

SERTIFIKAT

Kementerian Riset dan Teknologi/
Badan Riset dan Inovasi Nasional

Petikan dari Keputusan Menteri Riset dan Teknologi/
Kepala Badan Riset dan Inovasi Nasional

Nomor 85/M/KPT/2020

Peringkat Akreditasi Jurnal Ilmiah Periode I Tahun 2020

Nama Jurnal Ilmiah

Jurnal Arsitektur ZONASI

E-ISSN: 26209934

Penerbit: Universitas Pendidikan Indonesia

Ditetapkan sebagai Jurnal Ilmiah

TERAKREDITASI PERINGKAT 4

Akreditasi Berlaku selama 5 (lima) Tahun, yaitu
Volume 1 Nomor 1 Tahun 2018 sampai Volume 5 Nomor 2 Tahun 2022

Jakarta, 01 April 2020

Menteri Riset dan Teknologi/
Kepala Badan Riset dan Inovasi Nasional
Republik Indonesia,

Bambang P. S. Brodjonegoro

p.ISSN: 2621-1610 (cetak)
e.ISSN: 2620-9934 (online)

 JAZ

Jurnal Arsitektur
ZONASI

Studio Perancangan Arsitektur dan Kota, Prodi Arsitektur
FPTK - Universitas Pendidikan Indonesia

- [HOME](#)
- [ABOUT](#)
- [LOGIN](#)
- [REGISTER](#)
- [SEARCH](#)
- [CURRENT](#)
- [ARCHIVES](#)
- [ANNOUNCEMENTS](#)
- [AUTHOR GUIDELINE](#)
- [TEMPLATE](#)

USER

Username

Password

Remember me

INFORMATION

- [For Readers](#)
- [For Authors](#)
- [For Librarians](#)

JOURNAL CONTENT

Search

Search Scope

Browse

- [By Issue](#)
- [By Author](#)
- [By Title](#)
- [Other Journals](#)

Home > About the Journal > **Editorial Team**

EDITORIAL TEAM

Editorial in Chief

Dr. Asep Yudi Permana, Scopus ID: 57205462814. Sinta ID:5977218 Universitas Pendidikan Indonesia, Indonesia

Editorial Board

Dr.Eng. ST., MT. Beta Paramita, Universitas Pendidikan Indonesia, Indonesia
Prof. Dr. Ir. Nany Yuliastuti, Universitas Diponegoro Semarang, Indonesia
Dr. Nur Miladan, Universitas Sebelas Maret, Indonesia
Ph.D. ST., MT., M.Sc. Ilhamdaniah Ilhamdaniah, Universitas Pendidikan Indonesia, Indonesia
Drs. M.T. Irawan Surasetja, Universitas Pendidikan Indonesia, Indonesia

Section Editors

Drs. M.T. Irawan Surasetja, Universitas Pendidikan Indonesia, Indonesia
Drs. MS.Arch. Dadang Ahdiat, Universitas Pendidikan Indonesia, Indonesia
Indah Susanti Susanti, Universitas Pendidikan Indonesia, Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ADDITIONAL MENU

INSTRUCTION FOR AUTHOR

- [Guide for Authors](#)
- [Online submission](#)

JOURNAL POLICY

- [Focus and Scope](#)
- [Publication Ethics](#)
- [Article Processing Charge](#)
- [Peer Reviewers Process](#)
- [Editorial Team](#)
- [Reviewers](#)
- [Open Access Policy](#)
- [Plagiarism Policy](#)
- [Copyright](#)
- [Journal History](#)
- [Publisher](#)
- [Archiving Policy](#)
- [Abstracting & Indexing](#)
- [Crossmark Policy](#)
- [Visitors Statics](#)

OPEN JOURNAL SYSTEMS

p.ISSN: 2621-1610 (cetak)
e.ISSN: 2620-9934 (online)

 JAZ

Jurnal Arsitektur
ZONASI

Studio Perancangan Arsitektur dan Kota, Prodi Arsitektur
FPTK - Universitas Pendidikan Indonesia

- [HOME](#)
- [ABOUT](#)
- [LOGIN](#)
- [REGISTER](#)
- [SEARCH](#)
- [CURRENT](#)
- [ARCHIVES](#)
- [ANNOUNCEMENTS](#)
- [AUTHOR GUIDELINE](#)
- [TEMPLATE](#)

USER

Username

Password

Remember me

INFORMATION

- [For Readers](#)
- [For Authors](#)
- [For Librarians](#)

JOURNAL CONTENT

Search

Search Scope

Browse

- [By Issue](#)
- [By Author](#)
- [By Title](#)
- [Other Journals](#)

Home > About the Journal > **People**

PEOPLE

Reviewer

Prof. Dr. Mokhamad Syaom Barliana, Universitas Pendidikan Indonesia, Indonesia

Prof., Dr., Ir. Sugino Soetomo, Universitas Diponegoro, Indonesia

Prof. Dr.Ing. Ir. Gagoek Hardiman, Universitas Diponegoro, Indonesia

Prof. Dr.rer.nat. Imam Buchori, PWK FT Universitas Diponegoro Semarang, Indonesia

PhD., ST., MT. Tutin Aryanti, Universitas Pendidikan Indonesia, Indonesia

Dr. Ir. Martinus Bambang Suseptyarto, Arsitektur FTSP Universitas Trisakti, Indonesia

Dr.Eng. Usep Surahman, Universitas Pendidikan Indonesia, Indonesia

Dr. Ir. Rina Kurniati, Universitas Diponegoro, Indonesia, Indonesia

Dr. Ir. Elysa Wulandari, Universitas Syahkuala Banda Aceh, Indonesia

Dr. S.T., M.T. Rinaldi Mirsa, Program Studi Arsitektur, Fakultas Teknik, Universitas Malikussaleh, Indonesia

This work is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](#).

