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Exploring genetic susceptibility to air pollution and its implications for

disease risk and precision health: A scoping review

Hari Krismanuel*
Faculty of Medicine, Universitas Trisakti, West Jakarta, DKI Jakarta, Indonesia
* Correspondence: Email: hari_krismanuel@trisakti.ac.id.

Abstract: Air pollution, comprising a complex mixture of gaseous and particulate pollutants,
remains a major global health concern that disproportionately affects vulnerable populations. In this
scoping review, we aim to systematically investigate the role of genetic susceptibility in health
outcomes associated with exposure to air pollution, with a particular emphasis on fine particulate
matter (PMa.s), particulate matter (PMio), nitrogen dioxide (NO2), and nitrogen oxides (NOx); key
pollutants consistently linked to adverse health effects. By exploring the gene-environment
interactions underlying air pollution-related conditions, this review offers new insights into how
genetic factors may modulate individual responses to air pollutants and their implications for
precision health. Analyzing 16 peer-reviewed studies published in the last decade, we highlight
genetic markers and pathways involved in regulating oxidative stress, inflammation, and DNA repair,
which are thought to influence individual variation in responses to PMz.s, PMi1o, NO2, and NOx.
Although none of the included studies entailed multi-omics or machine learning approaches, we
identified these tools as promising directions for future research aimed at elucidating mechanistic
pathways and informing personalized strategies. These techniques could significantly improve the
understanding of gene-environment interactions, and are suggested as emerging methodologies for
future studies. However, the scarcity of longitudinal studies and the underrepresentation of diverse
populations limit the generalizability of the current findings. Addressing these gaps will be essential
for advancing research, improving environmental health equity, and informing policy in the context
of air pollution and genetic susceptibility.
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Keywords: air pollution; disease risk; environmental health; genetic susceptibility; personalized
medicine; precision health
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Figure 1. Graphical abstract.

Figure 1 illustrates the conceptual pathway from the interaction of genetic susceptibility (DNA
helix) and air pollution exposure (smokestacks), which leads to an increased disease risk in
individuals. The green pathway highlights how precision health strategies, tailored to an individual’s
unique genetic and environmental profile, can serve as a targeted solution to mitigate this risk.

1. Introduction

Air pollution remains one of the most significant environmental risk factors worldwide,
contributing to an estimated 7 million premature deaths annually, according to the World Health
Organization [1-3]. Among the most harmful pollutants are fine particulate matter (PMz.s), coarse
particulate matter (PMio), nitrogen dioxide (NO2), and nitrogen oxides (NOx), which are consistently
associated with adverse health outcomes [4-6].

PM;5 and PM refer to airborne particles with aerodynamic diameters <2.5 and <10 micrometers,
respectively. These particles can penetrate deep into the respiratory tract, triggering oxidative stress,
inflammation, endothelial dysfunction, and systemic effects beyond the lungs. NO; and NOx, primarily
emitted from vehicle exhaust and industrial processes, contribute to airway inflammation, impaired lung
function, and increased cardiovascular risk. Exposure to these pollutants has been linked to the
development and exacerbation of chronic diseases such as asthma, chronic obstructive pulmonary disease
(COPD), ischemic heart disease, stroke, and neurodegenerative conditions [4—6].

AIMS Public Health Volume 12, Issue 3, 916-951.
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Recent fine-scale modeling and exposure assessment studies, such as that of Nistico et al. (2025),
emphasize the importance of high-resolution pollution data in identifying vulnerable populations and
guiding local-level interventions. Understanding the complex interplay between environmental
exposures and individual susceptibility, particularly at the molecular level, is crucial for developing
targeted public health interventions. This necessitates the integration of detailed environmental
monitoring data with comprehensive health surveillance and molecular research, including the
investigation of genetic factors that may modify an individual’s response to air pollution [7].

Genetic susceptibility to air pollution refers to the predisposition of certain individuals to experience
heightened adverse health effects due to specific genetic variations. Genes involved in oxidative stress
pathways play critical roles in neutralizing reactive oxygen species generated by pollutants like fine
particulate matter (PM2s). Understanding these genetic mechanisms is crucial for explaining why some
populations exhibit increased vulnerability to air pollution-related diseases [8—10].

Air pollution remains a major global health challenge, imposing significant health burdens worldwide.
Primary pollutants, such as PMz s, nitrogen dioxide (NO2), ozone, and volatile organic compounds (VOCs),
are widely acknowledged as key contributors to diseases across multiple systems. However, while
environmental exposures are well-documented as primary drivers, genetic variations significantly
modulate individual susceptibility, disproportionately affecting vulnerable populations. Despite its
importance, the interaction between genetic predisposition and pollutant exposure remains underexplored,
leaving critical gaps in our understanding of the mechanisms driving health disparities [11-13].

Recent advancements in genetic research have illuminated how genetic variants influence
sensitivity to oxidative stress, inflammation, DNA damage, and epigenetic modifications, all of which
are implicated in pollution-related diseases. However, significant challenges persist, including
inconsistent findings across studies due to methodological differences and the underrepresentation of
diverse populations in genetic analyses. Genome-wide association studies (GWAS) have identified
promising genetic markers, yet these findings often lack generalizability due to limited population
diversity and a lack of comprehensive models that integrate genetic and environmental factors [14,15].

To address these gaps, emerging methodologies such as multi-omics integration and machine
learning are increasingly recognized as powerful tools to uncover complex gene-environment
interactions. While these techniques were not employed in the studies included in this review, they
hold great promise for future research aimed at identifying mechanistic pathways and advancing
precision health strategies [16—19].

In this review, we address these gaps by systematically analyzing 16 peer-reviewed studies
published over the past decade to provide a detailed synthesis of the interplay between genetic and
environmental factors in determining health risks associated with air pollution. By focusing on
oxidative stress, inflammation, and epigenetic pathways, we uniquely highlight genetic mechanisms
that modulate susceptibility to pollution-related diseases. We also identify critical research gaps, such
as the reliance on cross-sectional designs, and propose future directions to improve the robustness and
generalizability of findings.

We further aim to outline a novel framework for advancing precision health strategies by
integrating genetic insights with emerging methodologies such as multi-omics, machine learning, and
longitudinal study designs. By doing so, we seek to inform public health policies aimed at mitigating
air pollution-related health risks, particularly in vulnerable populations.

AIMS Public Health Volume 12, Issue 3, 916-951.
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A detailed overview of the included studies, including author, year, location, study design,
population and sample size, exposure variables, health outcomes, and age range, is presented in
Supplementary Table S1. This table provides a comprehensive summary of the key characteristics of
the included studies, enabling comparison and the identification of research gaps.

Despite the growing body of epidemiological research, the underlying biological mechanisms of
gene-environment (GxE) interactions remain complex and not fully understood. In addition to
epidemiological studies, mechanistic data from in vivo and organoid models also provide crucial
insights into the biological pathways underlying GXE interactions. Researchers have demonstrated how
such models can elucidate the cellular responses to environmental exposures in genetically predisposed
individuals [8,20,21], which are discussed further in the Discussion section.

2. Materials and methods
2.1. Protocol and registration

This scoping review was conducted following the methodological framework proposed by Arksey
and O’Malley (2005) [22] and further elaborated by Levac et al. (2010) [23]. Recognizing the
importance of transparency and methodological rigor for evidence synthesis, the protocol for this
scoping review was retrospectively registered with the Open Science Framework (OSF) on May 22,
2025. The public URL for this registration is https://osf.io/3r8ap/ and its Registration ID is 3r8ap. This
protocol is publicly available on the OSF platform [24].

2.2. Search strategy

To ensure transparency and credibility, a systematic literature search was conducted across
multiple databases, including PubMed, Google Scholar, and ResearchGate to identify relevant studies.
The search was limited to articles published in English between January 1, 2015, and December 31,
2024. The following search strategy was used:

e PubMed: (“air pollution” [MeSH Terms] OR “air pollution” [Title/Abstract] OR “air
pollutants” [Title/Abstract]) AND (“genetic susceptibility” [MeSH Terms] OR “genetic polymorphism”
[Title/Abstract] OR “oxidative stress” [MeSH Terms] OR “oxidative stress” [Title/Abstract]) AND
(“disease risk™ [Title/Abstract] OR “health outcomes” [Title/Abstract]).

e Google Scholar: “air pollution” AND (“genetic susceptibility” OR “oxidative stress”) AND
(“disease risk” OR “‘health outcomes”).

e ResearchGate: (“air pollution” OR “air pollutants” OR “pencemaran udara”) AND (“genetic
susceptibility” OR “genetic predisposition” OR “oxidative stress” OR “stress oksidatif”) AND
(“disease risk” OR “health outcomes” OR “dampak kesehatan™).

e DOAJ: “air pollution” AND (“genetic susceptibility” OR “oxidative stress”) AND (“disease
risk” OR “health outcomes”).

The following filters were applied: Human studies, English language, publication date (2015—
2024), study type (including review, meta-analysis, randomized controlled trial, cohort study, case-
control study, and cross-sectional study), and peer-reviewed status.

AIMS Public Health Volume 12, Issue 3, 916-951.
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2.3. Study selection process

Articles were screened for relevance using a two-step process: (1) Title and abstract screening,
followed by (2) full-text review. From this systematic search, 16 peer-reviewed articles were selected
based on their relevance to the topic. Data from the selected articles were then systematically extracted.
Data extraction prioritized information on genetic markers, their roles in modulating susceptibility,
and their associations with health effects induced by air pollution. The data synthesis employed a
qualitative approach to integrate findings from these studies, focusing on the influence of genetic
factors on susceptibility to air pollution and the interaction between genetic variations and
environmental exposures. This enabled the identification of patterns and relationships between genetic
variations and health risks associated with air pollution, providing a comprehensive perspective on
how genetics influences responses to environmental pollutants [25-27].

