. 18		
Quality												
High Scanic Quality		A. 12										
moderate Scanic						B. 11						
Quality												
Moderate												
/low scenic quality												

Table 4 : Visual Resources Management Zone

Zone A Peucang Island areas have high visual quality coinciding with higher tolerance of to landscape change ,recommended for management are graded accordingly

Zone B Cidaon areas have moderated scenic quality coinciding with highest sensivity to landscape change ,recommended for management therefore of critical to the areas ; recommended for protection of their visual values.

Zone Cibom areas have higest visual quality coinciding with higher tolerance of to landscape change ,recommended for management are graded accordingly

b. Visual Management Zone

Visual Management zone was conducted to determine management class of scenic quality based on Visual Resources Assessment Procedure (VRP) (Richard C.Smardon, James F, Palmer. Alfred Knof and Kate Grinde ,1988),

Ν	Ianagement Class	Total Visual Quality
1.	Preservation	> 17
2.	Retention	14 - 16
3.	Partial Retention	11 - 13
4.	Modification	8 - 10
5.	Rehabilitation	< 7

The result shown (see Table 3).

Zone Cibom at Ujung Kulon Peninsula area have highest visual quality coinciding higher tolerance of to landscape change ,recommended for management are graded accordingly .

Because this area entered in the class first(1) category including preservation in the management class. It means the protection needs in this area because of its high scenic quality and the Ujung Kulon Peninsula area is the habitat of the Javan rhino (Rhinoceros sondaicus). The management of natural attractions for this location is very limited in order not to disturb the Javan rhino habitat.

Zone Cidaon and Peucang Island are moderate visual quality coinciding with moderate sensivity to landscape change ; recomended for partial retention. Because this area entered in the third class3 catergory including partial retention in the management class. This region has scenic quality in particular places.

No	Zone		Visual Quality	Class
1	Peucang Island		15.3	2
2	Ujung Kulon	Cidaon	13.5	2
	Peninsula	Cibom	16.5	1

Figure 2, Management Class Ujung Kulon National Park.

c. Visual Resources Management Strategies

The mapped Visual Resources Management Zones are the basis for series of management objectives, strategy

No	Zone		Scenic Management Objective	Strategy
1	Peucang Island		Shore lines:	-Design minimal 50 meter buffer zone
			To protect the dominance of the natural	-Protect in the existing 90% of
			character of shorelines in management:	vegetation
			Zone Peucang island by insuring visual	
			impacts of development are minimal	- Restrict development in the this area
				in zone Peucang to the following
				criteria :
			Forest :	- Small jetty
			To protect the dominance of the	
			secondary rain forest in management:	protect in the existing 90% of
2	TT. TZ 1	0.1	· · · ·	vegetation especially big tree
2	Ujung Kulon	Cidaun	extensive grazing:	Protect in the existing 100% grazing
	Peninsula		aborector of grazing in management	
			character of grazing in management	
		Cibom	Shore lines:	Design minimal 50 meter buffer zone
		cicom	To protect the dominance of the natural	-Protect in the existing 90% of
			character of shorelines in management:	vegetation and rocky
			C C	-Restrict development in the shoreline
				in zone Ujung Kulon Peninsula to the
				following criteria :- small jeti
			Forest :	
			To protect the dominance of the	protect in the existing 90% of
			secondary rain forest in management.	vegetation especially big tree
			Hillside :	
			To protect dominance natural character	Hillside :
			in hill site areas in management.	Restrict development in the hill side

		Citerjun terrace : To protect the dominance of the citerjun terrace in management.	area in zone Ujung Kulon Peninsula to the following criteria : -Small scale -Protect in the existing tree, 90% of the hill side vegetation . Protect 100% of the limestone and stalagmites
--	--	--	--

Summary

1. Landscape Description and Clasification

A. Landscape Structure.

a. Island of Peucang lies in clear blue waters ,flat landscape. white sand beaches, coral reefs, secondary forest, graze , coral copong and lodge.

- b. Ujung Kulon Peninsula :
- 1) Cidaon : Undulating land , flat landscape. Pasture Cidaon is quite extensive grazing fields and rain forest. River East Ciujungkulon and the walkways Cibunar, open pastures and sloping rocky.
- 2) Cibom : Rolling Hill , Undulating Hill , white sand beaches, coral reefs and rocky peninsula and cape coastline ,shelter, mercusuar and Dutch colonial historical sites and Citerjun terrace is formed by limestone and stalagmites.
- B. Views and Viewpoint

Particular places and routes that offer panoramic or distinctive view from island and sea and viewsheds defined, together with the landscape setting of tourist resorts and recreational areas.

- C. Landscape Unit
 - a. Peucang Island : a)Resort areas,b)Peucang island's beach, c)Forest, d) Coral Copong.
 - b. Ujung Kulon_Peninsula
 - 1) Cidaon : Pasture Cidaon is quite extensive grazing fields, Secondary Rain Forest
 - 2) Cibom : Cibom beach, Rain Forest , Citerjun Teracces.

2. Relative scenic quality

Scenic quality of UjungKulon Peninsula much better than Peucang Island.

