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Abstract. We present a model for optimizing laser-cutting process parameters to improve fabric-
cutting quality in the textile industry. We use two methods to predict fabric-cutting quality based 
on customized laser-cutting parameters, Response Surface Methodology (RSM) and Artificial 
Neural Network (ANN). RSM had an R-squared (𝑅ଶ) value of 0.952, showing high accuracy. As 
a result of varying iterations and nodes, the results of the ANN models were different. As a result 
of 10,000 iterations on an architecture with six nodes and one hidden layer, the ANN model with 
an R-squared of 0.998 was the best optimization model. The novelty of this study found that ANNs 
with six nodes and 10,000 iterations optimize the laser cutting process for fabrics more effectively 
than models with fewer nodes and fewer iterations. RSM and ANNs are effective tools for 
improving fabric-cutting quality in specific applications, as well as providing theoretical 
contributions through this research. 
Keywords: laser cutting, textile industry, response surface methodology (RSM), artificial neural 
networks (ANNs), process optimization. 

1. Introduction 

The fabric-cutting process in the Textile and Textile Products (TPT) industry holds significant 
importance and cannot be overlooked [1-3]. This process is crucial as it directly influences the 
final quality of the product and the profitability of the company. The precision and quality of fabric 
cutting have a direct impact on the final output of textile products, while the efficiency of the 
cutting process affects the overall production costs, thereby influencing the company’s 
profitability [4]. Consequently, the demand for high-quality fabric cutting has spurred 
advancements in the process, utilizing state-of-the-art technology to achieve optimized 
fabric-cutting outcomes. Laser cutting has emerged as a prominent technique in the textile industry 
for fabric cutting [5]. This method ensures high precision and efficiency, thereby enhancing 
product quality and reducing overall production costs [5]. Laser cutting quality is predominantly 
influenced by two machine parameters – speed and power – and one material variable, fabric 
thickness. The interplay of these three factors critically determines the overall cutting quality 
[5-7]. These parameters must be meticulously adjusted to achieve optimal cutting outcomes. 
Presently, the adjustment of these parameters is conducted manually, often relying on a trial-and-
error approach to ascertain the most effective combination for each specific cutting task. However, 
the manual adjustment of these parameters is time-consuming and often results in suboptimal 
fabric-cutting processes using laser technology [8]. Therefore, developing a mathematical model 
to standardize the settings of laser cutting parameters is imperative. This approach aims to enhance 
the efficiency of the cutting process and ensure the production of fabric pieces of the highest 

https://crossmark.crossref.org/dialog/?doi=10.21595/mme.2024.24204&domain=pdf&date_stamp=2024-07-31
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quality. Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) are two 
prominent mathematical approaches widely employed to model parameter responses across 
various disciplines, including science and engineering. Artificial Neural Networks (ANNs) are 
computational models inspired by the structure and functioning of biological neural networks in 
humans. These models are adept at recognizing intricate and abstract patterns [9], [10]. In contrast, 
Response Surface Methodology (RSM) comprises a collection of statistical techniques used for 
modeling and analyzing the responses of complex systems within experimental settings. RSM aids 
in exploring the relationships between independent variables and system responses and optimizing 
these responses [11], [12]. Both approaches offer distinct advantages and disadvantages, 
depending on the specific requirements and nature of the problem under consideration. In some 
cases, integrating these methodologies can lead to optimal results [13-15]. This study employs 
Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) to develop 
models aimed at optimizing laser-cutting parameters to achieve superior fabric-cutting quality and 
enhanced production efficiency. The application of ANNs and RSM in this research represents a 
novel contribution to the field. Notably, this study is the first to formulate a model for fine-tuning 
laser-cutting process parameters, which are crucial in determining the quality and efficiency of 
fabric-cutting outcomes. The findings of this research have significant implications for the Textile 
and Textile Products (TPT) industry, enhancing the reliability of the production process. The 
developed model enables the optimal adjustment of laser-cutting process parameters, thereby 
ensuring the production of high-quality fabric pieces. Additionally, the model reduces the time 
required to fine-tune these parameters, which is traditionally a time-consuming process. 
Consequently, improving the efficiency and effectiveness of the laser cutting process substantially 
contributes to elevating the overall quality of product manufacturing within the TPT industry. 