To ensure the transparency and reproducibility of this review, the study selection process was
guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) framework. A PRISMA-ScR flow diagram was used to illustrate the
process of study selection, and adherence to PRISMA guidelines was maintained throughout the data
extraction and synthesis phases [28—30].

Step 1: Identifying Studies. Relevant studies were initially identified through a comprehensive
search across multiple databases, including PubMed, Web of Science, and Google Scholar. A

99 ¢¢ 99 ¢¢

combination of keywords like “air pollution,” “genetic susceptibility,” “oxidative stress,” and “disease
risk” was used to locate pertinent articles. These searches aimed to capture a broad range of studies
related to genetic factors and their interactions with environmental exposures.

The search results were carefully reviewed, and studies meeting the predefined inclusion criteria
were selected for further assessment. Studies that did not meet the inclusion criteria, were not
substantially relevant to the research topic, or contained duplicated references were excluded.

This step ensured the selection of studies that contribute meaningful and relevant insights to the
review, avoiding redundancy and maintaining the quality and integrity of the synthesis [28—30].

Step 2: Study Screening. The next step involved screening the identified studies based on
predefined inclusion and exclusion criteria. Two reviewers independently screened the titles and
abstracts of the studies retrieved from the initial search. Studies were selected for inclusion if they met
the following criteria:

» Focused on genetic susceptibility to air pollution.

o Provided explicit methodologies.

o Offered quantitative or mechanistic insights into genetic-environment interactions.

Studies that were excluded at this stage included those not published in English, non-peer-
reviewed articles, conference abstracts, and reviews that did not directly address genetic susceptibility
to air pollution. The remaining articles underwent a full-text review to confirm their eligibility before
being included in the final analysis [28-30].

Step 3: Data Extraction. Data were extracted from the selected studies using a standardized
extraction form. The extraction process involved collecting detailed information on genetic markers,
biomarkers, health outcomes related to air pollution exposure, and other relevant details like study

design, sample size, and key findings. The data were then synthesized qualitatively to identify key

AIMS Public Health Volume 12, Issue 3, 916-951.
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themes, patterns, and relationships across the studies [28—30].

Step 4: Data Synthesis. Data synthesis involved integrating findings from the selected
studies to draw conclusions about the influence of genetic factors on susceptibility to air pollution.
This synthesis aimed to provide a comprehensive understanding of the mechanisms underlying
genetic-environment interactions and their implications for disease risk. The integration of
findings was guided by thematic analysis and narrative synthesis techniques, emphasizing
consistency and comparability across studies [28-30].

2.4. Inclusion and exclusion criteria

Studies were included in this scoping review if they met the following criteria:
2.4.1. Inclusion criteria
2.4.1.1. Study design

Studies of any design that investigated the association between air pollution exposure (e.g., PMa.s,
PMio, NO2, and NOx) and health outcomes in relation to genetic susceptibility were included. This
encompasses observational studies (cohort, case-control, cross-sectional), interventional studies (e.g.,
randomized controlled trials, and quasi-experimental studies), and Mendelian Randomization studies.
Scoping reviews are particularly suitable for mapping evidence on complex and heterogeneous topics,
as outlined by Tricco et al. (2018) [28], Page et al. (2021) [29], and Page and Moher (2017) [30]. The
focus was on studies examining various genetic factors influencing susceptibility to air pollution than
specific genetic polymorphisms.

2.4.1.2. Population

Human participants of any age, sex, or ethnicity. Studies focusing on specific subpopulations (e.g.,
children, elderly, and individuals with specific pre-existing conditions) were also included.

2.4.1.3. Exposure

Measurable exposure to PMz2s, PMio, NO2, or NOx. Studies must provide quantitative or
qualitative data on one or more of these pollutants. Exposure assessment methods should be clearly
described (e.g., air quality monitoring data, self-reported exposure, and residential proximity to
pollution sources).

2.4.1.4. Health outcomes

Any health outcomes relevant to the research question, including but not limited to respiratory
diseases (e.g., asthma, and COPD), cardiovascular diseases, mental health effects, pregnancy complications,
and skin conditions. Studies must report specific health outcomes and diagnostic criteria used.
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2.4.1.5. Gene-environment interaction (primary and essential criterion)

Studies must present statistical analyses that directly test for a gene-environment interaction (e.g.,
using interaction terms in regression models, stratified analyses by genotype, interaction meta-
regression). Studies reporting only the major effects of air pollution or genetic associations separately
were excluded. Studies that mention gene-environment interaction but did not perform formal
statistical testing of the interaction were also excluded [8,31,32].

2.4.2.  Exclusion criteria
Studies were excluded if they met any of the following criteria:
2.4.2.1. Irrelevance to the topic

o Studies that did not address the health effects of air pollution.

o Studies that focused exclusively on pollutants other than PM2:s (e.g., only NO:z or O3).

o Studies addressing PMa2s along with other pollutants were considered if PMazs-specific
information could be extracted.

o Studies that entailed the environmental impact of air pollution but not human health effects.

o Studies solely focused on interventions or policies to reduce air pollution without addressing
genetic aspects.

2.4.2.2. Lack of genetic focus

o Purely epidemiological studies that measured only air pollution exposure and health outcomes
without considering genetic factors.

o In vitro or in vivo toxicological studies that did not investigate genetic variations or gene
polymorphisms.

2.4.2.3. Inappropriate publication type

o Opinions, editorials, letters to the editor, and conference abstracts (unless the abstracts
contained significant information not available in a full-text publication).

o Books and book chapters (unless they contained relevant systematic reviews or meta-analyses).

o Government or non-governmental organization reports (unless they contained significant data
or analyses not available in peer-reviewed publications).

2.4.2.4. Language and accessibility

o Studies not published in languages accessible to the review team (e.g., English and Indonesian).
o Studies for which full-text access could not be obtained after reasonable search efforts (e.g.,
through library databases or direct requests to authors).
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2.4.2.5. Duplication

o Studies published more than once (in which case, the most complete and recent version was
included).

2.4.2.6. Methodological concerns (with specific consideration for scoping reviews)

o While scoping reviews generally do not assess the methodological quality of studies as
rigorously as systematic reviews, studies with substantial methodological flaws (e.g., severely
flawed study design or erroneous data analysis) could be excluded. This criterion was applied
cautiously and transparently [33—34].

2.5. Data extraction and synthesis

Data from included studies were extracted using a standardized data extraction form. The following
information was extracted: Study characteristics (e.g., author, year, study design, and population), exposure
assessment methods, genetic markers investigated, health outcomes assessed, and key findings related to
gene-environment interactions. A detailed overview of these extracted data, presented in Supplementary
Table S1, provides a comprehensive summary of the key characteristics of the included studies, enabling
comparison and identification of research gaps. A narrative synthesis of the findings were then conducted
to map the existing literature and identify key themes and research gaps [28-30,33,34].

2.6. Quality assessment of included studies

To strengthen the methodological rigor of our review, we conducted a formal quality appraisal of
all 16 included full-text articles. Given the variety of study designs, we employed appropriate
assessment tools tailored to each design type:

e The 13 prospective cohort studies were assessed using the Newcastle-Ottawa Scale (NOS) [35].

e The 1 cross-sectional study was evaluated using a modified version of NOS tailored for cross-
sectional designs.

e The 1 meta-analysis was assessed narratively using AMSTAR 2 criteria, which were widely
accepted for systematic reviews and meta-analyses [36].

e The 1 molecular-epigenetic cohort study, although fundamentally prospective in design, was
evaluated using the JBI Critical Appraisal Checklist for Cohort Studies due to its integration of
biological, genetic, and epigenetic data [37].

3. Results

A total of 322 records were identified through database searching (PubMed n = 100, Google
Scholar n = 109, Research Gate n = 107, and DOAJ n = 7). After removing duplicates (n = 5), 315
records underwent title and abstract screening. Of these, 283 were excluded as they did not meet the
inclusion criteria (e.g., not focused on genetic susceptibility to air pollution, review articles, or non-
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human studies). A total of 35 full-text articles were assessed for eligibility, and 19 were further
excluded due to methodological concerns (e.g., lack of a clear methodology, or focus on non-PMzs
pollutants), or lack of investigation of gene-environment interaction). Finally, 16 studies met all
inclusion criteria and were included in this scoping review (Figure 2).

Records identified through Records removed before screening:
database searching: Duplicate records removed
.5 Google Scholar: 109 (n=15)
'ig PubMed: 100 Records mark ineligible by automation tools
_E Research Gate: 107 ™ = 241)
> DOAT: 6 Records removed for other reasons (n = 22)
Total records: (n=322)
'
2 Records screened (n = 54) after > Records excluded
.g duplicates removed (n=7)
E l Full-text articles not retrieved
Full-text articles assessed for > (n=12)
retrieval (n = 47) Reason: only abstract available, no access
%‘ L
g Reports assessed for cligibility > Reports cxchided:
(n=35) Reason 1: abstract only (n = 3)
Reason 2: full-text not accessible (n =12)
Reason 3: Lay Summary (n=1)
E Studies included in review Reason 4: doesn’t meet the time span (n = 1)
% (n=16) Reason 5: The research focus 1s not
s Reports of included studies oo (=2

Figure 2. PRISMA-ScR flow diagram.
3.1. Study characteristics

This scoping review included 16 studies investigating the interplay between genetic susceptibility and
air pollution, particularly PM2s, on various health outcomes. A diverse range of study designs were
employed, including 1 cross-sectional study, 14 prospective cohort studies, 1 meta-analysis of cohort
studies, and 1 Mendelian Randomization study. This heterogeneity in study design is typical in a scoping
review, aiming to map the available evidence regardless of methodological rigor [38—53]. Only one study
employed Mendelian Randomization analysis [54—56] as its core methodological approach.