3. Visual Management Strategy

A. Visual management Zone

a. Cibom at Ujung Kulon Peninsula entered in the class 1 category including preservation in the management class .

b.Cidaon and Peucang Island entered in the third class catergory including partial retention in the management class.

B. Visual Resources Management Strategies

- a. Scenic management objective majority to protect the resources
- b. Scenic management strategy following the creteria .

References

- [1] Arthur, LM 1977. Predicting scenic beauty of forest environments. Forest Science.
- [2] C.Alan F, Associates Chenoweth, B.Catherine LA, Visual Landscape Evaluation and Management of Scenic Tourist Coastlines: The Whitsunday Region, North Queensland Conference paper 32nd IFLA World Congress, Thailand, oktober (1995) 321-329
- [3] C. Larry W.1996 . Environmental Impact Assessment .Mc graw Hill.Inc
- [4] Daniel,T.C and Vinning,J.(1983) Methodological Issue in the assessment of Landscape quality. In *Behavior and the Natural Environment* (eds Altman, I.and Wohwill,J) chapter 2, 39-83, Plenum Press.
- [5] Hull,R.B and Revel,G.R.B.(1989) Issues in sampling landscapes for visual quality assessments. *Landscape and urban Planning*, 17,323-330.
- [6] Kaplan R. (1977) Preferences and Everyday nature : method and application in Stokols D (ed).*perspectives on Environment and Behavior* New York:Plenum.
- [7] Kaplan, S et al.(1997) The Experience of nature. Cambridge University Press
- [8] Information on http://www.ibs.gov.my
- [9] wwwujung kulon Org
- [10] http://whc.unesco.org/en/list/608
- [11] http://www.peucangisland.com/id/ujung-kulon-national-park.htm

Advances in Green Science, Engineering and Built Environment

10.4028/www.scientific.net/AMM.747

Visual Landscape Management of Scenic Peucang Island and Ujung Kulon Peninsula in Ujung Kulon National Park, Indonesia

10.4028/www.scientific.net/AMM.747.109

NIM_Peuncang

by Nur Intan Mangunsong

Submission date: 12-Apr-2023 08:48AM (UTC+0700) Submission ID: 2062100101 File name: Peucang_jurnal_intl_Advance_material.pdf (1.54M) Word count: 5158 Character count: 27469 Applied Mechanics and Materials Vol 747 (2015) pp 109-122 © (2015) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMM.747.109

Submitted: 2014-10-14 Accepted: 2014-11-30 Online: 2015-03-30

Visual Landscape Management of Scenic Peucang Island and Ujung Kulon Peninsula in Ujung Kulon National Park, Indonesia

Ina Krisantia^{1,a} and Nur Intan Mangunsong^{2,b}

^{1,2} Department of Landscape Architecture, Faculty of Landscape Architecture and Environmental Technology, Trisakti University ,Indonesia

^ainakrisatia@yahoo.com, ^bintansimangunsong@yahoo.com

Keywords: visual landscape, visual quality, visual research management

Abstract. National Park consists of core zone, buffer zone and utilization zone. Utilization zone can be used for recreational activities. This area has an outstanding beauty, high visibility and natural values inevitability attract development which is the potential development of physical, social, visual which can support tourism activities. The base long term management plan of Ujung Kulon National Park (2001-2020) is maintaining its natural beauty and preserving the critical habitats. Scenic landscape quality and character must be included in the management plan because these factors are valuable resources in need of protection and management. This paper will discuss on study conducted to evaluate visual landscape for manage the scenic Peucang Island and Ujung Kulon Peninsula. The method comprehensive assessment in this research were used through Landscape Description and Classification, Visual Quality and Visual Resources Management. The result shown the scenic quality of JungKulon Peninsula much better than Peucang Island. Area Cibom at Ujung Kulon Peninsula entered in the class 1 category including preservation in the management class however Cidaon and Peucang Island entered in the third class catergory including partial retention in the management class.

Introduction

Ujung Kulon National Park covering an area of 120.551 hectares consisting of 76,214 hectares of land and 44,337 hectares of marine waters. Can be broadly divided into three regions namely Triangles that make up the Utung Kulon peninsula, Mount Honje region in east and Panaitan Island in the northwest peninsula of Zjung Kulon.

Ujung Kulon National Park is an interesting natural attractions, the beauty of the various forms of natural phenomena such as rivers with cascade rapids, waterfalls, white sand beaches, hot springs, marine parks and cultural heritage / history. They are all natural charm that is very interesting to visit and difficult to find elsewhere.

The national park is the west end of the National park area is famous in the world. National park has a core zone, buffer zone and the zone inside utilization. Utilization zone can be used for recreational activities. In reviews, these area has an outstanding beauty and high visibility and natural values inevitability attract development which is the potential development of physical, social, visual which can support tourism activities.

Some researchers have found that visual are aspect is very important in order to increase the tourism industry, for examples Allan (1983) supported with his statement 'viewing scenery is an important sub component in recreational activity. The intangible "Amenity" value of scenery has often places it in priority below commodity values such as tourism development, scenery has become recognized as significant natural and recreational resources (Daniel et al 1989, Magill 1982).