2. Research and method 

Fig. 1 illustrates the research design, which encompasses four stages: (1) data collection, 
(2) data preparation, (3) model development, and (4) evaluation of the model results pertaining to 
the tuning of laser cutting process parameters and their impact on the quality of fabric cuttings. 

 
Fig. 1. Research design 

The study employs three key laser cutting process parameters: power (%), speed (m/s), and 
fabric surface density (g/m2), to evaluate the quality of fabric cuttings. Power indicates the 
percentage of power used during the cutting process, speed refers to the velocity of the laser 
cutting movement measured in meters per second, and fabric surface density represents the weight 
of the fabric per unit area. These parameters are considered independent variables that influence 
the quality of the fabric cut, which serves as the dependent variable. Table 1 details the 
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specifications of the variables used in developing the fabric cut quality prediction model. 

Table 1. Specification model 
Parameter Unit Function 

Quality of cutting Index Dependent variable 
Power % 

Independent variable Speed m/s 
Fabric surface density g/m2 

3. Result and discussion 

3.1. Data collection 

The experimental data from the Textile and Textile Products (TPT) industry were meticulously 
gathered by experts adhering to the industry-specific standards. Table 2 shows the three process 
parameters as the independent variables, with piece quality serving as the dependent variable. 

Table 2. Data collection 

Sample 
Input Output 𝑥ଵ (Power (%)) 𝑥ଶ (Speed (m/s)) 𝑥ଷ  

(Fabric surface density (g/m2)) 𝑦ො (Quality) 

1 26 98 238.5 3 (Moderate Quality) 
2 26 103 250.8 3 (Moderate Quality) 
3 26 108 263.2 2 (Good Quality) 
4 26 113 275.5 1 (Excellent quality) 
5 26 118 287.9 1 (Excellent quality) 
6 31 98 277.9 3 (Moderate Quality) 
7 31 103 290.2 3 (Moderate Quality) 
8 31 108 302.5 3 (Moderate Quality) 
9 31 113 314.9 3 (Moderate Quality) 
10 31 118 327.3 4 (Poor Quality) 

Table 3. Data normalization 𝑥ଵ (Power (%)) 𝑥ଶ (Speed (m/s)) 𝑥ଷ (Fabric surface density (g/m2)) 𝑦ො (Quality) 
0 0 0 0.666666667 
0 0.25 0.139065614 0.666666667 
0 0.5 0.278131228 0.333333333 
0 0.75 0.417196843 0 
0 1 0.556262457 0 
1 0 0.443658721 0.666666667 
1 0.25 0.582724335 0.666666667 
1 0.5 0.721789949 0.666666667 
1 0.75 0.860855563 0.666666667 
1 1 0.999921177 1 

3.2. Data preparation 

To prepare data for Artificial Neural Network (ANN) modeling, standardization and 
normalization are essential procedures to ensure data uniformity. Beyond aiding the ANN training 
process, normalization can improve the model’s convergence. In this study, normalization is 
conducted using the 𝑋௠௜௡ − 𝑋௠௔௫ method, as in Eq. (1): 𝑋ᇱ =  𝑋 − 𝑋௠௜௡𝑋௠௔௫ − 𝑋௠௜௡, (1)
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where 𝑋ᇱ represents the normalized data, where 𝑋௠௜௡ is the smallest value in the dataset, and 𝑋௠௔௫ is the highest value in the dataset. Table 3 shows the results of the data normalization. 

3.3. development 

3.3.1. ANN model for quality of cutting  

The ANN model has three input neurons, which indicate power, speed, and fabric surface 
density. The output layer determines laser cutting quality. Eqs. (2) and (3) can be used to express 
the hidden layer output ( 𝑣௟) as well as the quality of the laser cutting result (𝑦): 𝑣௜ =  ෍෍𝑤௜௝𝑥௜௝ + 𝛽, (2)𝑦 = ൫ሺ𝜑ሺ𝑠௜ሻ + 𝛽ሻ൯, (3)

where 𝑣௜ represents the value of the hidden layer neuron, 𝑥௜௝  denotes the input neuron, 𝛽 is the 
bias, 𝑤௜௝ signifies the weight from the input to the hidden layer, 𝜑 is the activation function, and 
in this study, a sigmoid activation function is employed 𝑦 represents the weight of the output 
neuron. In this research, ANN architecture was created that incorporates three types of nodes into 
a single hidden layer. These variants were used to determine the best model, which was defined 
by minimal evaluation criteria. Fig. 2 shows the structure of the Perceptron used in this first model. 