Most studies focused on adult populations, with a reported age range spanning from 37 to 73
years. Geographically, the research was predominantly conducted in Europe (n = 12), with one
study encompassing both Europe and North America (n = 1), and a smaller number conducted in
Asia (n = 3). This geographical distribution highlights a potential gap in research from other

AIMS Public Health Volume 12, Issue 3, 916-951.



925

regions. Furthermore, 15 out of the 16 studies investigated the combined effects of particulate
matter (PMz.s and/or PM1o), nitrogen dioxide (NOz2), and nitrogen oxides (NOx). Only one study,
Gruzieva et al. (2016) [38], focused solely on prenatal NO2 exposure. This pattern suggests that
PM2.5s and NO:2 are dominant environmental factors in the studies and highlights the need for further
exploration of NO2 exposure, particularly in its isolated form, to better understand its role in
genetic susceptibility to diseases [39-53].

PMas exposure was the most commonly assessed air pollutant, primarily using air quality
monitoring data (n = 16). It should be noted that some studies used multiple methods for exposure
assessment. Some studies utilized land-use regression models to estimate PMa.s exposure based on
spatial data and environmental characteristics, while others employed self-reported questionnaires
focusing on residential location and daily activities. For instance, Huang et al. (2021) [39] and Gao et
al. (2023) [52] used land-use regression models within the UK Biobank to estimate individual
exposures. Li et al. (2023) [41] used land-use regression models in China. Air quality monitoring data
typically involves measurements taken at fixed monitoring stations, providing information on ambient
air pollution levels in specific locations. Land-use regression models, on the other hand, incorporate
spatial data such as traffic density, land use types, and meteorological factors to create more refined
estimates of pollution exposure at a finer spatial scale [39,41,52]. These methods have varying degrees
of accuracy and may introduce different types of measurement error.

Operational Definitions of Variables: PM2s5 was most often defined as the annual average
concentration at the participants’ residential address. However, some studies used different averaging
periods (e.g., 24-hour average) or considered specific sources of PMas (e.g., traffic-related PMoz.s).
Health outcomes varied across studies, encompassing cardiovascular diseases (e.g., myocardial
infarction, stroke), respiratory diseases (e.g., chronic obstructive pulmonary disease (COPD), lung
cancer), and metabolic disorders (e.g., type 2 diabetes). This variability in outcome definitions should
be considered when interpreting the findings.

Exposure Measurement Methods (Further Details): Studies using air quality monitoring data
often linked participants’ residential addresses to the nearest monitoring station. Land-use regression
models incorporated geographic information system (GIS) data on traffic, land use, and topography.
Self-reported questionnaires typically asked participants about their residential history, time spent
outdoors, and proximity to pollution sources.

Justification for Study Selection: Mendelian Randomization studies were included because they
provide stronger evidence for causal inference using genetic variants as instrumental variables, reducing
the potential for confounding and reverse causation. Studies employing other designs, such as cohort
studies, were included to provide a broader overview of the existing evidence base [49,54-56].

Information on sex was consistently reported, with approximately equal representation of men
and women across the studies. However, reporting on other demographic characteristics, such as
ethnicity and socioeconomic status (SES), was less consistent. Where reported, SES was often
categorized based on indicators such as education level, occupation, or income. Some researchers also
considered other participant characteristics such as smoking status and pre-existing health conditions
as potential confounders.

Interventions or Moderating Factors: Several studies investigated potential moderating factors
such as genetic polymorphisms (as mentioned previously), dietary intake, and physical activity. For
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instance, Huang et al. (2021) examined whether the association between PM2.s and lung function was
modified by genetic variations in antioxidant enzymes [39].

Sixteen studies entailed the interactions of PM2s, PMio, NO2, and NOx on various gene
polymorphisms associated with increased disease risk. These studies often examined specific gene
variants known to be involved in pathways related to inflammation, oxidative stress, or DNA repair,
which are mechanisms through which air pollution is thought to exert its effects. Mendelian
Randomization studies were included to provide stronger causal evidence for the relationship between
air pollution and health outcomes. Mendelian Randomization utilizes genetic variants as instrumental
variables to assess the causal effect of an exposure (e.g., air pollution) on an outcome (e.g., disease
risk), minimizing the influence of confounding factors [49,54-56]. Only one meta-analysis of cohort
studies specifically examined the relationship between NO2 exposure during pregnancy and cord blood
DNA methylation. This meta-analysis synthesized data from multiple cohort studies to investigate the
potential impact of prenatal NO2 exposure on epigenetic modifications in newborns [39].

Brief Summary of Key Findings: Overall, the studies consistently suggested a positive association
between long-term exposure to air pollutants, particularly PMz.s, and adverse health outcomes, including
cardiovascular and respiratory diseases. Some studies also found evidence of associations with metabolic
disorders and other health outcomes. Researchers investigating gene-environment interactions provided
evidence that genetic susceptibility can modify the effects of air pollution [38—53].

Some researchers used genotyping to assess genetic susceptibility and data from air quality
monitoring stations to measure PMas exposure. The findings of the included studies generally
suggested a positive association between long-term exposure to air pollutants, particularly PMz.s, and
adverse health outcomes [38—53].

A detailed overview of the included studies, including author, year, location, study design,
population and sample size, exposure variables, health outcome, and age range, is presented in
Supplementary Table S1.

To assess the methodological rigor of the included studies, a formal quality appraisal was
conducted using tools appropriate for each study design, as detailed in the Methods section (see Section
2.6). A comprehensive summary of the methodological quality assessment for all 16 included full-text
articles is presented in Table 1. The results showed that most studies met high-quality criteria,
supporting the reliability of the extracted findings. For a detailed breakdown of individual study scores
and their respective quality assessments, please refer to Supplementary File S2.

3.1.1.  Overview and categorization of health outcome

The studies in this review report a diverse range of health outcomes associated with air pollution
exposure, involving both physical and mental health conditions across different populations. These
outcomes span multiple disease categories, highlighting the broad impact of pollutants such as PMas,
PMio, NO2, and NOx [38-53].

To facilitate analysis, the included studies were categorized into seven primary groups: Respiratory
diseases, cardiovascular diseases, neurological and psychiatric disorders, cancers, autoimmune and
inflammatory conditions, and other diseases. Cardiovascular and neurological conditions were the most
frequently studied, with consistent associations reported for PMa2.s, PMio, NO2, and NOx exposure. Notable
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findings include stronger associations of air pollution exposure with coronary artery disease (Fu et al., 2023;
Li et al., 2022) and major depressive disorder (Li et al., 2023) associated with these pollutants [41,42,48].
Additionally, autoimmune conditions such as inflammatory bowel disease (Chen et al., 2024) were linked
to long-term exposure to PM2.s and NOx [49].

Table 1. Summary of methodological quality assessment of the included studies based on

study design.

No. Study (First Study Design Quality Score/Result Notes
Author, Year) Assessment Tool

1 Gruzieva et al., Meta-analysis AMSTAR 2 High Quality  Evaluated narratively using
2016 [38] (Cohort Data) AMSTAR 2

2 Huang et al., 2021 Prospective Cohort ~ NOS 9/9 UK Biobank, lung cancer
[39]

3 Ma et al., 2024 [40]  Prospective Cohort ~ NOS 9/9 UK Biobank, AAA

4 Lietal., 2023 [41] Prospective Cohort ~ NOS 9/9 UK Biobank, MDD

5 Fuetal., 2023 [42]  Prospective Cohort NOS 9/9 Based on UK Biobank,

CAD

6 Ma et al., 2024 [43]  Prospective Cohort ~ NOS 9/9 Stroke, robust adjustment

7 Liuetal.,, 2024 [44]  Prospective Cohort =~ NOS 9/9 Schizophrenia

8 Huang et al., 2024 Prospective Cohort ~ NOS 9/9 Parkinson’s disease
[45]

9 Wang et al., 2022 Prospective Cohort  NOS 9/9 COPD + interaction
[46] lifestyle

10 Rheeetal., 2024 Prospective Cohort  NOS 9/9 Cardiovascular disease
[47]

11 Lietal., 2022 [48] Prospective Cohort  NOS 9/9 PM; s and CAD

12 Chenetal., 2024 Molecular- JBI Checklist High Quality  Epigenetic focus, UK
[49] Epigenetic Cohort (Cohort) Biobank based

13 Wuetal, 2024 [50] Prospective Cohort  NOS 9/9 Psoriasis

14 Zhang et al., 2024 Cross-Sectional Modified NOS 9/10 High quality cross-sectional
[51] (Cross-Sectional) design

15  Gaoetal., 2023 Prospective Cohort ~ NOS 9/9 Depression and anxiety
[52]

16  Zhang et al., 2024 Prospective Cohort  NOS 9/9 Dementia
[53]

Note: Abbreviations: AMSTAR 2, Assessment of Multiple Systematic Reviews-2 (A Measurement Tool to Assess
Systematic Reviews 2); NOS, Newcastle-Ottawa Scale; JBI, Joanna Briggs Institute; AAA, Abdominal Aortic Aneurysm;
MDD, Major Depressive Disorder; CAD, Coronary Artery Disease; COPD, Chronic Obstructive Pulmonary Disease; and
PM; s, Particulate Matter with a diameter < 2.5 pm.

Having established the characteristics of the included studies and the methods used to assess
exposure and outcomes, in the following section, we detail the methods used to assess genetic
susceptibility and pollutant exposure before presenting the key findings related to gene-
environment interactions [38—53].