The base long term management plan of Ujung Kulon National Park (2001-2020) is maintaining its natural beauty and preserving the critical habitats which prepare by Directorate

5 All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, www.ttp.net. (ID: 118.137.196.56-02/04/15,02:28:57) General of Forest Protection and Nature Conservation- the Ministry of Forestry. Scenic quality and landscape character must be included in management plan, because these factors are valuable resources in need of protection and management.

in the more this paper will discuss on study conducted to evaluate visual landscape for manage the scenic Peucang Island and Ujung Kulon Peninsula .

Figure 1. Ujung Kulon National Park (Source: http://www.peucangisland.com/id/ujung-kulonnational-park.htm)

Methodology

The survey was done at Peucang Island and Ujung Kulon Peninsula to get information for this research. Data collection for this research was divided into primary data and secondary data. The primary data were collected by doing take pictures and some observation in the site in 2013. These observation were also conducted to achieve the first objective of the research which is to determine visual quality. Secondary data were collected from centre of Ujung Kulon Nasional Park. The second objective of the research is to managed the visual quality in Peucang Island and Ujung Kulon Peninsula.

The method comprehensive assessment in these research were used through Landscape Description and classification, Visual Quality and Visual Resources Management. Visual Quality Analysis based on a modification of the Visual Resources Assessment Procedure (VRP) (Richard C.Smardon, James F, Palmer. Alfred Knof and Kate Grinde ,1988), Predication and assessment of visual impacts (Smardon,Plamer and Felemean 1986 written in the Environmental Impact Aassessment (Larry W.Canter 1996) is the sum of the variable water, land form, vegetation,land use, user activity and special consideration). To calculate the variable using a Likert scale as ordinal data with scale 1 – 3. (Distinct, Avarage,Magimal)

Scenic quality criteria **3** 1.Water, 2.Land Form,3.Vegetation, 4.Land use 5.User activity, 6.Special consideration : a. Does this zone contain any Cultural or Historical Landmarks ?, b. Is This zone, or areas within, know for its distinct visual quality and or wildlife observation, c. Is this zone free from pollution and litter ?, d. Are there other aesthetic elements that add to this resources

Level of Visual Quality

a.) Visual Resources assessment Procedure (VRAP) (Richard C. Smardon, james F. Palmer, 3] fred Knof and Kate Grinde, 1988)

DISTINCT :

Something that is considered unique and is an asset to the areas. Its typically recognized as a visual / aesthetic asset and may have many positive attributes. Diversity and variety are characteristics in **3** ch a resources. (Unique, Diversity and variations of each variable) AVERAGE:

Something that is common in the area and not known 3 r its uniqueness, but rather is representative of typical landscape of the area. (General, representing the typical landscape of the region)

MINIMAL :

Something that maybe looked upon as a liability in the area. It is basically lacking any positive aesthetic attributes and may actually diminish the visual quality of surrounding areas. (no value aesthetic)

View point assessment analysis based variable filled in accordance with the level of visual quality of each variables were obtained from the visual input resort.

Especially for special consideration: Total ** a) > 3 or more = Distinct, b) 1-2 = Average c) = Minimal.

b).Modification of Visual Resources assessment Procedure (VRAP) (Richard C. Smardon, James F. Palmer, Alfred Knof and Kate Grinde, 1988), Prediction and Assessment of Visual Impacts (Smardon, Plamer and Felemean 1986) in Environmental Impact Assessment book (Larry W.Canter 1996)

VALUE	WATED	LANDEODM	TO CETATION	LAND LICE	LICED ACTIVITY
VALUE 2 DISTINCT	WATER	LANDFORM	8 EGETATION	LAND USE	USER ACTIVITY
3. DISTINCT	Resources 5 item	5 item or	High degree of	5 item or	< 3
	Scale (Jake >50 acres	or dominant	vegetation or	Grazed	
	Shoreline	features lor	Large old growth	Grazeu	
	configuration, reflect	Bold hill	timber		
	major feauters, islands,	mountains	Diversity in plants		
	shoreline vegetation or		species.		
	rock forms)		Variety of		
	Movement (streams ,		vegetative		
	Falls, rapids, pools and		interesting form,		
	meanders of large		texture and pattern		
2. COMMON	Pagaurage	2 itom or	Continuous	2 itom or	2
2. COMMON	Resources	30 - 60% clopes	Continuous	5 Item or Lumbering	<1
	3 Item	(moderately	Mature but not	forest mixed	
		dissected or	outstanding old	recreation	
	Scale (lake 5 to 50	rolling) or	growth		
	acres ; shoreline	Hill country	Or common		
	irregularly; minor	Plateau up land	diversity in plant		
	reflection. Shoreline		species		
	vegetation) Movement		Some variety but		
	(streams . common		only one or two		
	meandering, flow		types		
	characteristics				
1.MINIMAL	Resources	< 3 item or	Continuou 8	< 3 or	
	< 3 item	0 - 30% slopes	vegetative cover	urbanized	
	No irregulary or	No dissection	nattern Or No		
	reflection)	No dominant	understory over		
	Movement (stream, no	features) or low	story or ground		
	flustion in flow or fsll,	up land and low	cover.		
	rspids or mesdering	land	No variety or		
			contrast in		
			vegetation		1
	10				
Management (lass	I otal visual G	Quality		
Preservation		$> 1^{\prime}$	7		
Retention		14 -	- 16		
Partial Retentio	on	11 -	13		
Modification		8 -	10		
Rehabilitation		< 7			
rendomtation		- 1			

