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We would like to help authors promote their research and make it more visible online and in social
media. Thus, authors are invited to prepare and submit:

- Research Highlights - the key findings of this research as a collection of bullet points at the top of
your online article.

- Graphical Abstract - a visual summary of an article’s main findings.
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Proofreading Request

Your paper was formatted according journal requirements. Please check the PDF Draft and if necessary
upload correction list.

Proofread decision Proof file is CORRECT, no revisions required

Cover letter Dear Editor

Thank you for your information regarding our paper. The proof file is CORRECT; no revisions are
required. Thank you for your kind and help.

Best Regards,

Submission accepted

Accept to Mathematical Models in Engineering

Revision Request
Reviewer reports are attached.

A minor revision is required before reconsideration.

The manuscript is really novel and interesting. It deserves to be published in the Journal after a minor
revision.
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The comparison between the computational results and the photo of a real tornado (Fig. 4) is unclear.
The authors should elaborate to explain how the comparison could be made.

Another important issue. The recent movement against the paper mils requires to show that the

authors are not newcomers to this field of research. In other words, please add at least one citation to

your own work. In other words, at least one self-citation to your own work is needed.

Also, please note that it is essentially important to highlight the novelty of your study in order to
attract the attention and citations from the International Engineering Community.

Please do not forget to add a separate amendments file with a careful description of all changes you

had made according to reviewer'(s) comments.
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Author's statement

MME 24041 - Revision required Mathematical Models in Engineering
Tensor analysis of tornadoes: a new analytical and numerical model
Valentinus galih Vidia Putra; Mustamina Maulani;

Dear Editor,

We thank the reviewer/(s) for their comprehensive comments which helped us a lot in the correction of
the manuscript. The authors have thoroughly reviewed the comments, and the answers to each point
are attached. Thank you for your kind.

Best regards,

Dear Editor

We are writing to submit our research paper entitled "Tensor analysis of tornadoes: a new analytical
and numerical model" for consideration and possible publication in Mathematical Models in
Engineering journal. This research introduces a groundbreaking mathematical formulation of
tornadoes, utilizing the principles of tensor analysis and simulation within a non-inertial dynamics
framework, spanning both two and three dimensions. The model captures the spherical upward
movement of air in tornadoes, omitting vertical convection considerations. Key factors, such as
geocentric latitude, the Coriolis effect, enhanced upper-atmosphere airspeed, and heightened air
pressure, are integral to the tornado formation process. To ascertain the three-dimensional location of
tornadoes, along with mathematical models depicting airflow motion and Earth's rotation in 3D space,
we conducted numerical computations. Employing computer software for motion dynamics and
numerical analysis, our study successfully illustrated tornado patterns, providing insights into their
airflow characteristics. Our research represents an innovative approach to tornado simulation, merging
tensor analysis and computational modeling alongside 2D and 3D simulations. The outcomes of this
study offer valuable insights for practitioners and scientific experts, providing a comprehensive
understanding of hurricanes through advanced models and simulations. We believe that this research
aligns with the objectives and scope of Mathematical Models in Engineering, contributing novel
insights to the field. | trust that the innovative methodology and findings presented in this paper will
be of interest to the journal's readership. Thank you for considering our submission. | look forward to
the opportunity to contribute to the advancement of research within Mathematical Models in
Engineering.

Sincerely,

Manuscript is the Contributor's original work.

The paper is submitted only to MATHEMATICAL MODELS IN ENGINEERING.

This paper has not been published elsewhere.

This paper does not infringe on any copyright or other rights in any other work.

All necessary reproduction permissions, licenses, and clearances have been obtained.

The Authors will pay the article processing charges (APC).

APC is non-refundable if above statements are violated.

Adhere to Editorial Policies of the Journal which cover all aspects and roles of authors before, during
and after the submission, peer review, revision, acceptance, publication and post-publication processes
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Response to Reviewer comments

REVIEW-1
MME 24041 - Revision required Mathematical Models in Engineering
Tensor analysis of tornadoes: a new analytical and numerical model
Valentinus galih Vidia Putra; Mustamina Maulani;

Dear Editor,

We thank the reviewer/(s) for their comprehensive comments which helped us a lot in the correction of the
manuscript. The authors have thoroughly reviewed the comments and the answers to each point are given below
with relevant details.

A minor revision is required before reconsideration. The manuscript is novel and interesting. It deserves to be
published in the Journal after a minor revision.

#1The comparison between the computational results and the photo of a real tornado (Fig. 4) is unclear. The authors
should elaborate to explain how the comparison could be made.

Answer:

We appreciate your constructive feedback on our paper. In response to your comment, we have added: Based on
Fig.3 and Fig.4, we found a strong correlation between tornado height, air density and temperature, geocentric
latitude, and initial speed, as shown in Eq. (49). As a result of our investigation and model results, we find that
tornadoes have a low-pressure area with an increasing-pressure core. Research shows that this model can describe
the spiraling upward motion of air within a tornado's path without including vertical convection In addition to high
airspeeds in the upper atmosphere, geocentric latitude, and the Coriolis effect, higher atmospheric pressure also
contributes to tornadoes. According to some researchers [2,4,10,11,14], tornadoes in the Northern Hemisphere move
clockwise, which is consistent with our model at 45 degrees and 15 degrees. However, in the Southern Hemisphere,
tornadoes normally move in the opposite direction or counterclockwise. As a result of the rotation of the Earth, the
Coriolis effect deflects wind directions. Thus, the direction of a tornado's motion is determined by which hemisphere
it occurs in.

#2 Another important issue. The recent movement against the paper mils requires to show that the authors are not
newcomers to this field of research. In other words, please add at least one citation to your own work. In other
words, at least one self-citation to your own work is needed.

Answer:

We appreciate your constructive feedback on our paper. In response to your comment, we have added in the
introduction: The scientific application of this finding is that researchers at the Meteorology, Climatology, and
Geophysics Agency will be able to analyze a tornado and geophysical phenomena more readily with simulations and
models [5, 23].

#3 Also, please note that it is essentially important to highlight the novelty of your study to attract attention and
citations from the International Engineering Community.

Answer:

We appreciate your constructive feedback on our paper. In response to your comment, we have added in the
abstract: The novelty of this study is that this model can be used to explain tornado patterns. In our research, we
combine tensor analysis, computational modeling, as well as 2D and 3D simulations for simulating tornadoes for the
first time
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Tensor analysis of tornadoes: a new analytical and numerical model

Mustamina Maulani', Valentinus Galih Vidia Putra 2

Department of Petroleum Engineering, Universitas Trisakti, Jakarta, Indonesia

2 Basic and Applied Science Research Group in Theoretical and Plasma Physics, Department of Textile Engineering,
Politeknik STTT Bandung, Bandung, Indonesia

*2Corresponding author
Emil:'mustamina@trisakti.ac.id, 2valentinus@kemenperin.go.id

Abstract. This research proposes a new mathematical formulation of tornadoes based on the theory of tensor
analysis and simulation in a non-inertial dynamics framework, both in two and three dimensions. This model may
show the spherical upward movement of air in a tornado without taking into account vertical convection. A tornado
requires several elements, including geocentric latitude, the Coriolis effect, increased airspeed in the upper
atmosphere, and increased air pressure. Computing the three-dimensional location of the tornado or hurricane, as
well as the mathematical models of airflow motion and the Earth's rotation in three-dimensional (3D) space, can
determine a tornado's airflow characteristics. To show tornado patterns, we employed computer software that
computed motion dynamics and did numerical komputationj. The study revealed that this model can be used to
explain tornado patterns. In our research, we combine tensor analysis, computational modeling, as well as 2D and
3D simulations for simulating tornadoes. [The practitioners and scientific experts may apply the study's findings to

better understand hurricanes using models and simulations.