3.1.1.1. Respiratory diseases

Several studies focus on respiratory conditions, particularly in relation to particulate matter and
nitrogen oxides:
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e Wangetal. (2022): Chronic obstructive pulmonary disease (COPD) associated with PMz s,
PMio, NO2, and NOx [46].

3.1.1.2. Cardiovascular diseases

Air pollution exposure is strongly linked to various cardiovascular conditions:
e Maetal. (2024): Abdominal aortic aneurysm [40].

e Fuetal. (2023): Coronary artery disease (CAD) [42].

e Rhee et al. (2024): General cardiovascular diseases [47].

e Lietal. (2022): Coronary artery disease (CAD) [48]

3.1.1.3. Neurological and psychiatric disorders

Mental health and cognitive impairments are key areas of concern:
e Lietal. (2023): Major depressive disorder [41].

e Liuetal. (2024): Schizophrenia [44].

e Zhang et al. (2024): Speed processing deficits [51].

e Gaoetal. (2023): Depression and anxiety [52].

e Zhang et al. (2024): Dementia [53].

3.1.1.4. Cancer

A study reports a significant association between air pollution and lung cancer:
e Huang et al. (2021): Lung cancer [39].

3.1.1.5. Autoimmune and inflammatory conditions

e Chen et al. (2024): Ulcerative colitis [49].
e Wuetal. (2024): Psoriasis [50].

3.1.1.6. Epigenetic changes

Air pollution exposure, particularly in early life, has been shown to cause epigenetic changes,
such as differential DNA methylation:
e Gruzieva et al (2016): Differential offspring DNA methylation at CpG site in cord blood

newborns [38].
3.1.1.7. Other diseases

Several studies have also linked air pollution to other health conditions:
e Maetal. (2024): Stroke [43].
e Huang et al. (2024): Parkinson’s disease [45].
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3.1.2. Methods of exposure and outcome assessment

In this scoping review, the methods used to assess air pollution exposure and health outcomes
varied across studies, reflecting the diversity of study designs and populations.

3.1.2.1. Exposure assessment

In this review, we categorized the approaches used to assess exposure to air pollution into three
main groups:

1) Air Quality Monitoring and Dispersion Models: Exposure estimated from fixed-site
monitoring data or government-provided dispersion models (e.g., DEFRA in the UK). These methods
provide spatially resolved estimates of pollutants such as PMz.s, PMio, NO2, and NOy [40,44,51].

2) Land-Use Regression Models: Several researchers (e.g., Huang et al., 2021) employed land-
use regression (LUR) models to estimate individual-level exposures to air pollution. LUR models use
spatial data on environmental and urban characteristics, such as traffic density, land use, and
meteorological factors, to predict exposure to pollutants at a finer geographic scale. These models can
provide more localized estimates of exposure, accounting for variation in pollution levels that may not
be captured by monitoring stations [39,41,52].

3) Self-Reported Questionnaires: A few researchers included in this review also used self-
reported questionnaires, asking participants about their residential history, time spent outdoors, and
proximity to pollution sources. This method, while less accurate than air quality monitoring or LUR
models, enabled researchers to estimate individual exposure based on participants’ reported behaviors
and locations [50].

4) Satellite-based Approaches: A limited number of studies estimated exposure using
satellite-derived data, such as aerosol optical depth (AOD), often combined with meteorological
and land-use variables through machine learning models to provide high-resolution estimates of
ambient PM2s concentrations [48].

3.1.2.2. Outcome assessment

1) Health Outcomes: A broad range of health outcomes were assessed across the studies,
including respiratory diseases (e.g., COPD, and asthma), cardiovascular diseases (e.g., coronary artery
disease, and myocardial infarction), neurological conditions (e.g., dementia, and depression),
metabolic disorders (e.g., type 2 diabetes), and autoimmune/inflammatory diseases (e.g., ulcerative
colitis). Each study defined and measured these outcomes differently, with some relying on clinical
diagnoses, hospital records, or self-reported health conditions [38—53].

2) Objective Health Measurements: Many researchers used objective health measures, such
as lung function tests, blood pressure readings, or biomarkers, to assess the impact of air pollution on
various health conditions. These measurements provided more precise and quantifiable data compared
to self-reported health information.
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3) Gene-Environment Interactions: A subset of studies explored how genetic
susceptibility modifies the impact of air pollution on health outcomes. These studies integrated
genetic data (e.g., from genotyping or epigenetic analyses) with environmental exposure estimates.

Details of methodological examination of gene—environment interactions are provided in
section (3.1.3).

3.1.3.  Gene—environment interaction analysis

To enhance transparency and methodological rigor, we examined how the included studies
assessed gene—environment (GXE) interactions. All 16 studies investigated the modifying role of
genetic susceptibility on the association between air pollution exposure and health outcomes. However,
the methodological approaches varied.

Several researchers employed Cox regression models to estimate hazard ratios and to evaluate
interaction effects [39-46,48,49,53]. Among these, a subset formally tested additive interaction
metrics, such as the Relative Excess Risk due to Interaction (RERI) and Attributable Proportion
(AP), which provide insight into the biological synergy between genetic risk and environmental
exposure [38,39,41,42,45,48,52]. Multiplicative interactions, expressed through interaction
coefficients in Cox models, were also reported in some studies.

Only a subset of researchers formally tested gene—environment interactions, either through
additive metrics (e.g., RERI, and AP) or multiplicative interaction terms. Several studies (e.g., Fu
et al. and Rhee et al.) reported combined effect estimates without direct interaction testing, which
may limit interpretability. We have reflected these methodological distinctions in Supplementary
Table S3. To support methodological clarity in future research, we encourage adherence to
established guidelines for GxE analysis, including the use of formal interaction testing and
transparent reporting of effect modification approaches.

While most researchers did not apply formal multiple testing corrections (e.g., Bonferroni or false
discovery rate), two studies, those by Gruzieva et al. (2016) and Zhang et al. (2024), did report
correction procedures [38,53]. However, the lack of correction in most studies may limit the
interpretability of interaction findings in the presence of multiple comparisons. This issue is
particularly relevant given the large number of exposures and genetic markers tested, which increases
the chance of false-positive results.

A detailed summary of the interaction testing methods, effect sizes, p-values, and confidence
intervals is provided in Supplementary Table S3. To improve visibility and address reviewer concerns,
we have clarified key methodological features in this section and will consider integrating selected
elements of Supplementary Table S3 into the main manuscript if appropriate.

To complement Supplementary Table S3, which details the interaction testing methods used in each
study, Table 2 summarizes key methodological characteristics of the included studies, focusing on the
statistical approaches used to evaluate gene—environment interactions, the type of interaction tested
(multiplicative or additive), the significance of interaction terms (e.g., p-values), and the application of
multiple testing corrections. This structured summary enhances methodological transparency and supports
interpretation of the findings by distinguishing between formal and informal testing strategies.
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Table 2. Overview of formal and informal testing methods, interaction type, and multiple

testing correction in gene—environment interaction studies.

No Study Formal Informal Interaction Interaction Multiple
Interaction Interaction Type Significance and  Testing
Strength Correction
1 Gruzieva et Not Available Narrative Epigenetic Not reported False
al., 2016 [38] Synthesis (unclear) Discovery Rate
(FDR)
2 Huang etal.,  Cox proportional - Multiplicative ~ Not reported Not Reported
2021 [39] hazard models, Positive (unclear)
RERI, AP Additive
3 Ma et al., Cox proportional - Multiplicative ~ Not reported Not Reported
2024 [40] hazard models, Positive (unclear)
RERI, AP Additive
4 Lietal, 2023 Cox proportional Stratified Multiplicative ~ PMas: p=0.036 Not Reported
[41] hazard regression Analysis PMio: p=0.025
models (p- NO2: p=0.030
interaction and (Significant)
Hazard Ratio) NOy: p=0.080
(Not Significant)
5 Fuetal, 2023 Cox proportional Subgroup HR ~ Multiplicative  All p-interaction > Not Reported
[42] hazard regression Comparison Positive 0.05 (Not
models (p- (by PRS) Additive Significant)
interaction and
Hazard Ratio),
RERI, AP
6 Maet al., Cox proportional - Multiplicative ~ Not reported Not Reported
2024 [43] hazard regression Positive (unclear)
models (p- Additive
interaction and
Hazard Ratio),
RERI, AP, Aalen
Additive Hazard
Model
7 Liu et al., Cox proportional Stratified Multiplicative ~ PMays: p =0.48 Not Reported
2024 [44] hazard regression Analysis (Not Significan
models (p- PMio: p=0.79
interaction and (Not Significant)
Hazard Ratio) NOz: p <0.07
(Not Significant)
8 Huang etal.,  Cox proportional Stratified Multiplicative ~ Not reported Not Reported
2024 [45] hazard regression Analysis (unclear)
models (p-
interaction and
Hazard Ratio)
9 Wang et al., Cox proportional - Multiplicative ~ All p-interaction > Not Reported
2022 [46] hazard regression Positive 0.05 (Not
models (p- Additive Significant)
interaction and
Hazard Ratio),
RERI, AP
10 Rheeetal., Not Reported Visual Trend Descriptive Not reported Not Reported
2024 [47] and Stratified  only (unclear)
HR
Continued on next page
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No Study Formal Informal Interaction Interaction Multiple
Interaction Interaction Type Significance and Testing
Strength Correction
11  Lietal, 2022 Cox proportional Narrative Multiplicative  p-interaction < Not Reported
[48] hazard regression Interpretation 0.001
models (p- (Strong
interaction and Evidence)
Hazard Ratio)
12 Chenetal., Cox proportional - Multiplicative  p-interaction Not Reported
2024 [49] hazard regression Positive (multiplicative) =
models (p- Additive 0.275 (Not
interaction and Significant)
Hazard Ratio), p-interaction
RERI, AP (additive) =
0.00123
(Significant)
13 Wuetal, Not Available Narrative Informal PM,o: p=0.002 Not Reported
2024 [50] Association (Significant),
PM2‘51 pP= 0.105
(Not Significant),
NO:: p=0.051
(Not Significant)
PM;o (AdditiVC)I
Not Reported.
14  Zhang et al., Not Available Stratified Informal Not reported Not Reported
2024 [51] Analysis (unclear)
15 Gaoetal, Not Reported Synergistic/ Multiplicative ~ Not reported Not Reported
2023 [52] enhancing (unclear)
effect (Gene
Environment
Interaction)
16  Zhang et al., Cox proportional - Multiplicative ~ HR interaction HMP
2024 [53] hazard models (p- Positive term reported (harmonic
interaction and Additive (exact p not mean p-value);
Hazard Ratio), stated); PFWE &
RERI, AP RERI, and AP PFDR in
stated. imaging