 
Fig. 2. Neural network architecture model of perceptron 

3.3.1.1. Perceptron model  

The model employed consists of three input neurons and one output neuron, as illustrated in 
Fig. 2. The determination of weights, as referenced in Eq. (2), can be derived through Eqs. (4) to 
(6): ሺ𝑣ଵሻ = (𝑤ଵଵ𝑥ଵ) + (𝑤ଵଶ𝑥ଶ) + ((𝑤ଵଷ𝑥ଷ) +  𝛽, (4)(𝑣ଶ) = (𝑤ଶଵ𝑥ଵ) + (𝑤ଶଶ𝑥ଶ) + (𝑤ଶଷ𝑥ଷ) + 𝛽, (5)(𝑣ଷ) = (𝑤ଷଵ𝑥ଵ) + (𝑤ଷଶ𝑥ଶ) + (𝑤ଷଷ𝑥ଷ) + 𝛽. (6)

Then, in matrix form, the sum of the weights (𝑣௜) can be expressed in equations follows: 

(𝑣௜) = ൭𝑣ଵ𝑣ଶ𝑣ଷ൱ = ൭𝑤ଵଵ𝑥ଵ 𝑤ଵଶ𝑥ଶ 𝑤ଵଷ𝑥ଷ𝑤ଶଵ𝑥ଵ 𝑤ଶଶ𝑥ଶ 𝑤ଶଷ𝑥ଷ𝑤ଷଵ𝑥ଵ 𝑤ଷଶ𝑥ଶ 𝑤ଷଷ𝑥ଷ൱  ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ + ൭𝛽ଵ𝛽ଶ𝛽ଷ൱ 
      = ቆ𝑤ଵଵ𝑥ଵ 𝑤ଵଶ𝑥ଶ 𝑤ଵଷ𝑥ଷ0 0 00 0 0 ቇ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ + ൭𝛽ଵ𝛽ଶ𝛽ଷ൱ =  𝑤ଵଵ𝑥ଵ + 𝑤ଵଶ𝑥ଶ + 𝑤ଵଷ𝑥ଷ, (7)
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𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 = (𝑤ଵ   𝑤ଶ    𝑤ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ + ൭𝛽ଵ𝛽ଶ𝛽ଷ൱= (−0.3246   − 1.1754   − 1.3678) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ + ൭𝛽ଵ𝛽ଶ𝛽ଷ൱ (8)

A simple one-node model can be stated as follows, where 𝑖 is the node’s index and 𝑗 is the 
index of the input 𝑥. In a one-node output model with three inputs, the bias 𝛽 can be ignored as it 
is a factor related to information storage and acquired as a constant in the model. To calculate this 
result, we use the activation function 𝜑(𝑣௜) in Eq. (10): 

𝑦 = ൫𝜑(𝑣௜)൯ = ൬ 11 + 𝑒ି௩೔൰ = ൬ 11 + 𝑒ି((ି଴.ଷଶସହ௫భ)ା( ିଵ,ଵ଻ହସ௫మ)ା(ିଵ,ଷ଺଻଼௫య)) ൰. (9)

3.3.1.2. The feed forward ANNs with four nodes in one hidden layer 

In the second ANN model architecture, a feed-forward propagation model was constructed, 
comprising four nodes within a single hidden layer. This architecture was evaluated under two 
different iteration scenarios: the first with 1,000 iterations and the second with 10,000 iterations. 
The effectiveness of both models was assessed using the correlation coefficient and mean absolute 
percentage error (MAPE). Fig. 3 depicts the architecture of this ANN model. 