Keywords: Tornado, Coriolis effect, numerical model, computational dynamics

1. Introduction

The Indonesian government is currently focusing on phenomena such as heat waves that have received attention, as
well as tornadoes that have devastated various regions of Indonesia. A tornado hit Lebak Banten, Indonesia, on May
10, 2022. This incident caused damage to about 80 houses and schools. Tornadoes wreaked devastation in several
districts of Lebak, Banten, resulting in losses of thousands of millions of rupiah. A tornado had also ripped across
the Subang area the day before. The Regional Disaster Management Agency (BPBD) of Subang Regency claimed
21 locations were affected by the hurricane, with Cibogo and Subang Kota Districts suffering the most damage [1].
Tornado parameters must be studied due to their catastrophic impact. In recent years, physicists have employed
computational physics and fluid mechanics to examine and model different natural processes, as well as material
science [2]-[8]. Tornado investigation is an intriguing topic in Earth's atmosphere and geophysical sciences.
Tornadoes are hazardous natural disasters that strike on a small scale and last only a few minutes. Actual tornado
observations are difficult to collect [9]. Despite improvements in severe storm mathematical approaches, replicating
and predicting small-scale tornadoes will remain difficult [2]. As a result, a computerized model has arisen as a way
of studying and modeling tornadoes. Several researchers have been performed to simulate the tornado mechanism
[2]-[4]. Scientists first used computational modeling to simulate tornadoes [10, 11]. Computation physics modeling,
including artificial intelligence and numerical modeling, has various advantages over other forms of research
approaches, including lower risk [5]-[7], lower cost [12, 13], and the need for fewer experimental data [14]-[18].
Computational dynamics enables researchers to further accurately compute various tornado patterns, wind direction
and speed, latitude, the impacts of Earth's rotation as well as Coriolis forces, and wind pressure to completely
comprehend and model tornado formation. Tornadoes & wind patterns are examples of the Coriolis effect. A
tornado is distinguished by a low-pressure region with rising pressure at its center. Tornadoes, which divert airflow
from all directions, need the Coriolis force to circulate. As a result, hurricanes hardly form in tropical areas and
never cross the Equator [19]-[21]. This study gives a simple 2D and 3D model for generating a tornado-like vortex
utilizing an advanced model and computation using tensor analysis reported by various researchers [20, 22]. IThe
scientific application of this research is that researchers and practitioners will be able to more easily study hurricanes
using simulation and models

2. Research methods
2.1. Tornado mathematical model

Comment [N1]: We added: The results of 2-D
modeling and simulation indicated that the greater
the initial tornado angular speed, the larger the
tornado area. Three-dimensional modeling and
simulation also show that tornadoes are more
powerful at higher geocentric latitude angles.

Comment [N2]: Also, please note that it is
essentially important to highlight the novelty of your
study in order to attract the attention and citations
from the International Engineering Community:

Thanks for the comments. explanations for the
review have been added:

The novelty of this study is that this model can be
used to explain tornado patterns. In our research, we
combine tensor analysis, computational modeling, as
well as 2D and 3D simulations for simulating
tornadoes for the first time

Comment [N3]: The scientific application of this
finding is that researchers at the Meteorology,
Climatology, and Geophysics Agency will be able to
analyze a tornado and geophysical phenomena more
readily with simulations and models

Comment [N4]:

please add at least one citation to your own work. In
other words, at least one self-citation to your own
work is needed.

Thanks for the comments. explanations for the
review have been added:

The scientific application of this finding is that
researchers at the Meteorology, Climatology, and
Geophysics Agency will be able to analyze a tornado
and geophysical phenomena more readily with
simulations and models [5, 23]
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The foundation of our work is the theoretical framework of variables used to describe motion. [Eq. expresses the
acceleration in a fixed system in terms of location, speed, and acceleration in the rotating system in Eq. (1) |
a=#+oXr+20 X" +wxXwXr 1)

Where w is the angular velocity,  is the time derivative of w. |I nl the case where the primed system undergoes both
translation and rotation, we obtain general equations for transforming from a fixed to a moving and rotating system,
as shown in Eq.(2). This comprises the generic equations for transforming a stationary system into a moving and
rotating one.

a=7+OoX7r +20X7F +toXwoXr +A 2)

After we have the motion equation in moving coordinates, we can write it as shown in Egs. (3) to (6)

F=ma=m@#+dXr" +20X7 +wXwxXr +A4) 3)
F-m(oXr +20 X" +wXwxr +A)=mi' @
F—(moXr' +2mw X7 +mw X (0 X1') + mA) = mi¥' ®)
F — (Fgy + Foor + Feene + Fp) = mi! (6)

Where F is the physical force, F,,,; = mw x r' is the Euler force, w is the angular velocity, E.,,. = 2mw X 7'is the
Coriolis force, F,e,; = mw X (w X r") denotes the centrifugal force, and F, = mA denotes the force due to the
translation of the coordinate system. The equation of motion in a moving system can be written as Eq. (7)

Z Foy = mi' = pV# (7.2)

> f =i (7.b)

Where f is the total force per unit volume, p is the density of the particle with a certain mass, and #' is the
acceleration of the particle with a certain mass. We can extend the model by using Cauchy's equation in Eq.(8) and
the generalized equation of motion in 3D movement proposed by [22] as in Egs. (9) and (10).

V-0 + fior = pi”' (8)
V'a+fg_(fEul+fcor+fcent+ft):p()‘é,"'j}”"i’) 9
V'o'+fg_fEul_fcor_fcent_ft:p(£,+y’+zl) (10)

where f;,, is the total force per unit volume, f; is the gravitational attraction force, p is the density of the particle
with a certain mass, and o is the stress tensor. Consider the Euler force fg,; = 0, the force due to the translation of
the coordinate system f; = 0, and since the centrifugal force is so small compared to the other terms, we can neglect
it. The equation of motion then becomes

(6axx 00y, 6azx)i, <6axy day, Bozy> . <60xz doy, aazz)k'—pgk’ (12)

ox dy 0z ax dy 0z 0x dy 0z
= 2p(wd' + wyj' + w, k) X (X + ' + 2 K) = p(# + 5§ + )

Foxd + foyd + fork' — pgk’ — 2p(wyl’ + w,j' + w, k') x ('8 +y'j' + 2'k') = p(& + 7' + 7" (12)
. . . . Qoxy , O0yx | 00\ .+ doxy | 9oyy | 09zy\ .
To simplify the calculation of the model, it can be assumed that ( praly P + )1 +( praln P +, )] +
(222 E’;’—; + 222V K = [l + fof + fook and wyd’ + @y’ + w,k = (OF + w cosAj' + w sindk’), yield
fox + foyd + fozk' — pgk’ = p(#) + 2p(w,i’ + wyj' + w,k') X (X'i+y'j + 2'k) (13)
Foxi' + foyd '+ fozk' — pgk’ = p(i' + 2(0i' + w cosAj’ + w sinAk’) x (x'i + y'j + 2'k)) (14)

We can write g = g — w?RcosA because of the effect of Earth's rotation. Where g denotes the actual gravitation
acceleration, and w?RcosA denotes the centripetal acceleration for the Earth's radius, R, and geocentric latitude, A.

Comment [N5]: We have added it:

Eq. (1) expresses the acceleration in a fixed system
in terms of location, speed, and acceleration in the
rotating system

Comment [N6]: We have added it:

and r',7' and #'are the position in the unit (m),
velocity in the unit (m/s), and acceleration in the unit
(m/s?), respectively.




In this study, we choose the coordinate axis 0'x"y'z’ such that the z' is vertical, the x' axis to the east, and the y’ axis
points north. The coordinate axes for analyzing tornado motion can be shown in Fig. 1.

¢ " (Vertcal)

ma’ Reosi

Fig. 1. Coordinate axes for analyzing tornado motion.

We also use w, = 0, w, = w cosA, and w, = w sind. Eq. (14) can be solved computationally, and we get Egs. (15)
and (16)
f;;xi + f;zyj' + f;;zk - pgk,
= pi' + 2p(Z'w cosA — y'w sind)i' + 2p(x'w sind)j' — 2p(&'w cosA)k’ (15)

00y 00y, 00, ., 00y, 00y, 00, 0oy, 00y, 00,
= i —W ) kK — pgk'
<ax+ay+az ax oy oz ax "oy oz Py
= pi' + 2p(Z'w cosA — y'w sin)i’ + 2p(x'w sind)j' — 2p(x'w cosA)k’ (16)
We can solve Eq. (16); hence we find Egs. (17) to (19)
1/0 do. | 17
X = ;( ;;X a;x + g;;:) —2w(Z' cosA —y' sink) )
., 1(doy, 090, 0doy, L (18)
y' = ;( o 3y Fral i 2x'w sind
., 1(do,, 00, 00, ., (129)
_<l_7< o + 3y + 3z ) "9 + 2x%'w cosA
Assuming that % = g%+ %% =0,, and Oy, = Oy = Oy, = 0y, = 0y, = 0, hence we get e,, =
%, eyy = —v%, and ey, = —v%, exy = ex; = ey, = 0, and we find Egs. (20) to (22)
.y 1 ao-xx aayx aUZX .y L .y Ly (20)
X = ;( I 3y Fral e 2w(Z' cosA —y' sind) = —2w(Z' cosA —y' sinl)
1/do do, do, 21
y = ;( a;y a;y + 6?’) —2x'w sind = —2x'w sind (21)
(22)

i 1(00,, aa'yz 00, .1 Oo 1
Z —(;( Ep + By + 3z ) "9 +2chosl—?—g+2chosl

We can integrate once concerning t to get the component of velocity, and we find, as shown in Eqgs (23) to (25)
x' =%, = 2w(z' cosA —y' sind) (23)
¥ =9y, — 2x'w sind (24)



o
7=z + (?o - g) t+ 2x'w cosA (25)

Then substitute z' and ' into Eq. (20), we find Egs. (26) and (27)