Note: Abbreviations: FDR, False Discovery Rate; RERI, Relative Excess Risk due to Interaction (the proportion of disease
among those with both the exposure and the genotype that is attributable to their interaction); AP, Attributable Proportion
due to Interaction (the proportion of disease in the population that is attributable to the interaction between the exposure
and genotype); HR, Hazards Ratio; PM, s, Particulate Matter with a diameter < 2.5 um; PM,o, Particulate Matter with a
diameter < 10 pm; NO,, Nitrogen Dioxide; NOy, Nitrogen Oxides; HMP, Harmonic Mean p-value; PEWE, Permutation-
based Family-Wise Error rate; and PFDR, Permutation-based False Discovery Rate. Formal interaction testing includes
regression-based interaction terms (e.g., p-interaction), as well as measures on the additive scale such as RERI (Relative
Excess Risk due to Interaction), AP (Attributable Proportion), and the Synergy Index. Informal interaction testing
includes subgroup or stratified analysis, visual inspection of effect modification across strata, or narrative/descriptive
comparisons without formal statistical interaction terms. Interaction type refers to whether the interaction was evaluated
on the additive scale, multiplicative scale, or only through informal exploration (without formal statistical testing).
Multiple testing correction refers to statistical methods used to adjust for the number of tests performed, such as

Bonferroni correction or False Discovery Rate (FDR) control, and Harmonic Mean p-value (HMP).
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3.2. Methods to assess genetic susceptibility and pollutant exposure

In this section, we describe the specific methods used within the 16 included studies to assess
genetic susceptibility and pollutant exposure. We focus on ~ow these measurements were implemented
in the context of the reviewed literature, rather than providing a general overview of these methods.
3.2.1.  Assessment of genetic susceptibility

Among the 16 articles reviewed, 14 focused on genetic susceptibility, 1 examined epigenetic
modification, and 1 study entailed both genetic susceptibility and epigenetic modification. Table 3

summarizes the focus of these articles.

Table 3. Summary of study focus.

Study Type Number of Articles
Genetic Susceptibility 13

Epigenetic Modification 2

Both Genetic and Epigenetic 1

Note: Table 3 provided a breakdown of the types of studies included in this review.
After assessing general genetic susceptibility, we also explored gene-environment (GxE) interactions;

how genetic factors may modify the health effects of air pollution exposure. Table 4 presents an overview
of these studies, focusing on the use of genotyping or DNA methylation methodologies.
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Table 4. Overview of Studies on GxE Interactions Using Genotyping or DNA Methylation.

Study Population Methodology Exposure Outcome Type of analysis Key findings
(Pollutant) (Disease)
Gruzieva et Newborns, child-aged DNA methyla-tion (Epige- Prenatal NO2  Altered DNA Epigenetic Modification. Early life epigenetic markers link to
al., 2016 [38] 4 and 8 from European = nome-Wide),meta-analysis of  exposure. methylation at respiratory disease later.
and North America (n cohort study. CpG sites in
= 1508 newborns, n = FAMI13A and
733 at age 4, n =786 at NOTCHA4.

Huang et al.,
2021 [39]

Ma et al.,
2024 [40]

Lietal., 2023
[41]

age 8).

455,974 partici- pants
aged 40—69 years (UK
Biobank).

449,463 participants
aged 37-73 years from
the UK Biobank.

354,897 participants
aged 37-73 years from

PRS calculation based on 18
SNPs In lung cancer; Land-
Use Regres-sion (LUR)
models; Analytical cohort
study.

Polygenic risk score (PRS)
based on 31 SNPs; Air
pollution exposure data;
cohort study.

Polygenic risk score (PRS),
using 17 MDD-associated

Ambient air
pollution

(PMas, NO2,
PMio, NOx).

Long-term
exposure to
air pollutants
(PMa.s, PMi,
NOz, NOx).
Long-term
exposure to

Lung cancer
incidence.

Incidence of
Abdominal
Aortic Aneurysm
(AAA).

Incidence of
Major Depressive

Genetic risk interaction/
Environmental exposure
Statistical ( Cox
proportional Hazard
models); RERI, AP.
Genetic susceptibility,
Statistical (Cox proportional
hazard models).

Genetic susceptibility,
Statistical (Cox proportional

Air pollution exposure signi- ficantly
associa- ted with higher likelihood of lung
cancer (63% higher), particularly among
individuals with high genetic susceptibility.

Long-term air pollution exposure is
associated.

with increased likelihood of AAA; genetic
risk (PRS) also plays a role in susceptibility.

Long-term air pollution exposure is
associated with increased likelihood of

the UK Biobank. genetic loci (17 SNPs); Land-  air pollutants  Disorder. hazard models). MDD; genetic risk (PRS) also plays a role
Use Regression (LUR) (PMa2s, PMio, in susceptibility.
models; cohort study. NO2, NOx).
Fuetal., 407,470 participants CAD genomewide association ~ Long-term Incidence of Genetic susceptibility, Long-term air pollution exposure is
2023 [42] aged 40-69 years from  meta-analysis with-out the exposure to Coronary Artery  Statistical (Cox proportional  associated with increased likelihood of
the UK Biobank. UK Biobank population with air pollutants  Disease (CAD). hazard models, RERI, AP). CAD; genetic risk (PRS) also plays a role in
40 SNPs; cohort study. (PMzs, PMio, susceptibility.
NOz, NOx).
Ma et al., 452,196 partici years Polygenic risk score (PRS) Long-term Incidence of Genetic susceptibility, Long-term air pollution exposure is
2024 [43] from the UK Biobank.  Calculation With 71 SNPs; air pollutants ~ Stroke, Ischemic ~ Statistical (Cox proportional  associated with increased likelihood of
cohort study (PMas, PMio,  Stroke, hazard models). stroke. genetic risk (PRS) also plays a role
NOz, NOx). Hemorrhagic in susceptibility.
Stroke.
Continued on next page
AIMS Public Health Volume 12, Issue 3, 916-951.
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Study Population Methodology Exposure Outcome Type of analysis Key findings
(Pollutant) (Disease)
Liu et al,, 485,288 participants) Genome-wide association Long-term Incidence of Genetic susceptibility, Long-term air pollution exposure is
2024 [44] aged 37-73 years from  studies; Polygenic risk score air pollutants  schizophrenia. Statistical (Cox proportional  associated with stronger association with
the UK Biobank. (PRS) calculation, cohort (PMzs, PMio, hazard models). schizophrenia; genetic risk (PRS) also plays
study. NO2, NOx). a role in susceptibility.
Huangetal.,,  over 312,000 Polygenic risk score (PRS) Long-term Incidence of Genetic susceptibility, Long-term air pollution exposure is
2024 [45] participants. Average Calculation; cohort study. air pollutants ~ Parkinson’s Statistical (Cox proportional  associated with higher odds of Parkinson’s
aged 57 years. (PM2s, PMio, Disease (PD). hazard models). Disease (PD); genetic risk (PRS) also plays
NO2, NOx). a role in susceptibility.
Wang et al., 452,762 participants Genotyping by Affymetrix Long-term Incidence of Genetic susceptibility, Long-term air pollution exposure is
2022 [46] aged 37-73 years from  Research Services Laboratory  air pollutants  chronic Statistical (Cox proportional  associated with stronger likelihood of
the UK Biobank. in 106 sequential batches of (PM2s, PMio, obstructed hazard models). COPD; Weighted genetic risk also plays a
ap Prox. 4,700 samples; NO2, NOx). Pulmonary role in susceptibility.
selected 22 SNPs associated Disease (COPD).
with COPD; Weighted
genetic risk score calculation;
cohort study.
Rhee et al., 249 082 participants Genotyping of 807411 SNPs;  Long-term Incident Genetic susceptibility, Long-term air pollution exposure is
2024 [47] aged 40—69 years. Polygenic risk score (PRS) air pollutants ~ CardioVascular Statistical (Cox proportional  associated with increased odds of
calculation, cohort study. (PMzs, PMio, Disease (CVD). hazard models). Cardiovascular Disease (CAD); genetic risk
NO2, NOx). (PRS) also plays a role in susceptibility. No
significant interactions between genetic risk
and PM2.5 exposure on cardiovascular
death or CVD events.
Lietal., 2022 41,149 participants Polygenic risk score (PRS) Long-term Incidence of Genetic susceptibility, Long-term air pollution exposure is
[48] from China-PAR. calculation based on 540 air pollutants  Coronary Artery  Statistical (Cox proportional  associated with increased odds of Coronary
genetic variants; cohort study.  (PMas, PMio, Disease (CAD). hazard models). Artery Disease (CAD); polygenic risk score
NOz, NOx). (PRS) also plays a role in susceptibility.
Chen et al., 453,919 individuals DNA methylation alterations Long-term Incidence of Epigenetic Modification; Higher exposures to NOx, NO2, PM2.5 and
2024 [49] aged 40-69 years; at CXCR2 and sites within the air pollutants ~ Ulcerative colitis  Statistical (Cox proportional combined air pollution score were
White European MHC class III region. (PMzs, PMio, (UC). hazard models; epigenetic associated with incident UC but not CD.
descent. NOz, NOx). Mendelian Randomization

approach).