ADDITIONAL MENU

INSTRUCTION FOR AUTHOR

- [Guide for Authors](#)
- [Online submission](#)

JOURNAL POLICY

- [Focus and Scope](#)
- [Publication Ethics](#)
- [Article Processing Charge](#)
- [Peer Reviewers Process](#)
- [Editorial Team](#)
- [Reviewers](#)
- [Open Access Policy](#)
- [Plagiarism Policy](#)
- [Copyright](#)
- [Journal History](#)
- [Publisher](#)
- [Archiving Policy](#)
- [Abstracting & Indexing](#)
- [Crossmark Policy](#)
- [Visitors Statics](#)

OPEN JOURNAL SYSTEMS

p.ISSN: 2621-1610 (cetak)
e.ISSN: 2620-9934 (online)

 JAZ

Jurnal Arsitektur
ZONASI

Studio Perancangan Arsitektur dan Kota, Prodi Arsitektur
FPTK - Universitas Pendidikan Indonesia

[HOME](#) [ABOUT](#) [LOGIN](#) [REGISTER](#) [SEARCH](#) [CURRENT](#) [ARCHIVES](#) [ANNOUNCEMENTS](#) [AUTHOR GUIDELINE](#) [TEMPLATE](#)

USER

Username:

Password:

Remember me

INFORMATION

- For Readers
- For Authors
- For Librarians

JOURNAL CONTENT

Search:

Search Scope:

Browse:

- By Issue
- By Author
- By Title
- Other Journals

Home > Archives > **Vol 9, No 1 (2026)**

VOL 9, NO 1 (2026)
Jurnal Arsitektur Zonasi Februari 2026

DOI: <https://doi.org/10.17509/jaz.v9i1>

TABLE OF CONTENTS

Articles

FAST-FOOD RESTAURANT KITCHEN: SPATIAL LAYOUT, EMPLOYEE BEHAVIOR, AND EFFICIENCY Rachmat Ardi Priambodo, Mohammad Ischak	PDF 1-12
VISITORS' PERCEPTIONS OF JALAN SUROTO BOULEVARD IN THE KOTABARU CULTURAL HERITAGE AREA USING THE SENSE OF PLACE APPROACH Tiara Melindasari, Rony Gunawan Sunaryo, Trias Mahendarto	PDF 13-28
STUDY ON THE APPLICATION OF THE HEALING ENVIRONMENT CONCEPT AT PANTI KARYA ASIH IN LAWANG Santa Putri Siahaan, Muchlisiniyati Safeyah	PDF 29-44
THE INFLUENCE OF OPEN-PLAN WORKSPACE CONFIGURATION ON WORK PRODUCTIVITY Pandhu Perwira Raja, Retna Ayu Puspatarini	PDF 45-54
NEO-VERNACULAR ARCHITECTURE AT BALAI GIRI NATA MANDALA: A STRATEGY FOR CULTURAL PRESERVATION Maritza Areta Palwono, Eva Elviana	PDF 55-66
ECOHOUSE CONCEPTS IN THE LANGKIE JIKU SORABI TRADITIONAL HOUSE, TIDORE KEPULAUAN, NORTH MALUKU Hidayat Hi. Muhammad, Hery Purnomo	PDF 67-80
UNCOVERING CONCEPTS AS A CONCEPTUAL MODEL OF ARCHITECTS' PREFERENCES IN THE DESIGN PROCESS Jessica Fitriani Putri, Amos Setiadi	PDF 81-90
THE EFFECTIVENESS OF MICRO-SCALE URBAN GREEN SPACES (MICRO-UGS) IN MITIGATING URBAN HEAT ISLAND EFFECTS AND ENHANCING RESIDENTS' THERMAL COMFORT IN SEMI-PUBLIC AREAS OF VERTICAL HOUSING IN JAKARTA Anindita Ghaisani, Maria Immaculata Ririk Winandari	PDF 91-102
TYPOLOGY AND HERITAGE PRESERVATION: TRACING HISTORICAL LAYERS OF CULTURAL HERITAGE BUILDINGS IN GARUT REGENCY Anindita Ghaisani, Maria Immaculata Ririk Winandari	PDF 103-118

ADDITIONAL MENU

INSTRUCTION FOR AUTHOR

- [Guide for Authors](#)
- [Online submission](#)

JOURNAL POLICY

- [Focus and Scope](#)
- [Publication Ethics](#)
- [Article Processing Charge](#)
- [Peer Reviewers Process](#)
- [Editorial Team](#)
- [Reviewers](#)
- [Open Access Policy](#)
- [Plagiarism Policy](#)
- [Copyright](#)
- [Journal History](#)
- [Publisher](#)
- [Archiving Policy](#)
- [Abstracting & Indexing](#)
- [Crossmark Policy](#)
- [Visitors Statics](#)

OPEN JOURNAL SYSTEMS

NOTIFICATIONS

- View
- Subscribe

FONT SIZE

- - -

Journal Help

Yan Nurcahya, Deri Sugiarto, Teddiansyah Nata Negara, Muhammad Utari, M Kautsar
Thariq Syah, Ajid Thohir, Wawan Hernawan

THE POTENTIAL OF USING MOSS WALLS AS A NATURE-BASED SOLUTION FOR IMPROVING AIR QUALITY IN URBAN BUILDINGS: A COMPREHENSIVE LITERATURE STUDY
Afnan Umar, Ade Jovan Tri Setiawan, Achmad Diaz Raihansyah, Parmo Parmo

THE DEVELOPMENT OF RESEARCH AND TOURISM FUNCTIONS AT THE BALI STARLING WILDLIFE RESERVE IN BULELENG REGENCY, BALI
Lulut Indrianiingrum, Gede Alfaridho Permana Muhammad Budiarsa, Anwar Baihaqi, Eko Budi Santoso

COMPARISON OF ENERGY LOAD BETWEEN CHILLER WATER SYSTEM AND DX SYSTEM IN HIGH-RISE HOTEL BUILDINGS
Muhammad Fadly Saleh, Nurul Inayah

EXPLORING THE HERITAGE VALUE OF THE COLONIAL BUILDING OF CILILIN RADIO STATION AS A REPRESENTATION OF LOCAL CULTURE IDENTITY
Padli Kurniawan, Agustina Kusuma Dewi

IMPLEMENTATION OF FLUID ARCHITECTURE AND TOPOGRAPHICAL INTEGRATION: A CASE STUDY OF THE CITY OF CULTURE OF GALICIA
Intan Nurrahmah, Ashadi Ashadi

EXPERIENCE BASED LINKAGE ON GANG HAJI AHOM IN LEMBUR KATUMBIRI, BANDUNG
Adenata Panji Gumiwang, Hafizh Aula Naja, Trisnawan Alfariz, Eggi Septianto