 
Fig. 3. Architecture ANNs with four node one hidden layer 

In Fig. 3, the arrows and circles represent the signal flow and neurons, respectively. The weight 
matrices of the first and second layers are denoted by the terms (𝑤௜௝) and (𝑤௜௝ଶ ). The weighted sum 
can be determined using Eqs. (10) and (11): Ψ௜ = ෍෍𝑤௜௝ 𝑥௝ , (10)൭Ψ௜⋮Ψସ൱ସൈଵ =  ቀ𝑤ଵଵ⋮ …𝑤ସଷቁସൈଷ ൭𝑥ଵ⋮𝑥ଶ൱ଷൈଵ. (11)

The terms 𝜓௜ and 𝑤௜௝ are the weighted sum of the first layer and the first layer weight matrix, 
respectively. The terms 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ are the input parameters. The neuron feeds the weighted 
sum into the sigmoid function and produces the result shown in Eq. (12): 
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൮𝜙ଵ𝜙ଶ𝜙ଷ𝜙ସ൲ସ×ଵ
=  ൮𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)൲ସ×ଵ

. (12)

Eq. (12) is the input of the second layer, which results in a weighted sum, 𝜋௜, at the second 
layer, as seen in Eqs. (13) and (14): 𝜋௜ = ෍෍𝑤௜௝(ଶ) 𝜍(𝜓௝), (13)

𝜋௜ = (𝑤ଵଵ(ଶ) … 𝑤ଵସ(ଶ))ଵ×ସ ൮𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)൲ସ×ଵ
. (14)

The neuron inputs the weighted sum into a linear function, which generates the output. The 
neuron’s properties is characterized by this linear output function, as expressed in Eqs. (15) and 
(16): 

𝑑 = 𝜆(𝜋௜) = 𝜆෍෍𝑤௜௝(ଶ) 𝜍(𝜓௝) = (𝑤ଵଵ(ଶ) … 𝑤ଵସ(ଶ))ଵ×ସ ൮𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)൲ସ×ଵ
, (15)

𝑑 = (𝑤ଵଵ(ଶ) … 𝑤ଵସ(ଶ))ଵ×ସ  ൮𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)൲ସ×ଵ
, (16a)

𝑑 = 𝜆 (𝑤ଵଵ(ଶ) … 𝑤ଵସ(ଶ))ଵ×ସ 𝜍 ൭ቀ𝑤ଵଵ⋮ …𝑤ସଷቁ(ସ×ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ଷ×ଵ൱. (16b)

The constants derived through the optimization process in Eqs. (15), (16a) and (16b), as well 
as the ANN architecture with four nodes in one hidden layer for 1,000 and 10,000 iterations, are 
detailed in Eq. (17a) and (17b): 

𝑑 = 𝜆 (−1.8721 … −3.5394)ଵ×ସ 𝜍 ൭ቀ0.5302⋮ …−1.8221ቁ(ସ×ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ଷ×ଵ൱, (17a)

𝑑 = 𝜆 (−14.9769 … 4.0604)ଵ×ସ 𝜍 ൭ቀ0.9360⋮ …0.3716ቁ(ସ×ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ଷ×ଵ൱. (17b)

3.3.1.3. Feed-forward ANNs with a sixth node in one hidden layer 

In the third ANN model architecture, a feed-forward propagation model was developed, 
comprising six nodes within a single hidden layer. This architecture was subsequently tested with 
two different iteration scenarios: the first with 1,000 iterations and the second with 10,000 
iterations. The effectiveness of both models under these iteration variations was then assessed 
using the correlation coefficient and Mean Absolute Percentage Error (MAPE) metrics. Fig. 4 
illustrates the architecture of this ANN model. 
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Fig. 4. Architecture ANNs with sixth node one hidden layer 

In Fig. 4, the arrows and circles represent the signal flow and neurons, respectively. The weight 
matrices of the first and second layers are denoted by the terms (𝑤௜௝) and (𝑤௜௝ଶ ). The weighted sum 
can be determined using Eqs. (18) and (19): Ψ௜ = ෍෍𝑤௜௝ 𝑥௝ , (18)൭Ψ௜⋮Ψ଺൱଺×ଵ =  ቀ𝑤ଵଵ⋮ …𝑤ସଷቁ଺×ଷ ൭𝑥ଵ⋮𝑥ଶ൱ଷ×ଵ. (19)