AIMS Public Health

Continued on next page
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Study Population Methodology Exposure Outcome Type of analysis Key findings
(Pollutant) (Disease)
Wuet Al, 474,055 participants Polygenic risk Score (PRS) Long-term Incident Genetic susceptibility, There was an interaction between air
2024 [50] aged 40—69 yaers. Calculation; cohort study. air pollutants  Psoriasis. Statistical (Cox proportional  pollution and genetic suscptibibility in
(PM25, PMio, hazard models); RestricTed  relation to psoriasis.
NO2, NOx). Cubic Spline Models;
sensitivity analyses.
Zhang et al., 522 healthy Polygenic risk score (PRS) Long-term Depression on - Genetic susceptibility: Air pollution may be associated with an
2024 [51] participants aged 40— calculation; DNA air pollutants  processing speed. ~ PRS; - Epigenetic increased likelihood of cognitive
69 years living in methylation; cross-sectional (PMz5, PMio, Modification: DNA impairment in individuals genetically
Beijing study. NO2, NOx). Methylation; - Genetic predisposed to dePression. The article does
Modification (of not provide specific effect sizes, but it
EnVironmental Effects): describes the direction of the interaction
GLM, and PLSR. (worsening effect with combined exposure
and higher polygenic risk score).
Gao et al., 502,536 participants Polygenic risk score Long-term Risk of Genetic susceptibility, Elevated levels of the five air pollutants
2023 [52] from the UK Biobank, calculation (Depression: 37 air pollutants  Depression and Statistical (Cox proportional ~ were associated with higher odds of mental
recruited in 2006— SNPs Anxiety: 9 SNPs); (PM2s, PMio, Anxiety. hazard models). disorders at baseline.
2010. Land-Use Regression (LUR) NO2, NOx).
models; cohort study.
Zhang et al., 401,244 participants This article used genotyping Long-term Incident Genetic susceptibility, Joint exposure to multiple air pollutants is
2024 [53] aged 40—69 years. data in2 ways: * Targeted air pollutants  Demensia. Statistical (Cox proportional  associated with higher odds of dementia,
genotyping: To get the APOE  (PMa.s, PMio, hazard models and especially among individuals with high
€4 status. * Genome-wide NO2, NOx). Restricted Cubic Spline genetic susceptibility.

genotyping: As the basis for
calculating a PRS that
incorporates many genetic
variants associated with the
outcome of interest (likely
dementia or related traits).

Regression).

Note: Abbreviations: GXE: Genotype by Environment; DNA: Deoxyribonucleic Acid; NO2: Nitrogen Dioxide; CpG: Cytosine-phosphate-Guanine; FAM13A4, NOTCH4: Specific gene names involved in
various biological processes (Further explanation could be provided in the main text if relevant to the study’s focus). /talicized gene names indicate standard gene nomenclature; PRS: Polygenic Risk Score;
LUR: Land-Use Regression; PMzs: Particulate Matter with a diameter of 2.5 micrometers or less; PMio: Particulate Matter with a diameter of 10 micrometers or less; GLM, General Linear Model; and

PLSR, Partial Least Squares Regression.
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Table 4 provides an overview of studies on gene-environment interactions (GxE) using
genotyping or DNA methylation. The studies listed highlight how genetic factors may influence the
health outcomes of air pollution exposure, with a particular focus on epigenetic modifications like
DNA methylation at specific CpG sites.

The assessment of genetic susceptibility in the included studies primarily focused on identifying
specific genetic variants associated with increased risk of adverse health outcomes related to air
pollution exposure. Many studies aimed to explore how genetic differences could modify the harmful
effects of pollutants like PM2.5, PMio, NO2, and NOx on health outcomes.

e Genotyping Methods Used in Included Studies: Most researchers employed genotyping
techniques, with SNP arrays being the most common method (n = 14). These arrays enabled the
detection of a wide range of single nucleotide polymorphisms (SNPs) across multiple genes. Illumina
Human Omni Express arrays were utilized in some studies to assess SNPs related to oxidative stress
and inflammatory pathways. Additionally, PCR-based genotyping methods, such as TagMan assays,
were used in a few studies to investigate specific candidate genes linked to air pollution-related health
effects. Only a smaller number of studies (n = 2) employed whole-genome sequencing (WGS) to
explore broader genetic variations, although this method was applied in a limited number of
participants due to cost and technical constraints.

e Candidate Genes and Genome-Wide Association Studies (GWAS): A combination of
candidate gene approaches (n = 8) and GWAS (n =7) were used in these studies to explore the genetic
basis of susceptibility to air pollution-related health risks. Candidate gene studies often targeted well-
known genes involved in inflammation or detoxification. In contrast, GWAS enabled the identification
of novel genetic variants associated with exposure to pollutants.

e Gene-Environment Interactions: Several researchers in this review focused on gene-
environment interactions, which investigate how genetic susceptibility can modify the health effects
of air pollution exposure. In these studies, genetic data were typically obtained from blood, saliva, or
buccal samples, and air pollution exposure was assessed through monitoring data or Land Use
Regression (LUR) models [39,41,52]. Notably, the studies by Zhang et al. (2024) employed
genotyping methods to examine the role of genetic polymorphisms in genes such as APOE &4, FRMDS,
DDX1, DNMT3L, MORCI, and TGM2 which are involved in specific biological pathways relevant
to air pollution exposure such oxidative stress, neuroinflammation, and epigenetic regulation. These
researchers found that certain genetic variants significantly influenced the association between air
pollution exposure and incident Dementia [53].

o Data Analysis and Quality Control: Rigorous data analysis methods were employed across
the studies to ensure the accuracy of genetic susceptibility results. Standard quality control measures,
including filtering based on minor allele frequency, call rates, and testing for Hardy-Weinberg
equilibrium, were commonly used to minimize errors. These procedures ensured that the genotyping
data were reliable for assessing the associations between genetic variants and health outcomes [47].
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3.2.2.  Assessment of pollutant exposure

The assessment of pollutant exposure in the included studies predominantly relied on
environmental monitoring, modeling techniques, and personal exposure measurements to estimate the
levels of air pollution to which study participants were exposed.

e Environmental Monitoring and Air Quality Data: A common method used in the studies
was to obtain air quality data from government or environmental monitoring stations. These stations
typically provide reliable data on the concentrations of pollutants, such as PMz.s, PMio, NO2, and NOx,
at specific geographic locations. For example, several researchers (e.g., Zhang et al., 2024) utilized
data from national or regional monitoring stations to estimate exposure for large cohorts. These data
were often combined with residential or work addresses to estimate long-term exposure levels [51].

e Land Use Regression (LUR) Models: Many researchers (e.g., Huang et al., 2021, Li et al.,
2023, Fu et al., 2023; and Gao et al., 2023) employed land use regression (LUR) models to predict
pollutant levels in areas where direct monitoring data were not available. LUR models are particularly
useful in estimating spatial variation in air pollution exposure by integrating geographical data, land
use patterns, and other environmental factors. These models were applied to derive individual-level
exposure estimates based on participants’ residential locations. Different LUR models were used
across studies, with varying levels of complexity and input data [39,41,42,52].

e Modeling Approaches: Some studies employed advanced modeling approaches, including
dispersion models and satellite-based models, to estimate air pollution exposure. For example,
several studies based on the UK Biobank (e.g., Ma et al., 2024 [40]; Liu et al., 2024 [44]; Wu et al.,
2024 [50]; Zhang et al., 2024 [53]) used DEFRA air dispersion models with a 1 x 1 km resolution to
assign annual average pollutant concentrations to participants’ residential addresses. In addition, Li et
al., 2022 [48] applied a satellite-based model that combined aerosol optical depth (AOD) data with
meteorological and land-use information using machine learning algorithms to estimate fine-scale
PM:s5 exposure. These modeling approaches are particularly valuable in regions without dense
monitoring station coverage.

e Exposure Duration and Temporal Patterns: Most studies evaluated long-term exposure
(e.g., chronic exposure over years), but a few focused on short-term or acute exposure in relation to
specific health outcomes (e.g., respiratory exacerbations or cardiovascular events). However, seasonal
variations or temporal patterns of exposure were generally not explored in detail.

e Exposure-Response Assessment: Many studies included an exposure-response analysis to
explore the relationship between pollutant levels and specific health outcomes. These studies often
adjusted for confounding factors such as age, gender, socioeconomic status, and pre-existing health
conditions to determine the strength and consistency of the exposure-response relationship [39,41,47].