COMPARISON OF MATERIALS IN THE CONSTRUCTION OF BALE TANI HOUSES AND BALE LUMBUNG IN SADE VILLAGE, CENTRAL LOMBOK
Arifa Muthi'a Nawir, Dewi Syahrani Basir, Muh Arrazzaq Arief

VISITOR'S VISUAL PERCEPTION OF LIGHTING IN THE IMMERSIVE SPACE OF SONOBUDOYO MUSEUM, YOGYAKARTA
Alfi Nuril Karimah, Prasetyo Wahyudie, Susy Budi Astuti, Thomas Ari Kristianto

ANALYSIS OF VISITORS' SPATIAL EXPERIENCE IN AN AUTOMOTIVE-THEMED CAFÉ: A CASE STUDY OF MONTERO CAFÉ
Putra Mahardika Tuahuns, Heru Prasetyo Utomo

NATURAL LIGHTING PERFORMANCE IN THE SERVICE ROOM OF A THREE-STORY OFFICE BUILDING IN WEST BANDUNG REGENCY
Achmad Sumirat, Beta Paramita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

PDF
119-130

PDF
131-142

PDF
143-152

PDF
153-164

PDF
165-174

PDF
175-188

PDF
189-202

PDF
203-214

PDF
215-226

PDF
227-240

[View My Stats](#)

The Effectiveness of Micro-Scale Urban Green Spaces (Micro-UGS) in Mitigating Urban Heat Island Effects and Enhancing Residents' Thermal Comfort in Semi-Public Areas of Vertical Housing in Jakarta

Anindita Ghaisani¹, Maria Immaculata Ririk Winandari^{2*}

^{1,2} Universitas Trisakti, Jakarta, Indonesia

*Correspondence: Email: mi.ririk@trisakti.ac.id

ABSTRACT

The Urban Heat Island (UHI) phenomenon in Jakarta significantly elevates temperatures within the built environment, particularly in vertical housing sectors, leading to a decline in residents' thermal comfort. While micro-urban green spaces (UGS) in middle-class apartments serve as potential heat-adaptive elements, empirical studies on their effectiveness in semi-public areas remain limited. This study aims to analyze the correlation between vegetation canopy coverage and Physiological Equivalent Temperature (PET) in the semi-public spaces of Transpark Apartment, Cibubur. Using a mixed-methods sequential explanatory approach, the research analyzed canopy coverage across 12 measurement plots using 180° hemispherical photography and ImageJ software. Microclimate parameters were recorded during peak heat hours to calculate PET, while resident perceptions were gathered from 58 respondents to triangulate objective findings. Results demonstrate a strong inverse correlation ($R^2 > 0.85$) between canopy density and PET. Specifically, areas with high canopy coverage (75.08%) achieved a PET of 31.2°C—falling within the tropical comfort zone—while areas with lower coverage (57.15%) remained uncomfortably hot at 36.4°C. The findings indicate that increasing canopy coverage from 57% to 75% can reduce PET by 5.2°C, making UGS Mikro 4.8 times more effective for physiological cooling than city-scale greening. The study recommends a minimum canopy target of 70–75% for vertical housing developments to create effective thermal refuges, supporting Sustainable Development Goals (SDGs) 3, 11, and 13.

ARTICLE INFO

Article History:

Submitted/Received 18 Nov 2025

First Revised 19 December 2025

Accepted 21 January 2026

First Available online 1 Feb 2026

Publication Date 1 February 2026

Keywords:

*Urban Heat Island,
Micro Urban Green Space,
canopy coverage,
thermal comfort,
PET,
PMV,
TSV,
high-rise housing,
Jakarta*

1. INTRODUCTION

The rapid pace of global urbanization has catalyzed the phenomenon known as the Urban Heat Island (UHI), where metropolitan areas experience significantly higher temperatures than their rural surroundings. In the context of Jakarta, Indonesia, this thermal anomaly is exacerbated by high-density built environments, the replacement of natural surfaces with heat-absorbing materials like concrete and asphalt, and a significant deficit in green open spaces (Rizki et al., 2024). This thermal stress directly impacts the energy consumption for cooling and, more critically, the health and well-being of urban residents (Beatley, 2016; Santamouris, 2020). As the city continues to expand vertically, the microclimate within high-rise residential complexes—specifically semi-public spaces—becomes a vital area of study for climate-resilient architecture(Putri & Subekti Ir, n.d.)

Vertical housing projects, such as the Transpark Apartment in Cibubur, often feature communal areas that are intended to serve as social hubs. However, without adequate thermal intervention, these spaces frequently fail to achieve their functional purpose due to extreme outdoor heat (Rizki et al., 2024b). One of the most effective nature-based solutions for mitigating micro-UHI is the strategic implementation of Urban Green Spaces (UGS). Trees and vegetation contribute to cooling through two primary mechanisms: shading, which blocks short-wave solar radiation, and evapotranspiration, which converts sensible heat into latent heat (Zijlema et al., 2020).

Among various thermal indices, the Physiological Equivalent Temperature (PET) has emerged as a reliable indicator for assessing outdoor thermal comfort in tropical climates, as it accounts for both environmental variables and human physiological parameters(Saputri et al., 2023). Recent studies suggest that the morphology of the tree canopy—specifically the percentage of canopy coverage plays a more dominant role in reducing PET than just the presence of ground-level grass or shrubs (Estrada-Carmona et al., 2014). For instance, dense canopy structures can reduce local temperatures by as much as 3°C to 5°C compared to unshaded surfaces (Ciftcioglu, 2017)

Despite the recognized benefits of greenery, many vertical housing developments in Indonesia prioritize aesthetic landscaping over functional thermal performance. There is a critical lack of empirical data regarding the precise threshold of canopy coverage required to bring PET levels into the "comfort" range for Indonesians (31.2°C) in semi-public apartment settings. Most existing research focuses on large-scale urban parks, leaving a gap in understanding how "Micro-UGS" within private or semi-public residential boundaries performs (Taleb & Kayed, 2021)

Therefore, this research investigates the influence of canopy coverage on PET levels at Transpark Apartment, Cibubur. By utilizing hemispherical photography and microclimate monitoring, this study seeks to quantify the correlation between canopy density and physiological cooling. The results are expected to provide actionable guidelines for architects and developers to optimize vegetation density, ensuring that semi-public spaces are not merely ornamental but serve as functional thermal refuges for residents, thereby supporting Sustainable Development Goals 11 and 13 (Saputri et al., 2023)

1.2 Literature Review

The Urban Heat Island (UHI) phenomenon is a major consequence of rapid urbanization in tropical cities such as Jakarta, where high building density, extensive impervious surfaces, and vegetation loss contribute to increased urban temperatures. Recent studies indicate that Land Surface Temperature (LST) in East Jakarta can reach up to 33.8 °C in areas with urban green space coverage below 6%, while each 1% increase in green space may reduce surface

temperature by approximately 0.6 °C (Rizki et al., 2024a). However, most dense urban districts in Jakarta continue to exhibit critically low green space ratios, exacerbating heat stress at both macro and micro scales.