Results and Discussion

(i) Landscape Description and Clasification

Ujung Kulon national park covering an area of 120.551 hectares consisting of 76 214 hectares of land and 44,337 hectares of marine waters. Can be broadly divided into three regions namely Triangles that make up the Ujung Kulon peninsula, Mount Honje region in east and Panaitan Island in the northwest peninsula of Ujung Kulon.

Peucang Island Area

The unique and delightful island of Peucang lies in clear blue waters off the north western coastline of the Ujung Kulon Penninsula. Its white sand beaches and coral reef shore hold a fascinating world of marine life while Peucang's impressive forest shelters an abundance of wildlife, som of which graze and play around the lodges.

A tall closed canopy forest occurs on Gunung Payung, on Pulau Peucang; vegetation of the Telanca Plateau and central lowlands is a more open secondary forest.

Peucang island's beach is superb for swimming and shallow snorkelling reefs are also found all along the shore. For deeper snorkelling there are coral reefs to the east, widway between the island and mainland. Scuba diving areas are also found to the west and at several other locations off Peucang island.

Coral Copong done with high trees through the woods and ends on the coral reefs with corals cavities (Copong) in Coral Copong. Through the trail to the peak height of the reef enjoying the beautiful sunset. From this place there is an alternative trail to head back to the inn.

Ujung Kulon Peninsula

Ujung Kulon Peninsula region is the habitat of the Javan rhino (*Rhinoceros sondaicus*), so that in the management of natural attractions for this location is very limited. This is because in order not to disturb the Javan rhino habitat. The total area of the Ujung Kulon Peninsula is \pm 38,000 ha. Nature tourism activities that can be done at this location include trackking, camping and wildlife viewing. At Ujung Kulon Pena sula there are lines that can be used for trackking. Other facilities are security post that there is some point such as the Coral Beds, Cibunar, and Cidaon. Besides trekking, travel activities that can be done is a wildlife viewing on pasture Cidaon and Cigenter, camping in the Cape Screen, and cultural tourism in Goa Sang Hyang Sirah.

Cidaon located in Ujung Kulon Peninsula, dealing with Peucang Island. There are Pasture Cidaon is quite extensive grazing fields and in complete with watch towers for observing wildlife - animals buffalo, pigs, monkeys, and peacocks. Java rhino at the moment - currently very rare across the grazing fields. Morning and evening are the best time to visit this desert grazing.

River East Ciujungkulon Cidaon was right in the groove forming a navigable river by canoe. The river is peaceful impressed with the muddy swamps and plants.

The walkways Cibunar are available to traverse the peninsula of Ujung Kulon. From Cidaon through the rain forest, across a low area, then Cibunar river, the open pastures and ends on sloping rocky areas on the south coast. westbound right there Cibunar estuaries and Guard post Ujung Kulon national park. This path is the path primate species, bull, boar and the Javan rhino are often found through his footsteps. The state of the forest consists of various types of vegetation are attractive.

Cibom beach located in Ujung Kulon Peninsula.

To reach Tanjung Layar can use a motor boat from the Peucang island to the Cibom beach then walking more than 3 miles to the west of the peninsula. In Cibom will be found the remains of failure by the boat dock construction because of political turmoil and the outbreak of disease at that time. There is a shelter that provides information about the region. The path to the screen has been provided along the Cape coastline toward the West. At this location available lighthouse with views of the rocky peninsula and islands - a beautiful little island. Not so far from the location mecusuar, there is rest - the rest of the building which was first established in the form of a staircase leading up to a height of 40 meters historic location of Tanjung screen with two first lighthouse buildings and staff houses were built in the 1800s. In addition, we also can see the Dutch colonial historical sites such as the former lighthouse tower and pier construction in the Cape Screen and Cibom.

Citerjun Teracces. Located in the north-eastern peninsula of Ujung Kulon. Citerjun terrace is formed by limestone and stalagmites as a result of water flow Citerjung. These conditions are the result of spectacular geological formations. According to the former sailors, this terrace has been destroyed by a tidal wave when Krakatau erupted in 1883

A. Landscape Structure.

Ujung Kulon National Park forms the largest remaining lowland tropical rain forest ecosystem in West Java. The three main ecosystem types in the Park are marine, coastal and terrestrial.

Ujung Kulon National Park an interesting natural attractions, the beauty of the various forms of natural phenomena such as rivers with cascade rapids, waterfalls, white sand beaches, hot springs, marine parks and cultural heritage / histary (Ganesha statue, at the Mount of Mercury Panaitan Island). They are all natural charm that is very interesting to visit and hard to find elsewhere.