In summary, the assessment of pollutant exposure in the reviewed studies utilized a combination
of monitoring data and modeling techniques (including LUR, dispersion models, and satellite-based
approaches). None of the included studies used personal exposure monitoring devices. The
methodologies employed provided valuable insights into the health effects of air pollution by offering
both spatially and temporally accurate exposure estimates.
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3.2.3. Integration of genetic and exposure assessments

The integration of genetic and exposure assessments is essential for understanding the complex
interactions between genetic susceptibility and environmental exposures such as air pollution. In this
section, we describe how researchers in this review combined genetic and environmental exposure
data to examine gene-environment interactions (GxE), providing a deeper understanding of how
genetic factors influence the effects of air pollution on health outcomes.

o Stratified Analysis: Some researchers in this review employed stratified analysis, where
participants were divided into subgroups based on specific genetic variants to assess whether the effects of
exposure differed between these subgroups. While not all studies used this approach, stratified analysis is
commonly used to identify gene-environment interactions. For example, researchers have focused on
polymorphisms in genes like GSTP1, involved in detoxification pathways, to explore how genetic variation
might influence the response to air pollution. This approach provides deeper insights into how genetic
factors can modify the health impacts of air pollution exposure [44,45,51].

e Interaction Terms in Regression Models: Statistical models (e.g., linear regression, and
logistic regression) are used to test for the interaction between genetic variants and exposure variables.
An interaction term is included in the model to assess whether the effect of exposure differs depending
on genotype [39-46,48,49,53].

e Gene-Environment Interaction (GxE): Gene—environment interaction (GxE) occurs when
the impact of environmental exposure, such as air pollution, on health outcomes varies according to
an individual’s genetic profile. Among the 16 included studies, several explicitly tested GxE
interactions using either multiplicative interaction terms in regression models or stratified analyses
based on genetic risk categories (e.g., polygenic risk scores). These studies demonstrated that genetic
susceptibility can modify the relationship between exposure to pollutants (e.g., PMa2s, and NO:) and
outcomes such as cardiovascular disease, major depressive disorder, or stroke. For example, some
studies reported significantly greater adverse effects of air pollution among individuals in the highest
tertile of genetic risk compared to those at lower risk [41,42,44,46,48-50].

In summary, the integration of genetic and exposure assessments using methods such as stratified
analysis, regression models with interaction terms, GWIS, and consideration of gene-environment
correlations provides valuable insights into how genetic susceptibility influences the health effects of
air pollution. These approaches enhance our understanding of gene-environment interactions and are
crucial for advancing precision medicine, where interventions can be tailored based on an individual’s
genetic profile and environmental exposures.

Note on Supplementary Materials: Due to the extensive nature of the data presented,
Supplementary Table S4 provides a detailed summary of the key findings, conclusions, and limitations
of the included studies. To ensure the flow and readability of the main text, this table has been moved
to the Supplementary Materials section. Readers can refer to Supplementary Table S4 in the
supplementary materials for a comprehensive overview of the studies included in this review.
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3.2.4. Gene-environment interactions

A detailed analysis of gene-environment interactions was conducted to explore how genetic
predisposition modulates the health effects of air pollution. In Supplementary Table S3, we summarize
the interactions between genetic markers and environmental exposures, such as PMz.s, PM1o, NO2, and
NOx, across multiple health outcomes, including cardiovascular diseases, respiratory conditions, and
mental health disorders.

Key findings include:

« Significant interactions between specific genetic polymorphisms and pollutant exposure levels,

with the strongest effects observed for cardiovascular diseases and mental health disorders.

e Variations in effect sizes (e.g., odds ratios, and hazard ratios) highlight the heterogeneity in
genetic susceptibility to air pollution exposure across populations.

e Specific metrics such as Relative Excess Risk due to Interaction (RERI) and Attributable
Proportion (AP) underscore the additive effects of genetic predisposition and environmental
exposures on disease risk.

This table provides a comprehensive overview of the statistical evidence supporting the

modifying role of genetic susceptibility in health outcomes associated with air pollution.

4. Discussion

The complex interplay between genetic predisposition and environmental exposures has emerged
as a key area of research in understanding disease risk and health disparities. This review contributes
to the growing body of literature by examining gene-environment interactions in the context of air
pollution and their impact on various health outcomes [8,35,57].

4.1. Regarding the association between genetic predisposition and air pollution exposure

The interaction between genetic predisposition and environmental factors, such as air pollution, has
garnered increasing attention in recent years due to its potential impact on disease risk. Our findings
contribute to this growing body of literature, highlighting the significant role that genetic susceptibility
plays in modifying the effects of air pollution on health outcomes [11,32,38,43,48-50,57-60].

The additive effects observed in individuals with both high genetic susceptibility and high exposure
to air pollution align with prior studies suggesting that genetic factors may amplify the adverse health
effects of environmental pollutants. Specifically, we found that individuals at higher genetic risk exhibited
more pronounced health deterioration when exposed to higher levels of air pollution. This combined effect,
where the interaction between genetic susceptibility and environmental exposure exceed the sum of their
individual effects, is consistent with other studies emphasizing the exacerbating role of genetic factors in
the harmful effects of environmental stressors [39,48].

Furthermore, genetic predisposition appears to modify the impact of air pollution exposure across
various diseases, including cardiovascular diseases (CVD), respiratory conditions, and mental health
disorders. These findings underscore the critical role of gene-environment interactions in shaping
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health outcomes. A detailed summary of gene-environment interactions, including the effect sizes, p-
values, and health outcomes, is provided in Supplementary Table S3.

4.2. Regarding disease-specific findings

In line with other studies, long-term exposure to pollutants such as PM2.5, NO2, and PM1o was
significantly associated with a higher likelihood of various diseases (e.g., lung cancer, cardiovascular
disease, and stroke), especially among individuals with higher genetic susceptibility [38-53].

Our results confirm that the combined effect of air pollution and genetic predisposition plays a
critical role in the development of complex diseases, including mental health disorders (e.g.,
schizophrenia, and Major Depressive Disorder) and cardiovascular diseases (e.g., abdominal aortic
aneurysms). For conditions like ulcerative colitis and psoriasis, our findings suggest that air pollution
exposure may be a modifiable environmental contributor, particularly for those genetically
predisposed. This highlights the potential for public health interventions to target these conditions by
addressing environmental exposures, such as through improved air quality policies. Further details of
these interactions are presented in Supplementary Table S3.

4.3. Implications for public health and precision medicine

These findings underscore the need for personalized approaches in environmental health, where
genetic susceptibility should be considered when assessing the potential impact of air pollution
exposure. Identifying individuals with high genetic susceptibility for specific diseases and high
exposure to air pollution could help target interventions and preventive strategies more effectively. For
example, individuals with genetic susceptibility to respiratory diseases might benefit from policies
aimed at reducing air pollution exposure in urban areas. Public health strategies could include
prioritizing air quality improvements in regions with high genetic vulnerability indices, or
incorporating genotyping into early screening programs in pollution-heavy urban centers [49,50,58].

While this review does not provide in-depth methodological analysis of these tools, we emphasize
their future relevance for advancing the field. Although none of the included studies employed
integrative multi-omics or machine learning techniques, these emerging methodologies are
increasingly recognized as powerful tools in precision environmental health. They hold promise for
uncovering novel mechanistic pathways and enabling more accurate risk stratification based on
complex gene-environment interactions [17,18,21,29].

Specifically, multi-omics and machine learning could significantly improve our understanding of
how genetic factors modulate responses to air pollution, providing insights that could refine health
outcome predictions and support personalized prevention strategies [18-21,29,60,61].

Although genome-wide interaction studies (GWIS) were not identified among the included
studies, researchers should consider applying GWIS to detect novel loci involved in pollution-related
health effects [29,32,58,62]. In addition, gene—environment correlation (rGE), where certain genetic
traits predispose individuals to environments with higher pollution exposure, was not addressed in the
included studies but remains an important methodological consideration for future analyses [63,64].
Experimental studies have also highlighted the relevance of mechanistic pathways, such as aryl
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hydrocarbon receptor (AhR) signaling in response to PMas exposure, yet this pathway was not
explored in the reviewed epidemiological literature. These mechanisms warrant further investigation
to strengthen the biological plausibility of GXE associations [65,66]. In addition, future studies
employing toxicological or experimental approaches, such as in vivo or organoid models, are needed
to explore mechanistic pathways (e.g., oxidative stress, inflammation, and epigenetic regulation),
which would strengthen the biological plausibility of observed GXE associations.

The data in Supplementary Table S3 support the potential value of combining genetic and
environmental risk profiling in public health efforts, particularly in identifying and protecting
vulnerable populations. As such, future research that integrate genetic data with high-resolution
exposure models, epigenomics, and machine learning algorithms could substantially enhance
targeted prevention strategies [38—53].

4.4. Limitations and recommendations for future research

While most included studies relied on observational designs, our findings are limited by the
inability to establish causality and may be affected by residual confounding, particularly in the
assessment of genetic susceptibility and environmental exposure [54,67]. Based on the current
evidence, we provide several recommendations for future research directions.

While we acknowledge that 12 of the 16 included studies were conducted in European
populations or used UK Biobank data, the implications of this geographic and ethnic skew deserve
deeper discussion. The lack of representation from non-European ancestry groups raises concerns
about the external validity and equity of current GXE findings, particularly in the context of global
precision health efforts. Equity and diversity should be central considerations when translating
GxE insights into public health strategies [68,69]. Recent advances in interaction testing
frameworks have made it more feasible to detect complex GxE effects across populations [70].
Future research must explicitly include underrepresented populations, both to validate current
findings and to uncover population-specific interactions that may be masked in predominantly
European datasets [71]. This approach will enhance the relevance and fairness of GxE-informed
precision health interventions on a global scale.

Further studies should address these limitations by incorporating more accurate exposure data,
such as personal monitoring of air pollution, and exploring gene-environment interactions in more
diverse populations to enhance the generalizability of the results [8,70-72].