The terms 𝜓௜ and 𝑤௜௝ are the weighted sum of the first layer and the first layer weight matrix, 
respectively. The terms 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ are the input parameters. The neuron feeds the weighted 
sum into the sigmoid function and produces the result shown in Eq. (20): 

⎝⎜
⎜⎛
𝜙ଵ𝜙ଶ𝜙ଷ𝜙ସ𝜙ହ𝜙଺⎠⎟
⎟⎞
଺×ଵ

=  
⎝⎜
⎜⎛
𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)𝜍(𝜓ହ)𝜍(𝜓଺)⎠⎟

⎟⎞
଺×ଵ

. (20)

Eq. (20) is the input of the second layer, which results in a weighted sum, 𝜋௜, at the second 
layer, as seen in Eqs. (21) and (22): 𝜋௜ =  ෍෍𝑤௜௝(ଶ) 𝜍(𝜓௝), (21)

𝜋௜ =  (𝑤ଵଵ(ଶ) … 𝑤ଵ଺(ଶ))ଵ×଺
⎝⎜
⎜⎛
𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)𝜍(𝜓ହ)𝜍(𝜓଺)⎠⎟

⎟⎞
଺×ଵ

. (22)

The neuron passes the weighted sum to a linear function, which generates the output. The 
linear output function, as given in Eqs. (23) and (24), identifies the neurons function: 
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𝑑 = 𝜆(𝜋௜) = 𝜆෍෍𝑤௜௝(ଶ) 𝜍(𝜓௝) = (𝑤ଵଵ(ଶ) … 𝑤ଵ଺(ଶ))ଵ×଺
⎝⎜
⎜⎛
𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)𝜍(𝜓ହ)𝜍(𝜓଺)⎠⎟

⎟⎞
଺×ଵ

, (23)

𝑑 =  (𝑤ଵଵ(ଶ) … 𝑤ଵ଺(ଶ))ଵ×଺  
⎝⎜
⎜⎛
𝜍(𝜓ଵ)𝜍(𝜓ଶ)𝜍(𝜓ଷ)𝜍(𝜓ସ)𝜍(𝜓ହ)𝜍(𝜓଺)⎠⎟

⎟⎞
଺×ଵ

, (24a)

𝑑 =  𝜆 (𝑤ଵଵ(ଶ) … 𝑤ଵ଺(ଶ))ଵ×଺ 𝜍 ൭ቀ𝑤ଵଵ⋮ …𝑤଺ଷቁ(଺×ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ଷ×ଵ൱. (24b)

The constants derived through the optimization process in Eqs. (23), (24a) and (24b), as well 
as the ANN architecture with four nodes in one hidden layer for 1,000 and 10,000 iterations, are 
detailed in Eq. (25a) and (25b): 

𝑑 =  𝜆 (−3.1459 … −4.3038)ଵ×଺ 𝜍 ൭ቀ−4.8379⋮ …1.4698ቁ(଺×ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ଷ×ଵ൱, (25a)

𝑑 =  𝜆 (−5.8118 … 6.7229)ଵ×଺ 𝜍 ൭ቀ−4.0728⋮ …0.6634ቁ(଺×ଷ) ൭𝑥ଵ𝑥ଶ𝑥ଷ൱ଷ×ଵ൱. (25b)

The result of the mapping is measured based on three different ANN models, with different 
nodes in the hidden layer, and different iterations for each model. Table 4 shows the optimized 
results for the ANNs architecture model. 

Table 4. Result of ANNs model 

Actual Perceptron model One hidden layer (4 nodes) One hidden layer, (6 nodes) 
Iteration 1,000 Iteration 10,000 Iteration 1,000 Iteration 10,000 

3 2.5 3.2836 3.0694 3.3619 2.9725 
3 2.527 2.5426 2.9647 2.6119 3.0922 
2 2.5537 1.855 1.8676 1.8586 1.8928 
1 1.5807 1.4635 1.2769 1.4203 1.1776 
1 1.6074 1.279 1.1026 1.2223 1.0375 
3 2.7496 3.0604 3.1558 2.9011 3.0565 
3 2.7757 3.1381 3.025 3.0214 2.9716 
3 2.8015 3.2122 2.9053 3.1927 2.9074 
3 2.8273 3.2734 3.064 3.3598 3.1069 
4 3.8528 3.3169 3.85 3.481 3.8608 