Landscape character explain base on land form, topografi, Estuaris, rivers, land use, shoreline and land mark

Peucang Island :

The unique and delightful island of Peucang lies in clear blue waters off the north western coastline of the Ujung Kulon Poninsula . Characteristik of land form were flat landscape. Characteristik of shoreline were white sand beaches, coral reefs, attractive crystal clear blue sea water for swimming, diving, fissing, snorkelling, and plant and animal observation. There were lodge, graze, coral copong and a tall closed canopy forest occurs on Gunung Payung vegetation of the Telanca Plateau and central lowlands is a more open secondary forest.

Ujung Kulon Peninsula :

a) Cidaon :

The characteristic of land form were Undulating land, flat landscape. The other characteristic were pasture Cidaon is quite extensive grazing fields and rain forest. River East Ciujungkulon and The walkways Cibunar are available to traverse the peninsula of Ujung Kulon. From Cidaon through the rain forest, across a low area, then Cibunar river, the open pastures and ends on sloping rocky areas on the south coast. westbound right there Cibunar estuaries and Guard post Ujung Kulon national park.

b) Cibom :

The characteristic of land form were Rolling Hill, Undulating Hill, characteristic of shoreline were white sand beaches, coral reefs and rocky peninsula and cape coastline. The other characteristik there were a shelter, mercusuar and Dutch colonial historical sites such as the former lighthouse tower and pier construction in the Cape Screen. Citerjun terrace is formed by limestone and stalagmites as a result of water flow Citerjung.

Advances in Green Science, Engineering and Built Environment

B.View and viewpoint

Particular places and routes that offer panoramic or distinctive view from island and sea and viewsheds defined, together with the landscape setting of tourist resorts and recreational areas.

Peucang island

- Resort areas

Distictive view from lodge to graze and play around the lodges

Beaches -

Panoramic view from island and sea

Figure 2. Panoramic view from island and sea (Source: http://ina)

Distictive view white Sand and coral blue

Forest 2

Distictive tracking and plant arrangement and detail of plant

Ujung Kulon Peninsula

Cidaon

Pasture Cidaon is quite extensive grazing fields Panoramic view from forest to grazing field

Figure 3. Grazing field (Source: http://ina)

Forest

- a) Distictive tracking and plant arrangement and detail of plant
- b) Panorama from forest to sea

- Cibom

Distictive island to rocky beach and sandy beach

Applied Mechanics and Materials Vol. 747

Figure 4. Rocky and sandy beach (Source: ina)

- Forest Distictive tracking in the forest and river

- Tower Distictive tower and land form

- Citerjun Terrace Panoramic view from grazing fild to Tanjung Layar

C.Landscape Unit

Peucang Island

a)Resort areas

1

There are lodges, cafetaria, meeting room and some of which graze and play around the lodges.

b)Pen2ang island's beach

Clear blue waters off the north western coastline of the Ujung Kulon Tenninsula. Its white sand beaches and coral reef shore hold a fascinating world of marine life. Peucang island's beach is superb for swimming and shallow snorkelling reefs are also found all along the shore. For deeper snorkelling there are coral reefs to the east, widway between the island and mainland. Scuba diving areas are also found to the west and at several other locations off Peucang island.

c)Forest

Peucang's impressive forest shelters an abundance of wildlife, with high tree and bushes

d) Coral Copong

The Coral Copong done with high trees through the woods and ends on the coral reefs with corals cavities (Copong) in Coral Copong. Through the trail to the peak height of the reef enjoying the beautiful sunset. From this place there is an alternative trail to head back to the inn.

Ujung Kulon_Peninsula

A.Cidaon

- a) Pasture Cidaon is quite extensive grazing fields
- b) Rain Forest

B. Cibom .

a) Cibom beach

There is a shelter that provides information about the region. The path to the screen has been provided along the Cape coastline toward the

b)Forest

Rain Forest shelters an abundance of wildlife, with high tree and bushes

c) Citerjun Teracces.

Located in the north-eastern peninsula of Ujung Kulon.

Citerjun terrace is formed by limestone and stalagmites as a result of water flow Citerjung. These conditions are the result of spectacular geological formations. According to the former sailors, this terrace has been destroyed by a tidal wave when Krakatoa erupted in 1883

(ii)Scenic Quality Analysis

Relative scenic quality analysis

Scenic quality in Ujung Kulon Peninsula shows in Cibom scenic quality reached 18 and Cidaon 11 while in Peucang Island scenic quality reached 12. This shows that the scenic quality of UjungKulon Peninsula much better than Peucang Island.

This is because in Ujung Kulon Peninsula, especially in Cibom have a source of water that is shoreline configuration element, reflect major features, islands, shoreline vegetation and rock forms, land forms 60% slope (ridges) and high degree of patterns in vegetation and large old growth timber, species diversity in plants, wilderness and grazed. There are user activity such as viewing tower and bull herders activities. There are also special consideration such as the historical landmarks in the form of the castle and its distinct visual quality view of the forest to the sea and wildlife observation. Free from pollutants and there have aesthetic elements such as Citerjun terrace is formed by limestone and stalagmites as a result of Citerjung water flow. These conditions are the result of spectacular geological formations. While in Cidaon although the characteristic form of the land were flat, but the other landscape characteristic were pasture. Cidaon is quite extensive grazing fields and rain forest and River East Ciujungkulon contribute to the scenic quality in Ujung Kulon Peninsula.