Vertical residential developments, particularly middle-income apartment complexes, have increasingly contributed to urban heat accumulation due to limited provision of green open spaces reported that green space in Jakarta's apartment developments typically accounts for less than 10% of total land area, significantly below the 30% requirement mandated by local regulations (Setiowati et al., n.d.). As a result, semi-public outdoor spaces such as communal gardens and podium-level open areas are often exposed to intense solar radiation and elevated thermal conditions, reducing their usability during daytime (Amzad Rachi et al., 2025).

In response to land constraints, micro-scale Urban Green Space (UGS Micro) has emerged as a practical heat mitigation strategy in dense urban environments. UGS Micro includes small-scale vegetation elements such as trees, shrubs, and ground cover integrated into limited outdoor spaces within residential complexes (Emmanuel & Krüger, 2012). Empirical evidence suggests that even small vegetated areas can substantially reduce local temperatures through shading and evapotranspiration demonstrated that micro-scale vegetation could reduce LST by up to 6.6 °C in compact urban areas, highlighting its effectiveness compared to more technologically intensive solutions such as green walls (Rizki et al., 2024a).

Among vegetation parameters, canopy coverage plays a critical role in regulating outdoor thermal conditions by reducing solar radiation exposure and mean radiant temperature. Dense tree canopies are particularly effective in improving thermal conditions in semi-public spaces, which function as transitional areas between private units and shared facilities (Emmanuel & Krüger, 2012). Previous studies have shown that improved environmental quality in these spaces increases user presence and activity levels (Putri & Subekti Ir, n.d.), underscoring the importance of thermal comfort in space utilization.

Despite growing interest in urban green infrastructure, research integrating canopy coverage analysis with human-scale thermal comfort indices remains limited, particularly in middle-income vertical housing in tropical climates. Most existing studies rely on macro-scale indicators such as LST or NDVI, which do not fully capture thermal conditions experienced by residents. This study addresses this gap by examining the relationship between canopy coverage and Physiological Equivalent Temperature (PET) in semi-public spaces of a middle-income apartment complex, providing empirical evidence for micro-scale, vegetation-based heat mitigation strategies in humid tropical cities.

2. RESEARCH METHODOLOGY

This research employs a Mixed-Methods Sequential Explanatory Design, combining quantitative environmental measurements with qualitative social surveys. The study focuses on 12 observation plots within the semi-public areas of Transpark Apartment, Cibubur because it has a variety of Micro UGS in communal gardens, corridors, and public areas, as well as an average LST of 31.72 °C (Rizki et al., 2024a).

The research was conducted through a structured and sequential methodological framework designed to integrate objective microclimatic measurements with subjective user perceptions. The preparation phase consisted of site identification and reconnaissance, followed by the purposive selection of twelve observation plots representing a range of vegetation densities within the semi-public spaces of the study area. This stage also included the calibration of all measurement instruments to ensure data accuracy and consistency.

Quantitative data collection focused on microclimate monitoring and canopy analysis. Canopy coverage was assessed by capturing 180° hemispherical photographs at each observation plot at a standardized height of 1.2 meters above ground level, corresponding to the average human standing eye level(Kassagi et al., 2024). Concurrently, key microclimatic parameters were recorded and subsequently used for thermal comfort assessment. Qualitative data collection was conducted through the distribution of structured questionnaires to 58 residents, utilizing a five-point Likert scale to evaluate subjective thermal perception based on the Thermal Sensation Vote (TSV) method. Data analysis involved processing the hemispherical photographs using ImageJ software to calculate precise canopy coverage percentages by converting sky–canopy ratios into pixel-based measurements. Physiological Equivalent Temperature (PET) values were then calculated using the RayMan Pro model, integrating microclimatic variables with human physiological parameters to quantify outdoor thermal stress. In the final synthesis stage, canopy coverage percentages, PET values, and residents' thermal perception responses were systematically correlated to identify patterns and determine the optimal vegetation threshold required to enhance thermal comfort in semi-public spaces of vertical housing.