X' = —2w(Z' cosA —y' sink)
_ .1, (% , - P . (26)
=-2w||z, + e g|t+2x'w cosA| cosA — [y," — 2x'w sind] sind
o,
X =—-2w ([z‘o' + (Fa - g) +2x'w cosl] cosA — [y, — 2x'w sink] sinﬂ)
= —2wZ,'cosA — 2w (% - g) tcosd + 2wy, sind =
o,
=2w (g - ?0) tcosA — 2w(Z, cosA — y,'sin) @n
We integrate Eq.(27) again to get x’, as shown in Eq. (28) and Eq.(29)
o
J- dx' = J- [Zw (g - ;0) tcosA — 2w(Z, cosA — y,'sinA) | dt (28)
o
P =w (g - ?0) t?cosA — 2wt(Z,' cosA — y,'sind) + x,’ (29)
and finally, we find x 'by integrating Eq. (29)
olo-2)s
x'= fpcosl — wt?(Z,' cosA — y,'sind) + x,'t + x,’ (30)
Then substitute Eq.(30) into Egs. (24) and (25), we find Egs. (31) and (32)
wgt?
Yy =y, —2x'wsinl =y, =2 ‘g cosA — wt?(Z, cosA — y,'sind) + x,'t + x0’> w sind
(1)

=y, — 2(xX, tw sind + x,'w sind)

’

Z =7, + (2 - g) t+ 2x'w cosA
’ =z‘0’+(ﬁ—g)t
p
w(o-2)¢ T
fmsl — wt?(Z, cosA — y,'sind) + X,'t | w cosA 32)
As a result of integrating’ Ezqs (31) and (32), the positions, y*' and z', are given by

+2

X, t
y =y,'t—2 DTa) sind + x,"tw sind | +y, = y) + ¥,'t — %, t?w sind — 2x,tw sind 33)
~ y, + Y, t — 2x,tw sind
1 /o, 1o,
2" =Z,/t + 2, + 0 cosAx, t? + E(f - g) t?=7,t+ <wzro’cosﬂ + E(;O - g)) t? + 2z, (34)

According to some scientists [19, 20], a tornado is a dangerous natural event that occurs on an insignificant scale
and persists for only a few minutes. Assuming that y, + y,'t = 1), x, = ¥,t = rjwt, and X, =y, = Z, = 1jw, 7, is
so small at a very short time |yield { Comment [N7]: We changed it by: , we get Eqs. J

3

wgt , . wgtd , (35) and (36)
'= 3 cosA — wt?(Z, cosA — y,'sind) + x,'t = cosA — wt?(Z, cosA — y,'sind) + rywt
= T 0t (35)
’ ’ 7 : ! . ((‘Jt)z ’
y' =1 = 2rjw*t? sind = 15(1 — 2sindw?t?) =r (1 )= cos(wt) (36)
Which requires that 2sind = %or sind = ior A =~ 15° (that is near the Equator)’, yield‘ [Comment [N8]: We changed it by: , we find J
x' =1, wt = 1, sin (wt) 37)

(38)



y' =1, cos(wt)

’ S 1 2 1 % 2 ’ 2 1 % 2 (39)
z'=Zyt+ <w + Zcosl(;—g))t cosA+2z, =1, wt + (w + ZCosA(?_g)>t cosA
Hence we get Egs. (40) to (42)
x' =1, sin(wt) =7, cos (90° — wt) (40)
y' =1, cos(wt) =7, sin(90° — wt) (41)
o 2 % 2
z' =1, wt+ <a) + Scosd (; - g)) t° cosd (42)

Assuming that 7, = 7,"t, and ignoring the effects of gravitational force and humidity, and using the equation of
state, we obtain Egs. (43) to (45)

I 2 1 O_a 2 ﬂ.
zZ'=r,wt+|w +2cosﬂ ? t* cos (43)
1 14do,
"= ' ot 2 (_ ZZ) 2 v
Z =T, w +<w +2cosl » 0z t“ cos. (44)
1 a
7 =7t + | w? + ( Uzz) t2 cosd
2pcosA\ 0z (45)

0027

According to [21], in the condition of a static atmosphere, we can write = a“;—sT). The density p and pressure of

Z
the air g, in Eq (44) vary with height z. These changes can be calculated from the equation of state; we obtain
d(ozz) (1) + a(p)

dz P, TR~ (46)
d(o,) RpTa(T) 10(p)

dz _T 0z +RpT 0z (47)
1d(o,) 10(T) 19(p)

%, dz T oz poz (48)

where T is an absolute temperature, and R is the specific gas constant of dry air. In Eq. (48), the density p and T vary

with altitude, and assuming that %% = i (%), then we obtain the position z ', which indicates the height of
tornadoes as shown in Eq.(49)
1 (o, 19(T)  1d(p)
r_ et 2 . zzZ 2 2 _ _ 2
z'=Z,t+ (m cosA + 2 (_Oz )) t 1, wt + (w cosA + (T 57 + » oz t (49)

Where 2p = g, is related to tornado pressure.

2.2. Tornado simulation using numerical modeling
In the present research, we generated a model utilizing computational modeling that numerous researchers have
performed on tornado characteristics [20, 21, 10, 11]. In this research, Eqgs (40), (41), and (49) address the difficulty
of mathematically expressing positions in three dimensions when simulating tornado formation. Egs. (29), (31), and
(32) provide solutions to the difficulty of mathematically describing the velocity of the wind in growing tornadoes.
In our research, MATLAB code was created to model tornado motion in two-dimensional and three-dimensional
positions to explain tornado formation utilizing Egs. (40), (41), and (49).

3. Results and Discussions

Fig. 2 shows a two-dimensional model of a tornado with the velocity of the wind varying to the west and north
throughout the same period. Modeling results show that the greater the wind velocity to the north and west, the
larger the region of the tornado movement. The simulation findings reveal that the tornado's area of rotation is
affected by the velocity of the wind, tornado time, and earth rotational speed. The tornado may rotate and require
Coriolis force to move.
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Fig. 2. Two-dimensional simulation of a tornado with wind speed variations.

Fig. 3 depicts a three-dimensional simulation of a tornado with variations in wind speed to the west and north over
the same period and geocentric latitude variations of 45 degrees and 15 degrees. Fig. 4 depicts a tornado at Mount
Kencana, Banten, Indonesia, where a tornado appears when there is a change in temperature and high density, as

well as a high wind rotation. Comment [N10]: The comparison between the
computational results and the photo of a real
tam3se serelanan in P22 dmersnny space of the st c250 and for &5 dogee 1omad smaleton in theee Gmensond spzcewit V0 hower speed o e Sl cace snd 1520 | tornado (Fig. 4) is unclear. The authors should
- elaborate to explain how the comparison could be
made.

Answer: Thanks for the comments. explanations for
the review have been added

Based on Fig.3 and Fig.4, we found a strong
correlation between tornado height, air density and
temperature, geocentric latitude, and initial speed, as
shown in Eq. (49). As a result of our investigation
and model results, we find that tornadoes have a
low-pressure area with an increasing-pressure core.
Research shows that this model can describe the
spiraling upward motion of air within a tornado's
path without including vertical convection In
addition to high airspeeds in the upper atmosphere,
geocentric latitude, and the Coriolis effect, higher
ey predenx s mstenx atmospheric pressure also contributes to tornadoes.
According to some researchers [2,4,10,11,14],
tornadoes in the Northern Hemisphere move
clockwise, which is consistent with our model at 45
degrees and 15 degrees. However, in the Southern
Hemisphere, tornadoes normally move in the
opposite direction or counterclockwise. As a result
of the rotation of the Earth, the Coriolis effect
deflects wind directions. Thus, the direction of a
tornado's motion is determined by which hemisphere
it occurs in.

posilion-z
position-z

Fig. 3. Three-dimensional simulation of a tornado with wind speed and geocentric latitude variations.

Fig. 4. Tornado in Gunung kencana, Banten, Indonesia [1].



|In this research, Egs. (40), (41), and (49) address the difficulty of mathematically expressing places in three-
dimensional space when simulating tornado formation\. Egs. (29), (31), and (32) provide solutions to the difficulty of
mathematically describing wind velocity in forming tornadoes. The modeling results demonstrate that the higher the
geocentric latitude angle, the more likely a tornado will form. This research suggests that huge tornadoes can form
in places with high geocentric latitudes. In this study, we discovered the equation for the motion of a tornado in
three-dimensional coordinates, as shown in Egs. (17) through (19). Our findings revealed a strong link involving
tornado height and changes in air density and temperature, as well as geocentric latitude and beginning speed, as
given in Eq. (49). Our investigation and model results validate various academics' claims that a low-pressure area
with an increasing-pressure core characterizes tornadoes. Tornadoes require Coriolis force for movement. As a
result, storms are uncommon in tropical regions and rarely cross the Equator, and this study confirms prior
observations [14]-[18]. According to the research, this model could describe the spiraling upward motion of air in a
tornado's path without incorporating vertical convection. This modeling revealed no differences with experts'
opinions that certain variables can cause tornadoes. Tornadoes are created by various elements, including geocentric
latitude, the Coriolis effect, higher airspeed in the upper atmosphere, and higher atmospheric pressure [14-18]. The
airflow characteristics of a tornado can be calculated by calculating the 3-D and mathematical models of airflow
motion and the Earth's rotation in three-dimensional (3D) space. This research provides a basic 2D and 3D model to
generate a tornado-like vortex using simple modeling and calculation. This research’s scientific applicability is that
professionals and scientific experts can utilize the models to study tornadoes more easily.