Scenic quality in Peucang reached number 12 achieved from source of scenic shoreline configuration elements namely water, reflect major feauters, islands, shoreline vegetation, white stad beaches and coral reef and blue waters. Although the majority landform is flat but Peucang has a high degree of patterns in vegetation and large old growth timber, species diversity in plants.

	Table 1, Scer	nic Quality				
No		Peucang	Ujung Kulon Peninsula			
	Variable	island	Cidaon	Cibom		
1	Water	3	2	3		
2	Land Form	2	1	3		
3	Vegetation	3	2	3		
4	Land Use	1	2	3		
5	User Activity	1	2	3		
6	Special Consideration *	2	2	3		
	a. This areas contain cultural and historical landmarks 3			V		
	b. This areas within, know for its distinct visual quality and Wildlife observation		v	v		
	c. Free from Blution and litter	v	v	v		
	d. There are other aesthetic elements that add to this resources	v		V		
	TOTAL Visual Quality	12	11	18		

(iii) Visual Sensivity

a.Visibility and Visual Accessbility

Define view point (resort, beach, forest, pasture grazing field, tower and Citerjun Terrace) and route (tracking) are mapped and categories in four level of visual accessibility.

Level 1 : High - most frequently used or most popular route or places

- Level 2 : Moderate moderately used routes
- Level 3 : Low Infrequently used routes

Level 4 : Very low Accessibility

View distance (foreground, middle ground and background) are mapped to show various combination of accessibility and distance zone, which indicate landscape sensivity ie the relative visual significance to viewers of each part of the seen landscape. Foreground scenes reveal texture and detail. The middle ground scenes colour and contrast become dominant. At the background, scenes profiles are the major factors in view perception.

The result shown (Table 1) ,Peucang Island level 1 this indicated this area most frequently used and most popular places and route ,while Ujung kulon Peninsula level 2 this indicated this area moderatly used routes.

			Table I	: visual F	Accessibil	ity							
View Distance		Scenic Accessbility High (1) Modate (2) Low (3) very low)											
		Peucang Island			Kulon Penir	nsula							
				Cidaon	Cidaon Cibo		m						
	AP1	AP2	AP3	AD1	AD2	AB1	AB2	AB3	AB4				
Foreground	1	1	1	1	1	1	1	2	1				
Middleground	1	2	2	2	2	2	2	2	1				
Background	1	2	3	3	3	2	3	3	1				
Avarge	1		2		2								

Note: Scenic accessibility

Peucang Island. : AP1 = Resort, AP2.= Beach, AP3=ForestCidaon: AD1= Pasture grazing field, AD2= ForestCibom:AB1= Beach, AB2= forest, AB3=Tower, AB4= Citerjun Terrace

b. Visual Absorption Capability

Visual Absorption Capability (VAC) indicates the capacity of the landscape to absorb visual changes without significant alteration of its landscape character and scenic quality.

The result shown (Table 2) Zone Cibom at Ujung Kulon Peninsula area have highest sensivity to landscape change, while the Cidaon are have lowest sensivity, and Peucang Island are have intermiditly sensivity to landscape change. These result indicated Cibom area have critical scenic value

Advances in Green Science, Engineering and Built Environment

					8		V	iew point	2			
	Factor	Variabel	Rating	Peucan	g Island		Ujung Kulon Peninsula					
							Cidaon	Cidaon		Cibom		
				VP1	VP2	VP3	VD1	VD2	VB1	VB2	VB3	VB4
	Foreground	$0 - \frac{1}{4}$ mil	1		1	1		1	1	1		1
Observer		1/4 - 1/2 mil	2	2						2		
Distance	Middleground	1/2 - 1 mil	3		3	3	3	3	3	3	3	3
		1-2 mil	4	4			4			4	1	
	Background	>2 mil	5		5	1		1	5			
		Feature	1	1		1				1		1
Landscape	Description	Focal	2		2	2	2		2	2		2
		Enclosed	3	3			3	3		3	3	
		panoramic	4		4		1		4	4	1	
		Others	5			1						
	Very Steep	> 45%	1							1		
Slope	Steep	30-45%	2			1					2	1
<u></u>	Moderate	20-30%	3							3		
	Gentle	10-20%	4			4	4	4	4	4		4
	Very gentle	0-10%	5	5	5							
Lowest ratio	ng in the key view po	int		15	20	11	16	11	19	28	8	11
					15.3	59.	13	3.5		1	6.5	
									1	5		
Visual Absorption capability 5-13 Low (L) 14-16Iintermidiate (I)			I	H	I	I	L	I	H	L	I	
				Ι		L			Н			
17-23 High (H)				1					- 1			

Table 2 : Visual Absorption Capability

Note: View point

Peucang Island. : VP1 = Resort, VP2.= Beach, VP3=ForestCidaon: VD1= Pasture grazing field, VD2= ForestCibom:VB1= Beach, VB2= forest, VB3=Tower, VB4= Citerjun Terrace

(iv)Visual Management Strategy

a. Visual Management Zone

The four set of mapped visual lanscape evaluation from lanscape unit, relative quality analysis, visibility and visual accessibility and visual absorption are then combined by matrix to difine three Visual resources Management Zones [Zone Peucang Island (A), Ujung Kulon Peninsula: Cidaon (B) and Cibom (C)].