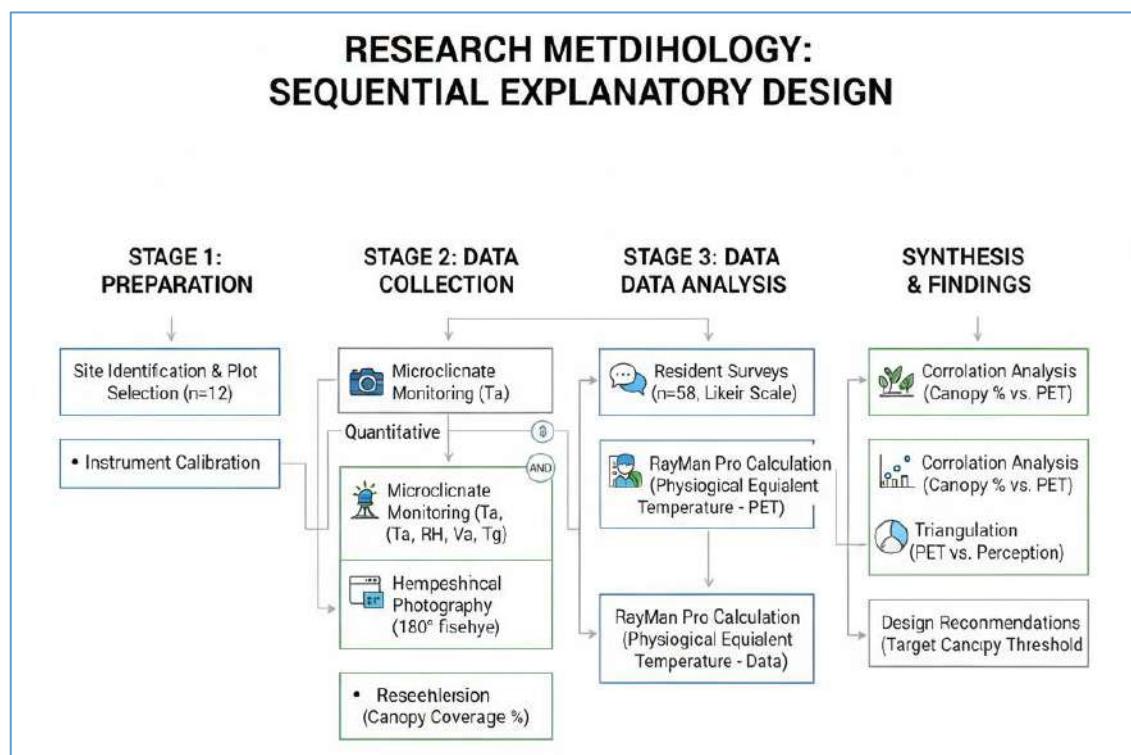


Figure 1 Research Methodology Flow
(Source: Author's Analysis, 2025)

The analytical framework of this study integrates objective microclimatic measurements with subjective human thermal perception to provide a comprehensive assessment of outdoor thermal comfort. Canopy coverage (X) was quantified as the ratio of vegetation foliage to open sky, derived from 180° hemispherical photographs and processed through binary pixel classification using ImageJ software. Thermal comfort (Y) was assessed using the Physiological Equivalent Temperature (PET) index, which integrates key microclimatic variables. PET values, expressed in degrees Celsius (°C), represent the level of physiological thermal strain experienced by the human body under outdoor conditions. Resident perception (Z) was incorporated as a validation variable, using Thermal Sensation Vote (TSV) responses to examine the consistency between objectively calculated PET values and the

thermal comfort subjectively experienced by occupants. The integration of these variables enables a triangulated analysis of the relationship between vegetation canopy density, microclimatic thermal conditions, and perceived comfort in semi-public spaces of vertical housing. The core of the methodology is the integration of physical environmental data and human perception.

3. RESULT AND DISCUSSION

The study was conducted at Transpark Cibubur Apartment, a middle-income high-rise residential complex located in Cimanggis District, Depok City, directly adjacent to East Jakarta. As part of a mixed-use development, the complex accommodates residential towers, commercial facilities, and semi-public open spaces that function as daily activity areas for residents. The analysis focused on micro-scale urban green spaces (UGS Micro), particularly semi-public outdoor areas that directly interact with occupants at close range.

Figure 2 Study Location and Research Areas
(Source: Author's Analysis, 2025)

Three semi-public spaces with distinct landscape characteristics were selected as observation zones: the West Communal Garden, the East Communal Garden, and the Swimming Pool Area. These spaces represent typical micro green spaces in middle-income vertical housing, serving social, recreational, and transitional functions. Given the humid tropical climate of the area, with daytime air temperatures commonly ranging between 30–34 °C, these spaces are highly exposed to thermal stress, making them suitable for evaluating the cooling role of vegetation canopy at the microclimatic scale.

Field observations indicated uneven distribution of tree canopy across the site. Several pedestrian paths and seating areas were exposed to direct solar radiation due to limited shading, while other zones benefited from denser tree cover. This spatial heterogeneity provided a suitable basis for examining how variations in canopy coverage influence microclimatic thermal conditions.

Table 1 Calculation of Canopy Coverage in the West Communal Garden Area

AREA: TAMAN KOMUNAL SISI BARAT						
Plot 1	Image	Hasil Image J	Pixel Canopy	Pixel Total	% Tutupan Canopy	Suhu °C
P1			715151	1191600	60.02	33.9
P2			641485	1267200	50.62	33.6
P3			448606	769680	58.28	33.2
P4			423603	709954	59.67	32.9
% Rata-Rata Tutupan Canopy dan Suhu					57.15	33.40

(Source: Author's Analysis, 2025)

The West Communal Garden exhibited moderate canopy coverage, ranging from 50.62% to 60.02%, with an average of 57.15%. Vegetation in this area primarily consisted of medium-sized trees with relatively uniform spacing, resulting in partial but discontinuous shading. In contrast, the Swimming Pool Area showed higher and more varied canopy coverage, ranging from 52.75% to approximately 70.00%, with an average of 60.20%. This area combined mature shading trees with open recreational spaces and water surfaces.

Table 2 Calculation of Canopy Coverage in the East Communal Garden Area

AREA: TAMAN KOMUNAL SISI TIMUR						
Plot 2	Image	Hasil Image J	Pixel Canopy	Pixel Total	% Tutupan Canopy	Suhu °C
P5			553308	921600	60.04	32.4
P6			534687	921600	58.02	32.1
P7			645101	921600	70.00	31.7
P8			451595	856080	52.75	31.4
% Rata-Rata Tutupan Canopy Suhu					60.20	31.90

(Source: Author's Analysis, 2025)

Table 3 Calculation of Canopy Coverage in the Swimming Pool Area

AREA: KOLAM RENANG						
Plot 3	Image	Image J	Pixel Canopy	Pixel Total	% Tutupan Canopy	Suhu °C
P9			628702	1807800	34.78	31
P10			629129	921600	68.26	30.7
P11			1440000	918077	156.85	30.4
P12			921600	536886	171.66	30.1
% Rata-Rata Tutupan Canopy dan Suhu					107.89	30.55
% Canopy Coverage UGS Mikro dan Suhu					75.08	31.95

(Source: Author's Analysis, 2025)

The East Communal Garden displayed the highest spatial heterogeneity, with canopy coverage ranging from as low as 34.78% to above 65%. This variation reflects uneven planting patterns, where certain plots were dominated by open grass and hardscape, while others were located beneath dense tree canopies. Although some plots recorded canopy values exceeding 100% due to overlapping crowns and image processing limitations, these values were interpreted comparatively to indicate very dense canopy conditions rather than absolute measurements. Overall, the findings demonstrate that canopy distribution within a single apartment complex is far from uniform and creates distinct microclimatic conditions at the human scale.