Conclusions

This research reported a theoretical formulation of tornadoes in a non-inertial mechanics framework, utilizing fluid
mechanics and numerical simulation. This model depicted the spiraling upward motion of air in a tornado while
ignoring vertical convection. Several conditions were required for a tornado to occur, including geocentric latitude,
the Coriolis effect, increased airspeed in the upper atmosphere, and increased air pressure. We calculated the airflow
characteristics of a tornado and solved the three-dimensional position of the tornado or hurricane in three-
dimensional (3D) space, as well as the differential equations of airflow velocity and the Earth's rotation. To
demonstrate tornado patterns, motion dynamics modeling, and numerical computations were performed using
computer software. The study concluded that this model might explain tornado patterns. Using the modeling and
simulation data from this work, practitioners and scientists can gain a better understanding of hurricanes. To obtain
more precise models, we proposed that additional studies be performed utilizing various methodologies, such as
quantum neural networks / QNNs and artificial neural networks in future research.
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Abstract. This research proposes a new mathematical formulation of tornadoes based on the
theory of tensor analysis and simulation in a non-inertial dynamics framework, both in two and
three dimensions. This model may show the spherical upward movement of air in a tornado
without taking into account vertical convection. A tornado requires several elements, including
geocentric latitude, the Coriolis effect, increased airspeed in the upper atmosphere, and increased
air pressure. Computing the three-dimensional location of the tornado or hurricane, as well as the
mathematical models of airflow motion and the Earth's rotation in three-dimensional (3D) space,
can determine a tornado's airflow characteristics. To show tornado patterns, we employed
computer software that computed motion dynamics and did numerical computations. The results
of 2-D modeling and simulation indicated that the greater the initial tornado angular speed, the
larger the tornado area. Three-dimensional modeling and simulation also show that tornadoes are
more powerful at higher geocentric latitude angles. The novelty of this study is that this model can
be used to explain tornado patterns. In our research, we combine tensor analysis, computational
modeling, as well as 2D and 3D simulations for simulating tornadoes for the first time. The
scientific application of this finding is that researchers at the Meteorology, Climatology, and
Geophysics Agency will be able to analyze a tornado and geophysical phenomena more readily
with simulations and models.

Keywords: tornado, coriolis effect, numerical model, computational dynamics.
1. Introduction

The Indonesian government is currently focusing on phenomena such as heat waves that have
received attention, as well as tornadoes that have devastated various regions of Indonesia. A
tornado hit Lebak Banten, Indonesia, on May 10, 2022. This incident caused damage to about 80
houses and schools. Tornadoes wreaked devastation in several districts of Lebak, Banten, resulting
in losses of thousands of millions of rupiah. A tornado had also ripped across the Subang area the
day before. The Regional Disaster Management Agency (BPBD) of Subang Regency claimed 21
locations were affected by the hurricane, with Cibogo and Subang Kota Districts suffering the
most damage [1]. Tornado parameters must be studied due to their catastrophic impact. In recent
years, physicists have employed computational physics and fluid mechanics to examine and model
different natural processes, as well as material science [2-8]. Tornado investigation is an intriguing
topic in Earth’s atmosphere and geophysical sciences. Tornadoes are hazardous natural disasters
that strike on a small scale and last only a few minutes. Actual tornado observations are difficult
to collect [9]. Despite improvements in severe storm mathematical approaches, replicating and
predicting small-scale tornadoes will remain difficult [2]. As a result, a computerized model has
arisen as a way of studying and modeling tornadoes. Several researchers have been performed to
simulate the tornado mechanism [2-4]. Scientists first used computational modeling to simulate
tornadoes [10, 11]. Computation physics modeling, including artificial intelligence and numerical
modeling, has various advantages over other forms of research approaches, including lower risk
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[5-7], lower cost [12, 13], and the need for fewer experimental data [14-18]. Computational
dynamics enables researchers to further accurately compute various tornado patterns, wind
direction and speed, latitude, the impacts of Earth's rotation as well as Coriolis forces, and wind
pressure to completely comprehend and model tornado formation. Tornadoes & wind patterns are
examples of the Coriolis effect. A tornado is distinguished by a low-pressure region with rising
pressure at its center. Tornadoes, which divert airflow from all directions, need the Coriolis force
to circulate. As a result, hurricanes hardly form in tropical areas and never cross the Equator
[19-21]. This study gives a simple 2D and 3D model for generating a tornado-like vortex utilizing
an advanced model and computation using tensor analysis reported by various researchers
[20, 22]. The scientific application of this finding is that researchers at the Meteorology,
Climatology, and Geophysics Agency will be able to analyze a tornado and geophysical
phenomena more readily with simulations and models [5, 23].

2. Research methods
2.1. Tornado mathematical model

The foundation of our work is the theoretical framework of variables used to describe motion.
Eq. (1) expresses the acceleration in a fixed system in terms of location, speed, and acceleration
in the rotating system:

a="+oXr"+20X7"+wXwxr, (1)

where w is the angular velocity, @ is the time derivative of w and ', 7' and #' are the position in
the unit (m), velocity in the unit (m/s), and acceleration in the unit (m/s?), respectively. In the case
where the primed system undergoes both translation and rotation, we obtain general equations for
transforming from a fixed to a moving and rotating system, as shown in Eq. (2). This comprises
the generic equations for transforming a stationary system into a moving and rotating one:

a=7"+woXr +20 X1 +0Xwxr +A. )

After we have the motion equation in moving coordinates, we can write it as shown in Egs. (3)
to (6):

F=ma=m@# +oXr"+20w X' +wXwxr +A4A), 3)
F—m(oXr +20 X7 +wXwXr +A) =mi’, 4
F—(moXxr' +2mw X7 +mw X (0 Xr'") + mA) = mi', &)
F_(FEul+F‘cor+Fcent+Ft) = mi¥, (6)

where F is the physical force, F,,; = mw X r' is the Euler force, w is the angular velocity,
F.or = 2mw X 7' is the Coriolis force, Fypn; = mw X (w X 1) denotes the centrifugal force, and
F; = mA denotes the force due to the translation of the coordinate system. The equation of motion
in a moving system can be written as Eq. (7):

D R =mi = pVi', ) f=pi, (M)

where f is the total force per unit volume, p is the density of the particle with a certain mass, and
#' is the acceleration of the particle with a certain mass. We can extend the model by using
Cauchy's equation in Eq. (8) and the generalized equation of motion in 3D movement proposed
by [22] as in Egs. (9) and (10):

V o0+ ftot = p’;:’, (8)
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V'U+fg_(fEul+fcor+fcent+ft)zp(jé’+j}’+2’)' 9
v'0-+fg_fEul_fcor_fcent_ft=p(5é,+y,+2’)’ (10)

where f,, is the total force per unit volume, f; is the gravitational attraction force, p is the density
of the particle with a certain mass, and ¢ is the stress tensor. Consider the Euler force fz,; = 0,
the force due to the translation of the coordinate system f; = 0, and since the centrifugal force is
so small compared to the other terms, we can neglect it. The equation of motion then becomes:

<aaxx N 00y N 0%) . (aaxy N day, N 6azy> i+ (aaxz N doy, N 6azz> "

0x dy 0z 0x dy 0z 0x dy 0z (1D
—pgk' — 2p(w,i' + wyj' + w,K) x X'V + ¥ +2’K) =p(&' +5" + "),
ford' + foyi' + foK — pgK’ — 2p(w,d’ + wyj’ + w,k') x (&1 +y'j' + 2'K") (12)

=p(%' +§ +2").
To simplify the calculation of the model, it can be assumed that:

00y 00y 00, ., 00y, 00y, 00y ., 00y, 00y, 00, ,

(ax+6y+az v+ 6x+8y+az y+ 6x+6y+az k
= fpxi’ +fpyi’ +fpzk’J

wyi’ + wyj’ + wk' = (0i' + wcosj’ + wsindk”),

yield:

ford' + foyi' + fozK — pgK’ = p(i") + 2p(w,d’ + wyj’ + w,kK') x (#'i+7'j + 2'Kk), (13)
ford' + foyi + frK — pgk’ = p(¥ + 2(0i' + wcosdj’ + wsinAk’) x (x'i + y'j + 2'K)). (14)

We can write g = ¢ — w?RcosA because of the effect of Earth’s rotation. Where g denotes
the actual gravitation acceleration, and w?RcosA denotes the centripetal acceleration for the
Earth’s radius, R, and geocentric latitude, A. In this study, we choose the coordinate axis 0'x'y’z’
such that the z’ is vertical, the x' axis to the east, and the y’ axis points north. The coordinate axes

for analyzing tornado motion can be shown in Fig. 1.

z " (Verticaly
w sindi

mw®Reosi

Fig. 1. Coordinate axes for analyzing tornado motion.