Applied Mechanics and Materials Vol. 747

Table 4 : Visual Resources Management Zone

View Distance				Scen High (1) Modat	ic accessbility e (2) Low (3) ve	ery low)					
	Pe	ucang Island	(A)	Ujung Kulon Peninsula							
		15		Cidaon (B)	~	Cibom	(0	2)			
	AP1	AP2	AP3	AD1	AD2	AB1	AB2	AB3	AB4		
Foreground	1	1	1	1	1	1	1	2	1		
Middleground	1	2	2	2	2	2	2	2	1		
Background	1	2	3	3	3	2	3	3	1		
	+	+	+	+	+	+	+	+	+		
Visual Absorption Capacity	Intermediate VAC	High VAC	lintermediate VAC	Iintermediate VAC	Low VAC	Intermediate VAC	High VAC	Low VAC	Low VAC		
	Intermediate VAC			Low Intermediate VAC VAC							
						Intermediate VAC					
Very High Scanic Quality								C. 18			
High Scanic Quality		A. 12					1	1	1		
moderate Scanic Quality					B. 11						
Moderate /low scenic quality											

Zone A Peucang Island areas have high visual quality coinciding with higher tolerance of to landscape change, recommended for management are graded accordingly

Zone B Cidaon areas have moderated scenic quality coinciding with highest sensivity to landscape change ,recommended for management therefore of critical to the areas ; recommended for protection of their visual values.

Zone Cibom areas have higest visual quality coinciding with higher tolerance of to landscape change, recommended for management are graded accordingly

b. Visual Management Zone

Visigil Management zone was conducted to determine management class of scenic quality based on Visual Resources Assessment Procedure (VRP) (Richard C.Smardon, James F, Palmer. Alfred Knof and Kate Grinde ,1988), 10 Total Visual Ouality

Management Class

	runugement crubb	Total Albani Ann
1.	Preservation	> 17
2.	Retention	14 - 16
3.	Partial Retention	11 - 13
4.	Modification	8 - 10
5.	Rehabilitation	< 7

The result shown (see Table 3).

Zone Cibom at Ujung Kulon Peninsula area have highest visual quality coinciding higher tolerance of to landscape change, recommended for management are graded accordingly.

Because this area entered in the class first(1) category including preservation in the management ass. It means the protection needs in this area because of its high scenic quality and the Ujung Kulon Peninsula area is the habitat of the Javan rhino (Rhinoceros sondaicus). The management of natural attractions for this location is very limited in order not to disturb the Javan rhino habitat.

Zone Cidaon and Peucang Island are moderate visual quality coinciding with moderate sensivity to landscape change; recomended for partial retention. Because this area entered in the third class3 catergory including partial retention in the management class. This region has scenic quality in particular places.

Advances in Green Science, Engineering and Built Environment

No	Zone		Visual Quality	Class	
1	Peucang Island		15.3	2	
2	Ujung Kulon	Cidaon	13.5	2	
	Peninsula	Cibom	16.5	1	

Figure 2, Management Class Ujung Kulon National Park.

c. Visual Resources Management Strategies

The mapped Visual Resources Management Zones are the basis for series of management objectives, strategy

No	Zone		Scenic Management Objective	Strategy
1	Peucang Island		Shore lines: To protect the dominance of the natural character of shorelines in management: Zone Peucang island by insuring visual impacts of development are minimal Forest : To protect the dominance of the secondary rain forest in management:	 -Design minimal 50 meter buffer zone -Protect in the existing 90% of vegetation - Restrict development in the this area in zone Peucang to the following criteria: - Small jetty protect in the existing 90% of vegetation especially big tree
2	Ujung Kulon Peninsula	Cidaun	extensive grazing: To protect the dominance of the natural character of grazing in management	Protect in the existing 100% grazing
		Cibom	Shore lines: To protect the dominance of the natural character of shorelines in management:	Design minimal 50 meter buffer zone -Protect in the existing 90% of vegetation and rocky -Restrict development in the shoreline in zone Ujung Kulon Peninsula to the following criteria :- small jeti
			To protect the dominance of the secondary rain forest in management.	protect in the existing 90% of vegetation especially big tree
			Hillside : To protect dominance natural character in hill site areas in management.	Hillside : Restrict development in the hill side

Applied Mechanics and Materials Vol. 747

	Citerjun terrace : To protect the dominance of the citerjun terrace in management.	area in zone Ujung Kulon Peninsula to the following criteria : -Small scale -Protect in the existing tree, 90% of the hill side vegetation . Protect 100% of the limestone and stalagmites
--	--	--

Summary

1. Landscape Description and Clasification

A. Lanscape Structure.

a. Island of Peucang lies in clear blue waters ,flat landscape. white sand beaches, coral reefs, secondary forest, graze , coral copong and lodge.