3.1 Termal Comparative Thermal Performance of Semi-Public Spaces

The results reveal clear differences in thermal performance associated with variations in vegetation canopy and landscape configuration. A comparison of average canopy coverage and Physiological Equivalent Temperature (PET) across three semi-public spaces at Transpark Cibubur Apartment can be seen in Fig. 3. The Swimming Pool Area exhibits the best thermal condition, with the highest average canopy coverage (75.08%) and the lowest PET value (31.2 °C). This indicates that dense tree canopy, combined with the presence of water elements, effectively reduces microclimatic heat stress. In contrast, the West Communal Garden shows the lowest canopy coverage (57.15%) and the highest PET value (36.4 °C), reflecting substantial thermal stress due to limited shading and extensive hardscape surfaces.

The East Communal Garden demonstrates intermediate performance, with an average canopy coverage of 60.20% and a PET value of 34.8 °C. Although thermally better than the West Communal Garden, conditions in this area remain above the comfort threshold for humid tropical climates. Overall, the comparison confirms an inverse relationship between canopy coverage and PET at the micro scale, highlighting vegetation canopy as a key factor in improving outdoor thermal comfort in semi-public spaces of middle-income vertical housing.

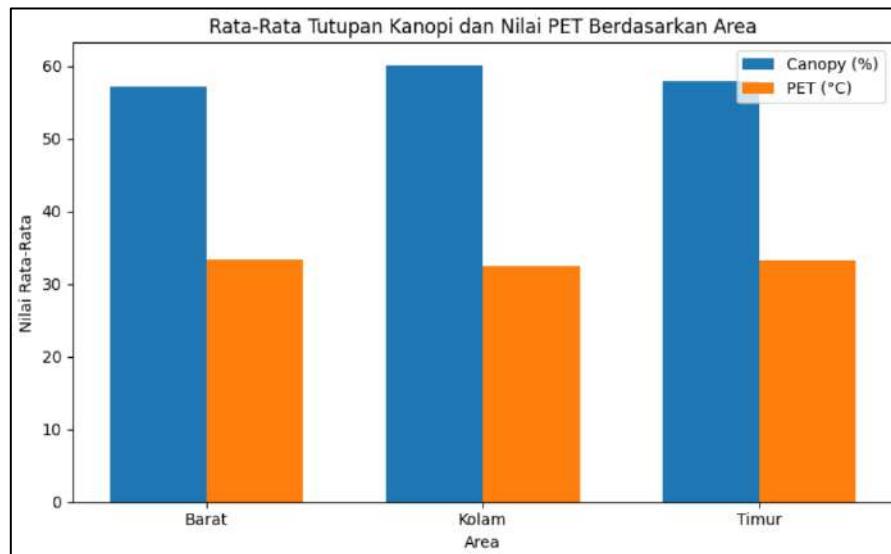


Figure 3 Canopy Coverage by Area
(Source: Author's Analysis, 2025)

3.2 Relationship Between Canopy Coverage and PET

Regression analysis reveals a strong negative relationship between canopy coverage and PET across the 12 measurement plots. As canopy coverage increased from 34.78% to 71.66%, PET values decreased from 38.2 °C to 30.1 °C. The linear regression model yielded the following equation:

$$\text{PET} = 52.84 - 0.289 \times (\% \text{ canopy coverage})$$

with $R^2 = 0.892$ and $p < 0.001$.

This result indicates that approximately 89% of the variation in PET can be explained by differences in canopy coverage alone. Practically, an increase of 10% in canopy coverage corresponds to an average PET reduction of approximately 2.9 °C at the microclimatic scale. Such a reduction is physiologically meaningful in humid tropical environments, where small temperature decreases can substantially improve outdoor comfort. These findings reinforce the role of tree canopy as a primary determinant of thermal comfort in semi-public outdoor spaces of vertical housing, even without extensive land availability.

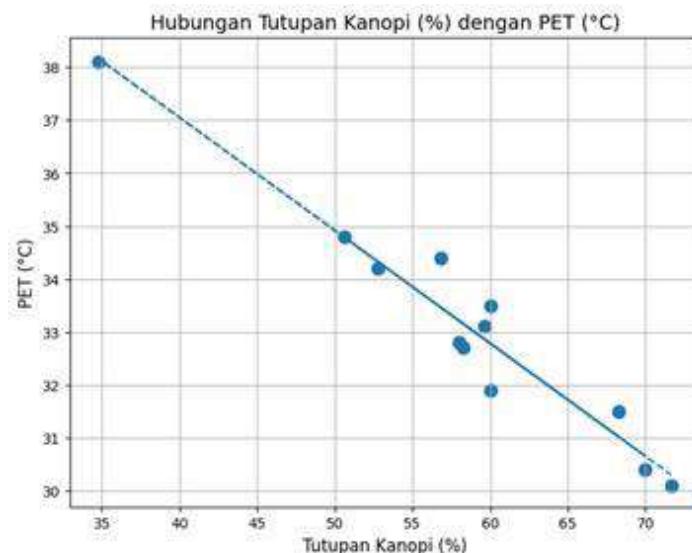


Figure 4 Relationship Between Canopy Coverage and PET
(Source: Author's Analysis, 2025)

3.3 Micro-scale Thermal Hotspot and Cool Spots

The spatial distribution of PET values reveals the presence of distinct micro-scale thermal hotspots and cool spots within the apartment complex. Plots with canopy coverage exceeding 70% consistently functioned as cool spots, with PET values close to or below 32 °C. These areas were typically located beneath dense tree canopies and, in some cases, adjacent to water elements.

Figure 5 Variation of Canopy Coverage by Plot
(Source: Author's Analysis, 2025)

Conversely, plots with canopy coverage below 50% formed localized thermal hotspots, particularly where hardscape surfaces dominated and solar exposure was unobstructed. The maximum PET difference between plots reached 8.1 °C, despite their close proximity, highlighting the importance of localized landscape configuration rather than broader urban context alone. This pattern demonstrates that thermal comfort in vertical housing environments is highly sensitive to micro-scale design decisions, especially the spatial arrangement and density of vegetation canopy.