We also use w, = 0, w, = wcosA, and w, = wsinA. Eq. (14) can be solved computationally,
and we get Egs. (15) and (16):
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fpxi’ + fpyi’ + fpzk, - pgk’

= pt' + 2p(2'wcosA — y' wsin)i’ + 2p(x' wsind)j’ — 2p(x’'wcos)K’, (15)
o i e i ) L b i L

— pgK’ = pt' + 2p(Z'wcosd — y' wsin)i’ + 2p(x'wsind)j’ — 2p(x'wcosA)k’.

We can solve Eq. (16); hence we find Egs. (17) to (19):
X' = %(ag;x + ag;x + ag?) — 2w(Z'cosA — y'sind), 17)
j' = %(a(;’;y 222 agj) 2% wsind, (18)

ey 1 aaxz aO-yz aazz o1
y/ —<;< o + 3y + Ep —g |+ 2x'wcosA. (19)

002z RpT 8(T) | RpT d(p) _

Assuming that 5 =7 o T > oz = 0o and 0y, = Oyy = Oy, = 0yy, = 0y, = 0, hence
a. a. a.
we gete,, = f, eyy = —V f, and ey, = —v f, exy = ex; = ey, = 0, and we find Egs. (20) to
(22):

1/0 do d
X' = —( g;x + a;x + g;) — 2w(Z'cosA — y'sind) = —2w(Z'cosd — y'sind), (20)

., 1 <6axy N day, N 9o,y

p
y =; 0x dy 0z

1 /0o do. do, o,
7' = (;( SR LA ZZ) — g> + 2x'wcosA = ;0 — g + 2x'wcosA. (22)

— 2x'wsind = —2x'wsinA, (21

Ox dy 0z

We can integrate once concerning t to get the component of velocity, and we find, as shown
in Egs. (23) to (25):

x' =x," — 2w(z'cosA — y'sind), (23)

y' =9, — 2x'wsinA, (24)
o

2=z, + (?O - g) t + 2x'wcosA. (25)

Then substitute z’ and y' into Eq. (20), we find Egs. (26) and (27):

X' = —2w(Z'cosA — y'sinA)

o,
=—2w ([Z},' + <Fo - g) t+ 2x’wcos/1] cosd — [y, — 2x’a)Sin/1]sin,1>, (26)
o,
=20 ([20' + (;o - g) + 2x’wcos/1] cosA — [y, — 2x'wsinA] sinA)
o,
= —2w7, cosd — 20 (FO - g) tcosd + 2wy, sind a7

=2w <g - %) tcosd — 2w(Z, cosd — y,'sinl).

We integrate Eq. (27) again to get X', as shown in Eq. (28) and Eq. (29):
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o,
f dx' = f [Zw (g - f) tcosA — 2w(Z, cosA — y,'sind) | dt, (28)
o,
¥ =w (g - f) t?cosd — 2wt(Z, cosA — y,'sind) + x,, (29)
and finally, we find x’ by integrating Eq. (29):

_T0) 3
, w(g p)t o . (30)
X =fcos/1—oot (Z, cosA — y,'sind) + x, 't + x,,.

Then substitute Eq.(30) into Eqgs. (24) and (25), we find Egs. (31) and (32):
y' =9, — 2x’wsind

wgt?
=y'o'—z< S cosA — wt? (7, cosA — Y, 'sind) +x'o’t+xo’> wsinl G

=y, — 2(%, twsind + x,' wsink)
. . O—O . ! O—O
z' =2z, +(?—g>t+2x’wcos/1= Z, + (F—g)t
w (g - %) &3 (32)

Pl cosh— wt?(Z, cosd — y,'sind) + x,'t | wcosA.

+2
3

As aresult of integrating Egs. (31) and (32), the positions, y' and z’, are given by:

X, t?
y =y,'t—2 ( 02 wsinl + xo’twsin/l) + v, = yo +y,'t — x,'t?wsinA — 2x) twsind

(33)
~ vy, + v, t — 2x,twsinl,
’ .7 s 1,2 1 O_O 2
z' =27, t+z,+ wcosAx, t +—(——g)t
2\p
L (34)
.7 O-O
=Zz,'t+ (a)zro’cosl + E(; - g)) t? + z,.

According to some scientists [19, 20], a tornado is a dangerous natural event that occurs on an
. . . . . . 7 o/ 7
insignificant scale and persists for only a few minutes. Assuming that y, + 3y, t =1,,
Xo = Xot =1ywt, and X, = Y, = Z, = r,w, 7, is so small at a very short time, we get Egs. (35)
and (36):

wgt?

x' = 3 cosA — wt?(Z,'cosA — y,'sind) + x,'t
wgt? (35)
= cosA — wt?(Z, cosd — y,'sind) + rjwt ~ 1y wt,
14 I 1,.242 o3 I . 24:2 (wt)z 7
y' =71 —2rjw?t? sind =1y (1 — 2sindw*t?) =r|1— 5 ) =T cos(wt). (36)

Which requires that 2sind = % or sind = % or A = 15° (that is near the Equator), we find:

x' =7 wt = 1, sin(wt), (37)
y' =1, cos(wt), (38)
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=7t +| 0w+ ! (&— ) t? cosd +z
° 2cosl g °

(39)

=7 wt+|w?+ ! (&— ) t2 cosA

° 2cosi g '

From Egs. (37) to (39), we get Egs. (40) to (42):

x' =1, sin(wt) = 1, cos(90° — wt), (40)
y' =1y cos(wt) =1, sin(90° — wt), (41)
zZ =1 wt+| w?+ ! (ﬁ — ) t2 cosA (42)

° 2cosl g '

Assuming that 7, = 7,"t, and ignoring the effects of gravitational force and humidity, and
using the equation of state, we obtain Egs. (43) to (45):

2 =1 ot + | w0+ — (G) £2 cosA, (43)
—h® @ T JcosA cos
1 /100,
"=1) wt t2 cosA, 44
Z=hd +< 2cosA (p 0z )) cos “@4)
1 do
'=7)"t? 2 ( ”) t? cosA. 45
z' =7t + (a) + 2pcosi\ 9z cos (45)
. a0'zz B(RPT)
According to [21], in the condition of a static atmosphere, we can write ——= = . The

0z 0z
density p and pressure of the air g,, in Eq (44) vary with height z. These changes can be

calculated from the equation of state; we obtain:

d(o,,) a(T) a(p)
= 46
dz R, 0z 0z’ (46)
d(o,;) _RpT a(T) 19(p)
= RpT — :
dz T 0z p 0z
1 d(o,,) _ 19T 10(p)
0,, dz T 0z p 9z’

(47)

(48)

where T is an absolute temperature, and R is the specific gas constant of dry air. In Eq. (48), the

1d 1 (d .
2z7) _ ( Jzz), then we obtain the
2z A4z 2p 0z

position z', which indicates the height of tornadoes as shown in Eq. (49):

1 /00, 19(T) 10(p)
— 2 — il 2
z—zot+<w cos/1+2p( ))t rowt+<a) cosA+<T 7 +p 37 te. (49)

density p and T vary with altitude, and assuming that

where 2p = g, is related to tornado pressure.
2.2. Tornado simulation using numerical modeling

In the present research, we generated a model utilizing computational modeling that numerous
researchers have performed on tornado characteristics [20, 21, 10, 11]. In this research, Egs. (40),
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(41), and (49) address the difficulty of mathematically expressing positions in three dimensions
when simulating tornado formation. Egs. (29), (31), and (32) provide solutions to the difficulty of
mathematically describing the velocity of the wind in growing tornadoes. In our research,
MATLAB code was created to model tornado motion in two-dimensional and three-dimensional
positions to explain tornado formation utilizing Egs. (40), (41), and (49).