- b. Ujung Kulon Peninsula :
- 1) Cidaon : Undulating land , flat landscape. Pasture Cidaon is quite extensive grazing fields and rain forest. River East Ciujungkulon and the walkways Cibunar, open pastures and sloping rocky.
- 2) Cibom : Rolling Hill , Undulating Hill , white sand beaches, coral reefs and rocky peninsula and cape coastline ,shelter, mercusuar and Dutch colonial historical sites and Citerjun terrace is formed by limestone and stalagmites.
- B. Views and Viewpoint

Particular places and routes that offer panoramic or distinctive view from island and sea and viewsheds defined, together with the landscape setting of tourist resorts and recreational areas.

C. Landscape Unit

- a. Peucang Island : a)Resort areas,b)Peucang island's beach, c)Forest, d) Coral Copong.
- b. Ujung Kulon_Peninsula
 - 1) Cidaon : Pasture Cidaon is quite extensive grazing fields, Secondary Rain Forest
 - 2) Cibom : Cibom beach, Rain Forest , Citerjun Teracces.

2. Relative scenic quality

Scenic quality of UjungKulon Peninsula much better than Peucang Island.

3. Visual Management Strategy

A. Visual management Zone

a. Cibom at Ujung Kulon Peninsula entered in the class 1 category including preservation in the management class .

b.Cidaon and Peucang Island entered in the third class catergory including partial retention in the management class.

B. Visual Resources Management Strategies

a. Scenic management objective majority to protect the resources

b. Scenic management strategy following the creteria .

Advances in Green Science, Engineering and Built Environment

References

- [1] Arthur, LM 1977. Predicting scenic beauty of forest environments. Forest Science.
- [2] C.Alan F, Associates Chenoweth, B.Catherine LA, Visual Landscape Evaluation and Management of Scenic Tourist Coastlines: The Whitsunday Region, North Queensland Conference paper 32nd IFLA World Congress, Thailand, oktober (1995) 321-329
- [3] C. Larry W.1996 . Environmental Impact Assessment .Mc graw Hill.Inc
- [4] Daniel, T.C and Vinning, J.(1983) Methodological Issue in the assessment of Landscape quality. In *Behavior and the Natural Environment* (eds Altman, I.and Wohwill, J) chapter 2, 39-83, Plenum Press.
- [5] Hull,R.B and Revel,G.R.B.(1989) Issues in sampling landscapes for visual quality assessments. Landscape and urban Planning, 17,323-330.
- [6] Kaplan R. (1977) Preferences and Everyday nature : method and application in Stokols D (ed).perspectives on Environment and Behavior New York:Plenum.
- [7] Kaplan, S et al.(1997) The Experience of nature. Cambridge University Press
- [8] Information on http://www.ibs.gov.my
- [9] wwwujung kulon Org
- [10] http://whc.unesco.org/en/list/608
- [11] http://www.peucangisland.com/id/ujung-kulon-national-park.htm

Advances in Green Science, Engineering and Built Environment

10.4028/www.scientific.net/AMM.747

Visual Landscape Management of Scenic Peucang Island and Ujung Kulon Peninsula in Ujung Kulon National Park, Indonesia

10.4028/www.scientific.net/AMM.747.109

NIM_Peuncang

ORIGINALITY REPORT 25% 5% % SIMILARITY INDEX **INTERNET SOURCES** PUBLICATIONS STUDENT PAPERS **PRIMARY SOURCES** forum.indahnesia.com 5% Internet Source www.trijurnal.lemlit.trisakti.ac.id 4% Internet Source 3% www.dtic.mil 3 Internet Source bisnisantaiku.blogspot.com 3% 4 Internet Source repository.uin-malang.ac.id 3% 5 Internet Source 2% whc.unesco.org 6 Internet Source javatour-visitindonesian.blogspot.com **1**% 7 Internet Source www.buttecounty.net 1% 8 Internet Source thebangkong.wordpress.com % 9 Internet Source

10	ejournal.unib.ac.id	1%
11	erepo.unud.ac.id	1 %
12	www.indonesiatourism.com	1 %
13	www.nusapedia.com	1%

Exclude quotes	On	Exclude matches	< 25 words
Exclude bibliography	On		

Awarded to:

Ir. Nur Intan Mangunsong, MT

We express our sincerest gratitude for your contribution as

Presenter

during International Conference on Science, Engineering, and Built Environment (ICSEBS 2014)

"Redefining Your 'Green' Approaches in Research, Design and Project"

Held on 24-27th November 2014 at Sanur Paradise Hotel, Bali, Indonesia.

Bali, 27 h November 2014

Chairperson Organizing Committee

Assoc. Prof. Dr. Nangkula Utaberta, IAI.

International Conference on Science, Engineering, and Built Environment (ICSEBS 2014)