3.4 Integration of Objective Measurements and User Perceptions

A survey of 58 residents indicates that perceived thermal comfort is consistent with the objective measurement results. The majority of respondents rated the communal gardens as “insufficiently shaded” (mean score 2.69) and “thermally uncomfortable” during daytime hours (2.74), whereas the swimming pool area was perceived as “significantly cooler” (4.43). Approximately 95% of respondents expressed strong support for the addition of large-canopy trees, underscoring the perceived need to enhance vegetation coverage. Triangulation with PET measurements reveals that areas with the highest thermal stress, namely the communal gardens, are the least frequently used, while areas with the lowest PET values, particularly the swimming pool area, are perceived as the most comfortable and are used more intensively. These findings confirm that thermal comfort is a key determinant of micro-scale green space utilization in vertical housing environments.

Semi-structured interviews with apartment management further reinforce these findings. The management acknowledged that complaints regarding excessive heat in

communal gardens are recurrent and identified limited planting space and the predominance of narrow-canopy tree species (such as palms and ketapang) as primary constraints to increasing canopy coverage. The swimming pool area is informally used as an internal benchmark due to its consistently cooler thermal conditions, which result from the combined effects of vegetation shading and water elements. Management expressed support for the addition of large trees, provided that non-invasive root systems are selected and maintenance costs remain manageable. These insights demonstrate that increasing canopy coverage is not only scientifically justified but also socially and institutionally supported.

Table 4 Residents' Perceptions and Management Perspectives on Thermal Comfort

Aspect	Resident Survey Findings (n = 58)	Management Interview Findings	Implications for the Study
Perception of vegetation in communal gardens	Vegetation is perceived as "insufficiently shaded" (Mean = 2.69).	Acknowledges the dominance of narrow-canopy tree species (e.g., palms and ketapang).	Indicates the need to increase canopy coverage in communal gardens.
Perception of thermal comfort	Communal gardens are perceived as "thermally uncomfortable" during daytime hours (Mean = 2.74).	Heat-related complaints from residents are a recurring issue.	Consistent with high PET values recorded in these areas.
Comparison between swimming pool area and communal gardens	The swimming pool area is perceived as "significantly cooler" (Mean = 4.43).	The swimming pool area is used as an internal benchmark for thermal comfort.	The combination of vegetation shading and water elements yields the best thermal performance.
Frequency of space use	Communal gardens are infrequently used due to excessive heat.	More shaded areas are consistently more actively used.	Confirms thermal comfort as a key determinant of space utilization.
Resident support for additional trees	95% of respondents agree or strongly agree with adding large-canopy trees.	Strong institutional support, provided non-invasive root systems are used.	Indicates strong social and institutional support for implementation.
Constraints to increasing canopy coverage	–	Limited planting space, structural risks, and high maintenance costs.	Highlights the importance of selecting appropriate tree species with non-invasive roots.

(Source: Author's Analysis, 2025)

3.5 Implications for Design and Sustainable Development

The findings confirm that optimizing canopy coverage in micro-scale urban green spaces is an effective nature-based strategy for mitigating urban heat stress in middle-income vertical housing. Targeting canopy coverage levels of approximately 70–75% enables semi-public spaces to function as thermal refuges, even under peak daytime heat conditions. From a sustainability perspective, these results support SDG 11 (Sustainable Cities and Communities) by improving the quality and usability of semi-public green spaces, and SDG 13

(Climate Action) through climate adaptation strategies at the micro-urban scale. By focusing on vegetation-based solutions that are spatially efficient and cost-effective, this approach is particularly relevant for dense tropical cities facing land constraints.

4. CONCLUSION

This study demonstrates that vegetation canopy coverage plays a decisive role in mitigating Urban Heat Island (UHI) effects at the micro-scale of vertical residential environments in Jakarta. Empirical evidence from Transpark Apartment, Cibubur, reveals a strong inverse relationship between canopy density and Physiological Equivalent Temperature (PET), with a coefficient of determination exceeding 0.85. The results indicate that canopy coverage of approximately 75% is sufficient to reduce PET values to 31.2°C, corresponding to the upper threshold of outdoor thermal comfort in humid tropical climates, whereas areas with canopy coverage below 58% experience PET values above 36°C, indicative of severe heat stress. The consistency between objectively calculated PET values and residents' subjective thermal perception, as reflected in the Thermal Sensation Vote (TSV), confirms the reliability of PET as an indicator of outdoor thermal comfort in semi-public residential spaces. Importantly, the findings highlight that micro-scale urban green spaces (Micro-UGS) embedded within residential boundaries provide significantly greater immediate physiological cooling—approximately 4.8 times more effective—than city-scale greening interventions. This study contributes to the growing body of microclimate research by establishing a quantitative canopy coverage threshold for thermally functional semi-public spaces in vertical housing, offering evidence-based design guidance for architects, developers, and urban policymakers seeking to enhance climate resilience in dense tropical cities.

Based on the synthesis of quantitative microclimatic data and residents' social survey responses, this study formulates several design-oriented recommendations for future vertical housing developments in tropical urban contexts. The findings indicate that a minimum vegetation canopy coverage of approximately 70–75% should be targeted for semi-public and communal outdoor spaces in order to effectively transform these areas into functional thermal refuges during peak heat periods. To achieve this threshold, vegetation strategies should prioritize broad-leaved shade trees with a high Leaf Area Index (LAI), rather than predominantly ornamental planting, with trees strategically clustered to ensure continuous shading along pedestrian circulation routes and activity zones. Beyond design considerations, the results suggest that outdoor thermal comfort criteria particularly PET-based performance targets should be formally integrated into building management guidelines and green building certification systems for high-rise residential developments in Indonesia. Improving the microclimatic performance of communal spaces not only enhances thermal comfort but also reinforces their social function as active shared environments, thereby contributing to the achievement of Sustainable Development Goal 11 and improving overall urban quality of life. In this context, the strategic management of tree canopy density should be understood not as an aesthetic preference, but as a critical climate-adaptation strategy for sustaining livable vertical housing in tropical megacities.

REFERENCES

Beatley, T. (2016). *Handbook of biophilic city planning and design*. Island Press.