3.3.2. RSM model for quality of cutting 

In this investigation, the RSM model is constructed based on three independent variables: 
Power (𝑥ଵ), speed (𝑥ଶ), and fabric surface density (𝑥ଷ), which collectively influence the Quality 
of Fabric Cutting (𝑄௧). The core equation of RSM is represented as follows Eq. (26): 𝑄௧ = 𝑎଴ + 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + 𝜖, (26)
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where, 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ denote the independent variables, specifically power, speed, and fabric 
surface density, respectively. The terms 𝑎଴, 𝑎ଵ, 𝑎ଶ, and 𝑎ଷ represent the regression model 
constants for the respective variables, while ε represents the model error. Fig 5 illustrates the 
architecture of the RSM model used. 

 
Fig. 5. RSM architecture model 

To obtain the constant value of Eq. (26), it can be determined by modeling it as illustrated in 
Eqs. (27) and (28): ෍ 𝑄௧௡௜ୀଵ = 𝑎଴ + 𝑎ଵ෍𝑥௜ଵ + 𝑎ଶ෍𝑥௜ଶ  + 𝑎ଷ෍𝑥௜ଷ , (27a)𝑄௧భ =  𝑎଴ + 𝑎ଵ𝑥ଵଵ + 𝑎ଶ𝑥ଵଶ 𝑎ଷ𝑥ଵଷ,    𝑄௧మ =  𝑎଴ + 𝑎ଵ𝑥ଶଵ + 𝑎ଶ𝑥ଶଶ + 𝑎ଷ𝑥ଶଷ, 𝑄௧೙ = 𝑎଴ + 𝑎ଵ𝑥௡ଵ + 𝑎ଶ𝑥௡ଶ + 𝑎ଷ𝑥௡ଷ, (27b)

ቌ𝑄௧భ:𝑄௧ೖቍ = ൭1 … 𝑥ଵ௞1 ⋰ ⋮1 … 𝑥௡௞൱൭𝑎଴:𝑎௞൱, (28a)𝑄௧೔ =  𝑥ଵ௞𝑎௞, (28b)𝑄௧ =  𝑋𝑎. (28c)

The difference between the experimental data, 𝑦 and the model 𝑄௧ is defined as the error (𝜖), 
which is as follows: ෍ ൫𝑦௜ − 𝑄௧೔൯ = 𝜖௡௜ୀଵ . (28d)

Using Eqs. (29) and (30), we use to find the model: 𝑎 = (𝑋்𝑋)ିଵ𝑋்𝑦, (29)𝑄௧೔ = 𝑋𝑎 = 𝑋(𝑋்𝑋)ିଵ𝑋்𝑦. (30)

Eq. (14) can be used to solve the linear equation produced by Eq. (26), resulting in the 
formulation shown in Eqs. (31) to (34): 𝑄௧ = 𝑎଴ + 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + 𝜖, 𝑄௧ଵ = 𝑎଴ + 𝑎ଵ26 + 𝑎ଶ98 + 𝑎ଷ238.5, 𝑄௧ଶ = 𝑎଴ + 𝑎ଵ26 + 𝑎ଶ103 + 𝑎ଷ250.8, 𝑄௧ଷ = 𝑎଴ + 𝑎ଵ26 + 𝑎ଶ108 + 𝑎ଷ263.2, 𝑄௧ସ =  𝑎଴ + 𝑎ଵ26 + 𝑎ଶ113 + 𝑎ଷ275.5, 𝑄௧ହ =  𝑎଴ + 𝑎ଵ26 + 𝑎ଶ118 + 𝑎ଷ287.9, 𝑄௧଺ =  𝑎଴ + 𝑎ଵ31 + 𝑎ଶ98 + 𝑎ଷ277.9, 

(31)
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𝑄௧଻ =  𝑎଴ + 𝑎ଵ31 + 𝑎ଶ103 + 𝑎ଷ290.2, 𝑄௧଼ =  𝑎଴ + 𝑎ଵ31 + 𝑎ଶ108 + 𝑎ଷ302.5, 𝑄௧ଽ =  𝑎଴ + 𝑎ଵ31 + 𝑎ଶ113 + 𝑎ଷ314.9, 𝑄௧ଵ଴ =  𝑎଴ + 𝑎ଵ31 + 𝑎ଶ118 + 𝑎ଷ327.3. 
Eq. (31) can be converted into matrix form as in Eq. (32): 