3. Results and discussions

Fig. 2 shows a two-dimensional model of a tornado with the velocity of the wind varying to
the west and north throughout the same period. Modeling results show that the greater the wind
velocity to the north and west, the larger the region of the tornado movement. The simulation
findings reveal that the tornado’s area of rotation is affected by the velocity of the wind, tornado
time, and earth rotational speed. The tornado may rotate and require Coriolis force to move.

x10°  tomado simulation in two dimensional space for the first case 10" tomado simulation with 1/10 slower speed of the first case
E T T T T T ! T T T T T
| I fovnennens RO -+t S P P 4 .
p| I prevsfiees R Areveesese freesesecs .
» b
i B T T PP ey AP P PP RPN R P PP ETEPED CUEPETIN PED PEPEPEPES - &
e 2
] SO G
Q Q
B | ST T T P PP P PN e APRTRUPPRPE FEPRTRPRTEY 7 FEPPRERD
| S SO O OO SO g0 SO SN 4
3
4

positionsx X 105 position=x X 10'

Fig. 2. Two-dimensional simulation of a tornado with wind speed variations

lormado simulation in Iree dimensional space of the first case and for 45 dagree tomado simulation in three imensional space with 1/10 slower speed of the first case and 15 deqree

position-z

)
3
. 40 X0 o
position-y position:x positon-y wsition x
Fig. 3. Three-dimensional simulation of a tornado with wind speed and geocentric latitude variations

Fig. 3 shows a three-dimensional simulation of a tornado with variations in wind speed to the
west and north over the same period and geocentric latitude variations of 45 degrees and
15 degrees. Fig. 4 shows a tornado at Mount Kencana, Banten, Indonesia, where a tornado appears
when there is a change in temperature and high density, as well as a high wind rotation. Based on
Fig.3 and Fig. 4, we found a strong correlation between tornado height, air density and
temperature, geocentric latitude, and initial speed, as shown in Eq. (49). As a result of our
investigation and model results, we find that tornadoes have a low-pressure area with an
increasing-pressure core. Research shows that this model can describe the spiraling upward
motion of air within a tornado's path without including vertical convection. In addition to high
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airspeeds in the upper atmosphere, geocentric latitude, and the Coriolis effect, higher atmospheric
pressure also contributes to tornadoes. According to some researchers [2, 4, 10, 11, 14], tornadoes
in the Northern Hemisphere move clockwise, which is consistent with our model at 45 degrees
and 15 degrees. However, in the Southern Hemisphere, tornadoes normally move in the opposite
direction or counterclockwise. As a result of the rotation of the Earth, the Coriolis effect deflects
wind directions. Thus, the direction of a tornado’s motion is determined by which hemisphere it
occurs in.

Fig. 4. Tornado in Gunung kencana, Banten, Indonesia [1]

The problem of mathematically expressing places in three-dimensional space when simulating
tornado formation is addressed by Eqs (40), (41), and (49). Egs. (29), (31), and (32) provide
solutions to the difficulty of mathematically describing wind velocity in forming tornadoes. The
modeling results demonstrate that the higher the geocentric latitude angle, the more likely a
tornado will form. This research suggests that huge tornadoes can form in places with high
geocentric latitudes. In this study, we discovered the equation for the motion of a tornado in three-
dimensional coordinates, as shown in Egs. (17) through (19).

Our findings revealed a strong relation involving tornado height and changes in air density and
temperature, as well as geocentric latitude and beginning speed, as given in Eq. (49). Our
investigation and model results validate various academics' claims that a low-pressure area with
an increasing-pressure core characterizes tornadoes. Tornadoes require Coriolis force for
movement. As a result, storms are uncommon in tropical regions and rarely cross the Equator, and
this study confirms prior observations [14-18]. According to the research, this model could
describe the spiraling upward motion of air in a tornado's path without incorporating vertical
convection. This model revealed no differences with experts' opinions that certain variables can
cause tornadoes. Tornadoes are created by various elements, including geocentric latitude, the
Coriolis effect, higher airspeed in the upper atmosphere, and higher atmospheric pressure
[14-18]. The airflow characteristics of a tornado can be calculated by calculating the 3-D and
mathematical models of airflow motion and the Earth’s rotation in three-dimensional (3D) space.
This research provides a basic 2D and 3D model to generate a tornado-like vortex using simple
modeling and calculation. This research’s scientific applicability is that professionals and
scientific experts can utilize the models to study tornadoes more easily. The results of 2-D
modeling and simulation indicated that the greater the initial tornado angular speed, the larger the
tornado area. Three-dimensional modeling and simulation also show that tornadoes are more
powerful at higher geocentric latitude angles.

4. Conclusions

This research reported a theoretical formulation of tornadoes in a non-inertial mechanics
framework, utilizing fluid mechanics and numerical simulation. This model depicted the spiraling
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upward motion of air in a tornado while ignoring vertical convection. Several conditions were
required for a tornado to occur, including geocentric latitude, the Coriolis effect, increased
airspeed in the upper atmosphere, and increased air pressure. We calculated the airflow
characteristics of a tornado and solved the three-dimensional position of the tornado or hurricane
in three-dimensional (3D) space, as well as the differential equations of airflow velocity and the
Earth’s rotation. To demonstrate tornado patterns, motion dynamics modeling, and numerical
computations were performed using computer software. The study concluded that this model
could explain tornado patterns. Using the modeling and simulation data from this work,
practitioners and scientists can gain a better understanding of hurricanes. To obtain more precise
models, we proposed that additional studies be performed utilizing various methodologies, such
as quantum neural networks / QNNs and artificial neural networks in future research.
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Abstract. This research proposes a new mathematical formulation of tornadoes based on the
theory of tensor analysis and simulation in a non-inertial dynamics framework, both in two and
three dimensions. This model may show the spherical upward movement of air in a tornado
without taking into account vertical convection. A tornado requires several elements, including
geocentric latitude, the Coriolis effect, increased airspeed in the upper atmosphere, and increased
air pressure. Computing the three-dimensional location of the tornado or hurricane, as well as the
mathematical models of airflow motion and the Earth's rotation in three-dimensional (3D) space,
can determine a tornado's airflow characteristics. To show tornado patterns, we employed
computer software that computed motion dynamics and did numerical computations. The results
of 2-D modeling and simulation indicated that the greater the initial tornado angular speed, the
larger the tornado area. Three-dimensional modeling and simulation also show that tornadoes are
more powerful at higher geocentric latitude angles. The novelty of this study is that this model can
be used to explain tornado patterns. In our research, we combine tensor analysis, computational
modeling, as well as 2D and 3D simulations for simulating tornadoes for the first time. The
scientific application of this finding is that researchers at the Meteorology, Climatology, and
Geophysics Agency will be able to analyze a tornado and geophysical phenomena more readily
with simulations and models.

Keywords: tomado, coriolis effect, numerical model, computational dynamics.
1. Introduction

The Indonesian government is currently focusing on phenomena such as heat waves that have
received attention, as well as tornadoes that have devastated various regions of Indonesia. A
tornado hit Lebak Banten, Indonesia, on May 10, 2022. This incident caused damage to about 80
houses and schools. Tornadoes wreaked devastation in several districts of Lebak, Banten, resulting
in losses of thousands of millions of rupiah. A tornado had also ripped across the Subang area the
day before. The Regional Disaster Management Agency (BPBD) of Subang Regency claimed 21
locations were affected by the hurricane, with Cibogo and Subang Kota Districts suffering the
most damage [1]. Tornado parameters must be studied due to their catastrophic impact. In recent
years, physicists have employed computational physics and fluid mechanics to examine and model
different natural processes, as well as material science [2-8]. Tornado investigation is an intriguing
topic in Earth’s atmosphere and geophysical sciences. Tornadoes are hazardous natural disasters
that strike on a small scale and last only a few minutes. Actual tornado observations are difficult
to collect [9]. Despite improvements in severe storm mathematical approaches, replicating and
predicting small-scale tornadoes will remain difficult [2]. As a result, a computerized model has
arisen as a way of studying and modeling tornadoes. Several researchers have been performed to
simulate the tornado mechanism [2-4]. Scientists first used computational modeling to simulate
tornadoes [10, 11]. Computation physics modeling, including artificial intelligence and numerical
modeling, has various advantages over other forms of research approaches, including lower risk
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[5-7], lower cost [12, 13], and the need for fewer experimental data [14-18]. Computational
dynamics enables researchers to further accurately compute various tornado patterns, wind
direction and speed, latitude, the impacts of Earth's rotation as well as Coriolis forces, and wind
pressure to completely comprehend and model tornado formation. Tornadoes & wind patterns are
examples of the Coriolis effect. A tornado is distinguished by a low-pressure region with rising
pressure at its center. Tornadoes, which divert airflow from all directions, need the Coriolis force
to circulate. As a result, hurricanes hardly form in tropical areas and never cross the Equator
[19-21]. This study gives a simple 2D and 3D model for generating a tornado-like vortex utilizing
an advanced model and computation using tensor analysis reported by various researchers
[20, 22]. The scientific application of this finding is that researchers at the Meteorology,
Climatology, and Geophysics Agency will be able to analyze a tomado and geophysical
phenomena more readily with simulations and models [5, 23].