Amzad Rachi, A., Ahasan Srijon, N., Nahin Priota, R., & Fahim Faisal, S. M. (2025). *Impact of Street Greenery on Outdoor Thermal Comfort in the Context of Urban Microclimate of Dhaka City*. <https://doi.org/10.51584/IJRIAS>

Ciftcioglu, G. C. (2017). Assessment of the resilience of socio-ecological production landscapes and seascapes: A case study from Lefke Region of North Cyprus. *Ecological Indicators*, 73, 128–138. <https://doi.org/10.1016/j.ecolind.2016.09.036>

Emmanuel, R., & Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. *Building and Environment*, 53, 137–149. <https://doi.org/10.1016/j.buildenv.2012.01.020>

Estrada-Carmona, N., Hart, A. K., DeClerck, F. A. J., Harvey, C. A., & Milder, J. C. (2014). Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. *Landscape and Urban Planning*, 129, 1–11. <https://doi.org/10.1016/j.landurbplan.2014.05.001>

Kassagi, M. F. A., Ario, R., & Soenardjo, N. (2024). Kajian Persentase Tutupan Kanopi Mangrove Menggunakan Metode Hemispherical Photography di Desa Sambiroto dan Desa Keboromo, Kabupaten Pati, Jawa Tengah. *Journal of Marine Research*, 13(1), 51–59. <https://doi.org/10.14710/jmr.v13i1.35424>

Putri, A., & Subekti Ir, B. (n.d.). *Pendekatan Arsitektur Biofilik pada Rancangan Parahyangan Avenue Mall*.

Rizki, A. R., Tumuyu, S. S., & Rushayati, S. B. (2024a). The Impact of Urban Green Space on The Urban Heat Island Phenomenon – A Study Case in East Jakarta, Indonesia. *Geoplanning*, 11(1), 31–42. <https://doi.org/10.14710/geoplanning.11.1.31-42>

Rizki, A. R., Tumuyu, S. S., & Rushayati, S. B. (2024b). The Impact of Urban Green Space on The Urban Heat Island Phenomenon – A Study Case in East Jakarta, Indonesia. *Geoplanning*, 11(1), 31–42. <https://doi.org/10.14710/geoplanning.11.1.31-42>

Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. In *Energy and Buildings* (Vol. 207). Elsevier Ltd. <https://doi.org/10.1016/j.enbuild.2019.109482>

Saputri, H. N., Dwi Dasanto, B., & Hidayati, R. (2023). *Tingkat Kenyamanan Termal Lingkungan Kampus IPB Dramaga Menggunakan Pendekatan Physiological Equivalent Temperature (PET)*. 21, 299–307. <https://doi.org/10.14710/jil.21.2.299-307>

Setiowati, R., Hasibuan, H. S., & Bidang, K. K. (n.d.). *STUDI KOMPARASI PERENCANAAN RUANG TERBUKA HIJAU PERKOTAAN ANTARA JAKARTA DAN SINGAPURA Raldi Hendro TS Koestoe*. <https://doi.org/10.29244/jli.12.2.2020.54-62>

Taleb, H. M., & Kayed, M. (2021). Applying porous trees as a windbreak to lower desert dust concentration: Case study of an urban community in Dubai. *Urban Forestry and Urban Greening*, 57. <https://doi.org/10.1016/j.ufug.2020.126915>

Zijlema, W. L., Triguero-Mas, M., Cirach, M., Gidlow, C., Kruize, H., Grazuleviciene, R., Nieuwenhuijsen, M. J., & Litt, J. S. (2020). Understanding correlates of neighborhood aesthetic ratings: A European-based Four City comparison. *Urban Forestry and Urban Greening*, 47. <https://doi.org/10.1016/j.ufug.2019.126523>

maria winandari

REVISI JOURNAL - ANINDITA GH AISANI - 152012400015

 publikasi

Document Details

Submission ID

trn:oid:::3618:128216916

14 Pages

Submission Date

Feb 14, 2026, 8:03 AM GMT+7

3,912 Words

Download Date

Feb 14, 2026, 8:06 AM GMT+7

24,092 Characters

File Name

REVISI JOURNAL - ANINDITA GH AISANI - 152012400015.docx

File Size

2.0 MB

7% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography

Exclusions

- ▶ 14 Excluded Matches

Match Groups

- **26** Not Cited or Quoted 5%
Matches with neither in-text citation nor quotation marks
- **6** Missing Quotations 1%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 2% Internet sources
- 2% Publications
- 6% Submitted works (Student Papers)

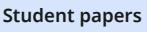
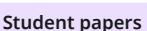
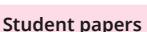
Integrity Flags

0 Integrity Flags for Review

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups




- 26 Not Cited or Quoted 5%
Matches with neither in-text citation nor quotation marks
- 6 Missing Quotations 1%
Matches that are still very similar to source material
- 0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- 0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 2% Internet sources
- 2% Publications
- 6% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1		Student papers
	Issaquah School District on 2022-07-05	<1%
2		Student papers
	The British University in Dubai on 2025-10-28	<1%
3		Publication
	Zhaowen Xu, Jin Rui. "The mitigating effect of green Space's spatial and temporal ...	<1%
4		Publication
	Ariva Sugandi Permana. "Urban Engineering", Routledge, 2025	<1%
5		Student papers
	Kaplan International Colleges on 2025-03-09	<1%
6		Student papers
	Salisbury University on 2021-10-02	<1%
7		Student papers
	University of Birmingham on 2026-02-04	<1%
8		Student papers
	University of Hong Kong on 2025-07-15	<1%
9		Student papers
	Coventry University on 2024-11-25	<1%
10		Publication
	Haitao Lian, Zhenghui Han, Zeyu Ma, Yulin Yang, Hou Yikai. "The influence of buil...	<1%

11 Student papers

Universitas Pendidikan Indonesia on 2024-08-20 <1%

12 Internet

jurnal.ahmar.id <1%

13 Internet

www.mdpi.com <1%

14 Student papers

University of Kent at Canterbury on 2024-12-08 <1%

15 Student papers

University of Portsmouth on 2020-04-07 <1%

16 Student papers

Deakin University on 2014-02-01 <1%

17 Student papers

RMIT University on 2021-10-04 <1%

18 Student papers

University of Aberdeen on 2024-08-09 <1%

19 Internet

assets-eu.researchsquare.com <1%

20 Internet

thesis.univ-biskra.dz <1%

21 Internet

www.coursehero.com <1%

22 Student papers

RMIT University on 2017-07-11 <1%