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛
𝑄௧భ𝑄௧మ𝑄௧య𝑄௧ర𝑄௧ఱ𝑄௧ల𝑄௧ళ𝑄௧ఴ𝑄௧వ𝑄௧భబ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎞

=
⎝⎜
⎜⎜⎜⎜
⎜⎛

1 261 2611111111

2626263131313131

98 238.5103 250.8 10811311898103 108113118

263.2275.5287.9277.9290.2302.5314.9327.3⎠⎟
⎟⎟⎟⎟
⎟⎞ቌ𝑎଴𝑎ଵ𝑎ଶ𝑎ଷቍ. (32)

The values of 𝑎଴, 𝑎ଵ, 𝑎ଶ in Eq. (31) are obtained through the parameter optimization method, 
as in Eq. (33): 

𝑎 = (𝑋்𝑋)ିଵ𝑋்𝑦 = ቎ 1029010802830
29081903078081070

108030780117140306590
283081070306590806320቏

ିଵ 

    ∙ ቎ 12698238.5
126103250.8

126108263.2
126113275.5

126118287.9
13198277.9

131103 290.2
131108302.5

131113314.9
131118327.3቏  

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
3321133334⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ 

    =  ቎122480−4610−1450590
−461017050−20

−14505020−10
590−20−100 ቏ 

    ∙ ൦ 12698238.5
126103250.8

126108263.2
126113275.5

126118287.9
13198277.9

131103 290.2
131108302,5

131113314.9
131118327.3൪  

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
3321133334⎦⎥⎥
⎥⎥⎥
⎥⎥⎤ 

    =  ቌ𝑎଴𝑎ଵ𝑎ଶ𝑎ଷቍ = ቌ492.15−18.15−5.86 2.34 ቍ. 

(33)
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Then, Eq. (34) is derived to assess the quality of fabric cutting results using laser cutting, as 
follows: 𝑄௧ =  492.15 − 18.15𝑥ଵ − 5.86𝑥ଶ + 2.34𝑥ଷ. (34)

In Table 5, Eq. (34) is used to calculate prediction calculations to assess the quality of fabric 
cutting after 𝑎଴, 𝑎ଵ, 𝑎ଶ, and 𝑎ଷ have been determined. 

Table 5. RSM model prediction results 
(Quality of fabric cutting) prediction (Quality of fabric cutting) actual 

3.0651 3 
2.6168 3 
2.1685 2 
0.8778 1 
1.2719 1 
3.1137 3 
3.1729 3 
2.9192 3 
2.7246 3 
4.0695 4 

3.4. Evaluation result model  

3.4.1. MAPE (mean absolute percentage error) 

A model's performance can be evaluated using the Mean Absolute Percentage Error (MAPE). 
Most commonly, it is used to determine the accuracy of predictive models, particularly in 
numerical or time series prediction. MAPE is calculated by comparing the actual and predicted 
values of a model. Eq. (35) demonstrates the calculation of MAPE: 

MAPE =  100%𝑛 =  ෍ฬ𝐴௧ − 𝐹௧𝐴௧ ฬ௡
௜ୀଵ . (35)

MAPE is presented as the difference between the absolute amount predicted by the model (At) 
and the actual amount of experimental data (𝐹௧) divided by the actual amount of experimental data 
(Ft) multiplied by 100 %. Therefore, using Eq. (35), the quality of fabric cutting predicted using 
both Artificial Neural Networks (ANN) and Response Surface Methodology (RSM) methods can 
be found in Table 6 as the absolute average of predictions.  