2. Research methods
2.1. Tornado mathematical model

The foundation of our work is the theoretical framework of variables used to describe motion.
Eq. (1) expresses the acceleration in a fixed system in terms of location, speed, and acceleration
in the rotating system:

a=F+oxr'+20x7 +wxwxr (1)
1

where w is the angular velocity, @ is the time derivative of w and r', #' and #' are the position in
the unit (m), velocity in the unit (m/s), and acceleration in the unit (m/s?), respectively. In the case
where the primed system undergoes both translation and rotation, we obtain general equations for
transforming from a fixed to a moving and rotating system, as shown in Eq. (2). This comprises
the g&ncric equations for transforming a stationary system into a moving and rotating one:

a=F+uxr+20x +toxwxr +A (2)

After we have the motion equation in moving coordinates, we can write it as shown in Egs. (3)

to (6):

F=ma=m@F# +oxr'+20x"+owxwxr +A4), (3)
F-m(oxr' +20 X7 +© XwXr' +A)=mi' (4)
F—(maxr'+2mwx# +mw X (0 Xr') + mA) = mi’, (5)
F_{FEuﬁ 'F;'ur+ FL'Ent"'Ft): mi’, (6)

where is the physical force, Fe,; = ma X r' is the Euler force, w is the angular velocity,
E., = 2mw X 7' is the Coriolis force, F,,,, = mw X (w X r') denotes the centrifugal force, and
F, = mA denotes the force due to the translation of the coordinate system. The equation of motion

in a moving system can be written as Eq. (7):

Z Fau = mi'" = pVi#', Z f=pt, (7)

where f is the total force per unit volume, p is the density of the particle with a certain mass, and
#' 1s the acceleration of the particle with a certain mass. We can extend the model by using
Cauchy's equation in Eq. (8) and the generalized equation of motion in 3D movement proposed
by [22] as in Egs. (9) and (10):

V'U+fmt=pf”, (3]
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v'g+fg_(fﬁ'u!+fcor +fcent +ﬁ)=ﬁ(ff‘|‘j}’+ffl (9)
v'U+fg_f5'ui_fcor_fcent_ﬁ=p(if+j'}r+fr)x (10)

where f,,, is the total force per unit volume, f, is the gravitational attraction force, p is the density

of the particle with a certain mass, and ¢ is the stress tensor. Consider the Euler force fg, =0,
the force due to the translation of the coordinate system f; = 0, and since the centrifugal force is
so small compared to the other terms, we can neglect it. The equation of motion then becomes:

((lﬂ N do,, N E;"o‘zx) . (cery ﬁao—w N E;'crzy)r N (6512 N da,, N agzz) K’

dx dy 0z dx dy 0z dx ay Az (11)
= pgk’ = 2p(w,d' + w,' + w k) x 'V + g 2'K) = p(&' +§' +2"),
ford + o' + fok' = pgK' = 2p(wd' + 0y’ + w k) x @i’ +5'j' + 2'K) (12)

=p(®'+y +2").

To simplify the calculation of the model, it can be assumed that:

Aoy, 00y, Eln ., (doy, do,, da,\., (do., do, dao,)\ ,
(6x+ay+az)l+(3x+ﬂy+az rE ﬂx+3y+ﬂz k

= f;:l:rir + fp}'ir + fpzk"
w,i' + w,j' + w, k' = (0i' + wcosdj’ + wsindk'),

yield:
ford' + foyi’ + fo K = pgk’ = p(i') + 2p(w,i’ + w,j’ + w,K') x ('iff 7'j + 2'k), (13)
Foxd' + foyd' + oK' — pgk' = p(¥' + 2(0i' + wcosdj’ + wsindk") x (i + y'j + 2'K)). (14)

We can write g = g — w?Rcosd because of the effect of Earth’s rotation. Where g denotes
the actual gravitation acceleration, and w?RcosA denotes the centripetal acceleration for the
Earth’s radius, R, and geocentric latitude, A. In this study, we choose the coordinate axis 0'x"y'z’
such that the z' is vertical, the x’ axis to the east, and the y' axis points north. The coordinate axes

for analyzing tornado motion can be shown in Fig. 1.

z " (Vertical)
) Sindl

muw? Reosd

Fig. 1. Coordinate axes for analyzing tornado motion.

We also use w, = 0, wy, = wcosd, and w, = wsind. Eq. (14) can be solved computationally,
and we get Eqs. (15) and (16):
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foxd' + fpyi' + fpK' — pgk' (15)
= pi' + 2p(2'wcosd — y'wsinA)i’' + 2p(¥'wsind)j’ — 2p(x'wcosd)k’, i
clﬂ day, da,\ . (004 doy,, da,\ , (ddo., do, do,,\
(6x+6y+621+ 6x+6y+62]+ 6x+6y+62k (16)
— pgk' = pr' + 2p(2'wcosA — y'wsinA)i' + 2p (&' wsind)j’ — 2p(¥'wcosA)k'.
We can solve Eq. (16); hence we find Egs. (17) to (19):
- ag’”‘+a%+ag” 2w(z' cosA — ¥'sin) 17
X = o\ ox dy Ep w(z cos y'sind), (17
ixl 1 6UIJ-’ agj’:lr’ agzy .y .
A% _E( P + 3y + P — 2x'wsind, (18)
o 1 agxz agyz agzz 2% si 19
Z_Eﬂx+ﬂy+ﬂz — g | + 2x wcosA. (19)

Assuming ﬂmtaﬂi — RpTOT) | RpT 3(p)
dz T dz fi) dz

i . i -
we get ey, = f, eyy = —vf, and ey, = —v f, €xy = €xz = €y, = 0, and we find Egs. (20) to

(22):

1(d XX da X d Zx
X' = ( i =+ d )— 2Zw(2'cosd — y'sind) = —2w(2'cosd — y'sind), (20)

=3 E;lx+fi'y 0z

., 1{de,, do,, da,, L o
i _E( -+ 3y | -2 wsind = —2x'wsinA, (21)

., (100, Aoy, da,
2= ax T dy * 2

= Oy, and Oyy = Oyy = Oyz = Oyy = Oy, = 0, hence

P

a,
) - g) + 2% wcosd = f_ g + 2x%" wcosA. (22)

We can integrate once concerning t to get the component of velocity, and we find, as shown
iiEqs. (23) to (25):

5

x' =%, — 2w(z'cosA — y'sind), (23)
y' = }iUF — 2x"wsinAd, (24)
=42 + (% - g)t + 2x'wcosA. (25)

Then substitute Z’ and ¥ into Eq. (20), we find Eqgs. (26) and (27):

X' = —2w(z'cosd — y'sinAd)

= 2w ([z‘o’ + (% - g)t + Zx’wcc-s,l] cosd — [y, — 2x'wsind] sini), (26)
o
% = —2w ([z‘o’ + (f - g) + Zx’wcc:-s}t] cosd — [¥," — 2x' wsinA] sin;-l]
= —2wZ,' cosd — 2w (%— g] tcosd + 2wy, sind (27)

o,
2w (g - FD) tcosd — 2w(Z, cosA — y,'sind).

We integrate Eq. (27) again to get ', as shown in Eq. (28) and Eq. (29):

4 ISSN PRINT 2351-53279, ISSN ONLINE 24244627




TENSOR ANALYSIS OF TORNADOES: A NEW ANALYTICAL AND NUMERIC AL MODEL.
MUSTAMIN A MAULANIL, VALENTINUS GALIH VIDLA PUTRA

a0
f di' = f [Zm (g - FD] tcosd — 2w(Z, cosA — yu’sinil)] dt, (28)

a
P =w (g - Fﬂ) t?cosd — 2wt(Z, cosd — y,'sind) + x,, (29)
and finally, we find x' by integrating Eq. (29):

— %03
,_w(g ﬂ)t 200 L (30)
X —#ms}{— wt*(Z, cosA — y,'sind) + x,'t + x,.

Then substitute Eq.(30) into Eqs. (24) and (25), we find Egs. (31) and (32):

y' =9, — 2x'wsind

. mgt3

= yDF - 2( 3
=y, — 2(%, twsind + x,'wsind)

. + gﬂ + F gﬁ'

2 =27, + (F—g)t + 2x'wcosd = Z, +(F—g)t

" (g -%)¢3 (32)

3 £ cosAd — wt?(Z, cosAd — y,'sind) + x,'t |wcosA.

cosd — wt?(Z, cosAd — y,'sind) + x,t + xu’) wsind (31)

+2

As aresult of integrating Eqgs. (31) and (32), the positions, y' and 2z’ are given by:

4 .rtz
y' =19,'t = 2| —=——wsini + xo’tmsinx'{) + Y = yh + V't = X, t%wsind — 2x} twsini (33)
=y, + ¥, t — 2x,twsind,
1o
7' =Z,'t + z, + wcosdx, t? + E(;ﬂ - g) t2
(34)

1o
=27t + (mzrgms}\+ E(Eﬂ_g))tz + 2,.