3.4.2. Coefficient of determination (R2) 

The coefficient of determination, also known as R-squared or 𝑅ଶ, is a statistical metric that 
measures how well a theoretical model matches actual observed data. In this context, 𝑅ଶ indicates 
the quantity of variance in the dependent variable can be explained by the independent variables 
included in the model. The value of 𝑅ଶ ranges from 0 to 1. A score of 1 shows that the model 
completely explains the variation in the data, whereas a value of 0 indicates that the model explains 
no variation and is simply a random error. Eq. (36) shows the 𝑅ଶ calculations for the two model 
techniques developed: 

𝑅ଶ =  (𝑦௜ − 𝑦ప)෢ଶ(𝑦௜ −  𝑦ത)ଶ. (36)

The 𝑅ଶ interpretation obtained from both the Artificial Neural Networks (ANNs) and 
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Response Surface Methodology (RSM) models represents the developed model's ability to explain 
the complete variability in the dependent variable. Eq. (37) can be used to calculate the coefficient 
of determination in the prediction results for the total quantity of quality laser cutting performed 
with both the ANN and RSM techniques, as shown in Table 6. 

This research requires neural computing because the process of laser-cutting fabric involves 
many complex and non-linear variables and interactions, which are difficult to model with 
deterministic rules or simple regression. Simple regression cannot effectively capture the complex 
relationships between process parameters and cutting quality, resulting in correctable prediction 
errors. Neural networks, with their ability to learn non-linear patterns and handle varying data, can 
provide more accurate and adaptive models, reducing prediction errors significantly. 

Table 6. Result of the evaluation model 

Evaluation model RSM Perceptron 
ANN one hidden layer  

(4 nodes) 
ANN one hidden layer  

(6 nodes) 
Iteration 1,000 Iteration 10,000 Iteration 1,000 Iteration 10,000 𝑅ଶ 0.952 0.544 0.855 0.979 0.884 0.998 

MAPE (%) 0 0.863 1.607 1.070 1.630 0 

3.4.3. Analyze evaluation result 

The Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) can be 
used to optimize laser cutting settings for better fabric cutting quality. The ANN-based model, 
constructed through 10,000 iterations with a six-node architecture on a single hidden layer, 
demonstrated superior performance, with a mean absolute percentage error (MAPE) value of 0 % 
and a coefficient of determination (𝑅ଶ) of 0.998. This implies that the model effectively accounts 
for 99.8 % of the variance in the actual data on fabric-cutting quality. The architecture type and 
complexity of the nodes and hidden layers used have a significant impact on the variability in 
validation results for ANN models. The RSM model performed well in predicting laser cutting 
parameters for cutting quality, with a MAPE score of 0 % and a 𝑅ଶ of 0.952. Nonetheless, there 
are differences in the explained variance by the RSM method, which could be resolved by using 
more complex model optimization techniques such as ANNs. The gap in the R² value of the RSM 
model, which remains accessible to development, emphasizes the preference for ANN-based 
models for deeper insights. Fig. 6 shows the dispersion of actual cutting quality data received from 
garment industry professionals, compared with model outcomes, to clearly highlight the 
optimization model's variance. Furthermore, the findings highlight the significant impact of 
changing process factors like as power, speed, and fabric surface density on cutting quality. These 
findings may aid in the development of a standardized parameter index for optimizing laser cutting 
parameters in textile applications, hence improving fabric cut quality and process efficiency. 

 
Fig. 6. Pattern distribution of data 
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4. Conclusions 

In conclusion, this research has successfully developed an optimization model to assist in 
adjusting laser cutting process parameters that affect the quality of fabric in the textile and textile 
products (TPT) industry. The Response Surface Methodology (RSM) model accurately predicts 
fabric quality, with an 𝑅ଶ of 0.95. The ANNs model with six nodes and 10,000 iterations performs 
well in optimizing cutting process parameters in terms of fabric cutting quality, with a lower error 
rate than models with fewer nodes and iterations (MAPE 0 % and 𝑅ଶ value of 0.998). The 
examination of the optimization results shows that the ANNs RSM-based model is the most 
successful at predicting fabric cutting quality when laser cutting settings are adjusted. These 
findings have practical relevance for textile industry practitioners, particularly in the textile sector, 
and give an important framework for optimizing laser cutting process parameters and enhancing 
cutting quality in fabric markets. Furthermore, the use of Response Surface Methodology (RSM) 
and Artificial Neural Networks (ANNs) to model fabric quality provides a new perspective on 
mathematical modeling in textile manufacturing, emphasizing the utility of statistical methods like 
RSM in analyzing and improving manufacturing processes. 
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