According to some scientists [19, 20], a tornado 1s a dangerous natural event that occurfibn an
insignificant scale and persists for only a few minutes. Assuming that y. +y,'t =1/,
Xp = Xt = rywt, and X, = ¥, = Z, = 1, w, T, is so small at a very short time, we get Egs. (35)

and (36): -
10

t3

2 =29% cosa - wt?(Z,'cosA— y,'sind) + x,'t

3 (35)

wgt + f s
= cosd — wt?(Z, cosAd — ¥,'sind) + rjwt = rjwt,
2
[ fFo252 L —_ aal . 2542 — (wt) — sl

y' =1, — 2pwit? sind = 1,(1 — 2sindw?t?) =r( 1 - 5 =1 cos(wt). (36)

. ) . 1 . 1 . .
Which requires that 2sind = Sor sind = Sor A = 15° (that is near the Equator), we find:

B =+ wt = 7 sin(wt), (37)
y' =1, cos(wt), (38)
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=7t +| w? L (% 2
=z, w +2c05,1 p—g t* cosd +z,

(39)
r 2 1 Ty 2
=1, wt+|w + st}{(g_g) t* cosA.
Frén Eqgs. (37) to (39), we get Eqgs. (40) to (42):
x' =1l sin(wt) = 1} cos(90° — wt), (40)
y' =1y cos(wt) =1y sin(90? — wt), (41)
1 g,
zZ =7 wt+(m2+zmﬂ(f—g))tz cosA. (42)

Assuming that r, = 7,"t, and ignoring the effects of gravitational force and humidity, and
using the equation of state, we obtain Eqs. (43) to (45):

1 Ty
z' =1 wt+(w2+2ms& (E]>t2 cosA, (43)
1 (ldo
=1 wt 2 (_ ZZ) 2 A, 44
Z'=rw +(m +2ms&paz ) cos (44)
1 do
' =1,t? 2 (—”’) t2 cosA. 45
z' =7, +(w +2pc05& P ) cos (45)

X X " . . . 8 (R
According to [21], in the condition of a static atmosphere, we can write % = %. The

density p and pressure of the air g,, in Eq (44) vary with height z. These changes can be
calculated from the equation of state; we obtain:
d(o,,) a(T) a(p)
Z —Rp—— 46
ol ipr?f(r; " % 30 "
Ozz) _ 1P L
dz T az TR Tp dz
1 d(o,) _19(1) , 10(p)
o,, dz T dz p 0z’

(47)

(48)

where T is an absolute temperature, and R is the specific gas constant of dry air. In Eq. (48), the

. . . . 1 d 1 fd
density p and T vary with altitude, and assuming that L o) _ —( £
Tgy dZ 2p \ dz

position z', which indicates the height of tornadoes as shown in Eq. (49):

1 /0 1a(T 1d
2" =Z,"t + (wzcnsi +—(&))t2 =1,wt + (wzcusi+ (— ( )+—ﬂ))t2. (49)

), then we obtain the

2p\ 0z T dz p dz
where 2p = a,, is related to tornado pressure.
2.2. Tornado simulation using numerical modeling

In the present research, we generated a model utilizing computational modeling that numerous
researchers have performed on tornado characteristics [20, 21, 10, 11]. In this research, Eqgs. (40),
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(41), and (49) address the difficulty of mathematically expressing positions in three dimensions
when simulating tornado formation. Egs. (29), (31), and (32) provide solutions to the difficulty of
mathematically describing the velocity of the wind in growing tornadoes. In our research,
MATLAB code was created to model tornado motion in two-dimensional and three-dimensional
positions to explain tornado formation utilizing Eqgs. (40), (41), and (49).

3. Results and discussions

Fig. 2 shows a two-dimensional model of a tornado with the velocity of the wind varying to
the west and north throughout the same period. Modeling results show that the greater the wind
velocity to the north and west, the larger the region of the tornado movement. The simulation
findings reveal that the tornado’s area of rotation is affected by the velocity of the wind, tornado
time, and earth rotational speed. The tornado may rotate and require Coriolis force to move.

x 100 tomada simutation in twa dimensional space for the first case x10"  tomade simulation with 110 shower speed of the first case
4

position-y
position-y

postianx ot poBitionx o'
Fig. 2. Two-dimensional simulation of a tornado with wind speed variations

Iomado simudabon in hiee dimensional space of ihe sl cast and e 45 degren tomado simuiation in aran dimenianal space with 13 slower sgaed ofthe st casa and 15 dagree

!105 .-"""1.---.. v

) I

position-z

postiony plecsibon-x posiony meskon x
Fig. 3. Three-dimensional simulation of a tornado with wind speed and geocentric latitude variations

Fig. 3 shows a three-dimensional simulation of a tornado with variations in wind speed to the
west and north over the same period and geocentric latitude variations of 45 degrees and
15 degrees. Fig. 4 shows a tornado at Mount Kencana, Banten, Indonesia, where a tornado appears
when there is a change in temperature and high density, as well as a high wind rotation. Based on
Fig. 3 and Fig. 4, we found a strong correlation between tornado height, air density and
temperature, geocentric latitude, and itial speed, as shown in Eq. (49). As a result of our
investigation and model results, we find that tornadoes have a low-pressure area with an
increasing-pressure core. Research shows that this model can describe the spiraling upward
motion of air within a tornado's path without including vertical convection. In addition to high
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airspeeds in the upper atmosphere, geocentric latitude, and the Coriolis effect, higher atmospheric
pressure also contributes to tornadoes. According to some researchers [2,4, 10, 11, 14], tornadoes
in the Northern Hemisphere move clockwise, which is consistent with our model at 45 degrees
and 15 degrees. However, in the Southern Hemisphere, tornadoes normally move in the opposite
direction or counterclockwise. As a result of the rotation of the Earth, the Coriolis effect deflects
wind directions. Thus, the direction of a tomado’s motion is determined by which hemisphere it
occurs in.

Fig. 4. Tornado in Gunung kencana, Banten, Indonesia [1]

The problem of mathematically expressing places in three-dimensional space when simulating
tornado formation is addressed by Eqs (40), (41), and (49). Egs. (29), (31), and (32) provide
solutions to the difficulty of mathematically describing wind velocity in forming tornadoes. The
modeling results demonstrate that the higher the geocentric latitude angle, the more likely a
tornado will form. This research suggests that huge tornadoes can form in places with high
geocentric latitudes. In this study, we discovered the equation for the motion of a tornado in three-
dimensional coordinates, as shown in Egs. (17) through (19).

Our findings revealed a strong relation involving tornado height and changes in air density and
temperature, as well as geocentric latitude and beginning speed, as given in Eq. (49). Our
investigation and model results validate various academics' claims that a low-pressure area with
an increasing-pressure core characterizes tornadoes. Tornadoes require Coriolis force for
movement. As a result, storms are uncommon in tropical regions and rarely cross the Equator, and
this study confirms prior observations [14-18]. According to the research, this model could
describe the spiraling upward motion of air in a tornado's path without incorporating vertical
convection. This model revealed no differences with experts' opinions that certain variables can
cause tornadoes. Tornadoes are created by various elements, including geocentric latitude, the
Coriolis effect, higher airspeed in the upper atmosphere, and higher atmospheric pressure
[14-18]. The airflow characteristics of a tomado can be calculated by calculating the 3-D and
mathematical models of airflow motion and the Earth’s rotation in three-dimensional (3D) space.
This research provides a basic 2D and 3D model to generate a tornado-like vortex using simple
modeling and calculation. This research’s scientific applicability is that professionals and
scientific experts can utilize the models to study tornadoes more easily. The results of 2-D
modeling and simulation indicated that the greater the initial tornado angular speed, the larger the
tornado area. Three-dimensional modeling and simulation also show that tornadoes are more
powerful at higher geocentric latitude angles.

4. Conclusions

This research reported a theoretical formulation of tornadoes in a non-inertial mechanics
framework, utilizing fluid mechanics and numerical simulation. This model depicted the spiraling
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upward motion of air in a tornado while ignoring vertical convection. Several conditions were
required for a tornado to occur, including geocentric latitude, the Coriolis effect, increased
airspeed in the upper atmosphere, and increased ar pressure. We calculated the airflow
characteristics of a tornado and solved the three-dimensional position of the tornado or hurricane
in three-dimensional (3D) space, as well as the differential equations of airflow velocity and the
Earth’s rotation. To demonstrate tornado patterns, motion dynamics modeling, and numerical
computations were performed using computer software. The study concluded that this model
could explain tornado patterns. Using the modeling and simulation data from this work,
practitioners and scientists can gain a better understanding of hurricanes. To obtain more precise
models, we proposed that additional studies be performed utilizing various methodologies, such
as quantum neural networks / QNNs and artificial neural networks in future research.
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