One study included in this review, one by Chen et al. (2024), presents distinct methodological
considerations. While described as a cohort study, its structure is more akin to a cross-sectional or
nested case-control design, as it lacks precise temporal data on ulcerative colitis onset [49]. This
weakens the temporal relationship and introduces potential for reverse causation, which may limit
causal inference. To mitigate these limitations, the authors employed epigenetic analysis and
Mendelian randomization as complementary methods to strengthen causal interpretation [54-56].
Nevertheless, the absence of longitudinal follow-up reduces its methodological comparability with the
prospective cohort studies included in this review. Therefore, quality assessment was performed using
the JBI checklist rather than the Newcastle-Ottawa Scale, which better aligns with the study’s
epigenetic and case-control framework [35,37]. Future studies investigating gene—environment
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interactions in ulcerative colitis should aim to replicate these findings using longitudinal designs with
clearer temporal sequencing and larger population-based samples.

In addition, future studies would benefit from utilizing multi-omics approaches and machine
learning techniques to explore the mechanistic pathways that link air pollution exposure with
epigenetic changes and genetic predisposition in the development of complex diseases. These
technologies have been highlighted as powerful tools to advance exposome research and understand
causal biological mechanisms [17-21]. Such approaches hold great promise in identifying new
biomarkers and uncover complex, multifactorial interactions that might otherwise be missed. The
section on emerging technologies such as Al and multi-omics could also be expanded in future research
to provide more detailed elaboration on their potential applications in improving exposure modeling,
identifying complex gene-environment interactions, and enhancing risk prediction [21].

Moreover, longitudinal designs with larger, multi-ethnic samples and standardized exposure
assessments will improve the robustness of future findings and enable a more nuanced interpretation
of gene—environment dynamics over time. Although causality cannot be definitively inferred from
observational data, enhancing study design and incorporating mechanistic approaches, such as multi-
omics and molecular exposomics, can substantially strengthen the evidence base and help clarify
potential biological pathways [20,21,73-80].

Finally, disease-specific recommendations should be considered. For instance, prioritizing the
development and validation of polygenic risk scores (PRS) for conditions such as stroke, where strong
genetic signals have been identified (e.g., Ma et al., 2024) [43], may help refine individual-level
susceptibility profiling and enable more targeted public health responses [73—80]. Furthermore, as the
field progresses towards potential applications of genetic information in public health strategies,
careful consideration must be given to the ethical implications of genetic screening. These include
ensuring robust data privacy and security measures, obtaining informed consent, addressing the
potential for genetic discrimination, ensuring equitable access and implementation, and promoting
responsible interpretation and application of genetic risk profiles [81].

4.5. Mechanistic evidence supporting GxE effects

Researchers using animal models and organoid systems demonstrate that air pollution triggers
molecular events such as ROS overproduction, mitochondrial dysfunction, and cytokine dysregulation,
which may interact with genetic predispositions to exacerbate disease processes [82,83]. For example,
in vivo models have shown that particulate matter exposure leads to neuroinflammation and cognitive
impairment via the NF-kB and Nrf2 signaling pathways, providing insight into mechanisms potentially
relevant to mental health outcomes [84,85]. Similarly, lung and cardiovascular organoid models have
revealed pollutant-induced endothelial dysfunction and inflammatory responses that mirror pathways
implicated in human genetic risk loci [86,87].

A recent review highlights how organoid and animal-based approaches are increasingly used to
uncover the cellular and molecular mechanisms linking environmental exposures with chronic disease
phenotypes. These mechanistic insights are essential for interpreting GXE interactions and underscore
the need for integrative frameworks that combine epidemiological, genetic, and experimental evidence
in environmental health research [88,89].
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To provide biological plausibility to the epidemiological associations observed in this review, it
is important to consider experimental studies that elucidate underlying mechanisms. Toxicological and
in vivo models have consistently shown that exposure to air pollutants such as PMzs5, NO:, and diesel
exhaust particles can induce oxidative stress, systemic inflammation, and epigenetic changes;
pathways that are also implicated in the genetic susceptibility to complex diseases [90,91].

5. Conclusions

This review underscores the critical role of gene-environment interactions in shaping health
outcomes, particularly in the context of air pollution exposure. Our findings suggest that genetic
susceptibility may modify the associations of air pollution across various diseases, including
cardiovascular conditions, respiratory disorders, and mental health challenges. These results provide
compelling evidence for the need to integrate genetic data into environmental health research,
enhancing our understanding of the complex relationships between pollution exposure and disease risk.

Given the observational nature of the included studies, causal relationships cannot be definitively
established. Nonetheless, the patterns identified across the reviewed literature point to potentially
important gene—environment interactions that merit further investigation through mechanistic and
experimental studies.

The implications of these findings extend beyond scientific research, emphasizing the
development of precision public health strategies. Identifying individuals with heightened genetic risk
can enable the development of targeted prevention strategies, such as localized air quality interventions
or early screening efforts for at-risk populations. In parallel, these insights reinforce the need for broad
efforts to reduce air pollution exposure as a population-wide preventive strategy.

To improve the applicability of these findings, we recommend prioritizing the development of
polygenic risk scores (PRS) for diseases with strong and consistent GXE signals, particularly stroke,
as highlighted in recent studies such as Ma et al. (2024) [43]. Furthermore, enhancing air pollution
monitoring systems in rapidly urbanizing low- and middle-income countries (LMICs) is essential to
address current data gaps and guide targeted public health interventions.

Researchers should also incorporate mechanistic studies, including those using organoid and in
vivo models, to support the biological plausibility of GXE effects. These experimental approaches can
help elucidate key pathways such as oxidative stress, inflammation, and epigenetic modifications,
thereby strengthening the interpretation of epidemiological associations.

Finally, to ensure the equity and global relevance of GXE research, future studies must include
more diverse populations beyond those of European ancestry. By integrating genetic, environmental,
and mechanistic evidence, future precision health strategies can be more effectively tailored to protect
high-risk individuals and address the growing global burden of pollution-related diseases.
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Abstract: gr pollution, comprising a complex mixture of gascous and particulate pollu@@s, remains
a major global health concern, that disproportionately affects vulnerable populations, This scoping
@view aims o systematically investigates the role of genetic susgEptibility in health outcomes
associated with exposure to air pollution. with a particular emphasis on fine particulate matter (PM2.5),
particulate matter (PM 10}, nitrogen dioxide (NO2), and nitrogen oxides (NOX) - key pollutants
consistently link to adverse health effects, By exploring the gene-environment interactions underlying
air pollution-related conditions, this review offers new insights into how genetic factors may modulate
individual responses to air pollutants and their implications for precision health. Analyzing 16 peer-
reviewed sPjdies published in the last decade. we highlight genetic markers and pathways involved in
regulating oxidative srgg inflammation, and DNA repair, which are thought to influence individual
variation in responses to PM2.5. PM10, NO2, and NOx. Although none of the included studies
employed multi-omics or machine leaming approaches, this review identifies these tools as promising
directions for future research aimed at elucidating mechanistic pathways and informing personalized
strategies. These techniques could significantly improve the understanding of gene-environment
interactions, and are suggested as emerging methodologies for future studies. However, the scarcity of
longitudinal studies and the underrepresentation of diverse populations limit the generalizability of the
current findings. Addressing these gaps will be essential for adgpyeing research. improving
environmental health equity, and informing policy in the comtext of air pollution and genetic
susceptibility.

Keywords: air pollution, disease risk. environmental health. genetic susceptibility, personalized
medicine, precision health.

Graphical Abstract

This graphical abstract illustrates the conceptual pathway from air pollution exposure o genetic
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susceptibility, leading o increased disease risk. The green arrow highlights how disease risk, influenced
by gene-environment interactions, informs the development of precision health strategies tailored to
individual susceptibility.

1. Introduction

Air pollution remains (7§ of the most significant environmental risk factors worldwide,
contributing to an estimaied 7 million premature deaths@nually, according to the World Health
Organization [1.2,3]. Among the most harmful pollutants are fine particulate matter (PM2.5), coarse
particulate mater (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx) are consistently
assoffjted with adverse health outcomes [4.5.6].

PM25 and PMI0 refer to airborne parggles with acrodynamic diameters <2.5 and <10
micrometers, respectively. These particles can penetrate deep into the respiratory tract, triggering
oxidative stress, inflammation. endothelial dysfunction, and systemic effects beyond the lungs. NO2
and NOx. primarily emitted from vehicle exhaust and industrial processes, contribute to airway
inflammation, in@hired lung function, and increased cardiovascular risk. Exposure to these pollutants
has been linked to the development and exacerbation of chronie di such as asth chronic
obstructive pulmonary disease (COPD). ischemic heart disease, stroke, and even neurodegenerative
conditions [4.5.6].

Recent fine-seale modeling and exposure assessment studies, such as that of Nisticd et al, (2025),
emphasize the importance of high-resolution pollution data in identifying vulnerable populations and
guiding local-level interventions. Understanding the complex interplay between environmental
exposures and individual susceptibility, particularly at the molecular level. is crucial for developing
targeted public health interventions. This necessitates the integration of detailed environmental
monitoring data with comprehensive health @eillance and molecular research, including the
inv ation of genetic factors that may modify an individual's response to air pollution [7].

netic susceptibility to air pollution refers to the predisposition of certain individuals to
experience heightened adverse health effects due to specific genetic variations. Genes involved in
oxidative stress pathways play critical roles in neutralizing reactive oxygen species generated by
pollutants like fine particulate matter (PM2.5). Understanding these genetic mechanisms is crucial for
explaining why some populations exhibit increased vulnerability to air pollution-related diseases [8.
9, 10].

Air pollution rggRins a major global health challenge, imposing significant health burdens
worldwide. Primary pollutants, such as PM2.5, nitrogen dioxide (NO2), ozone, and volatile organic
compounds (VOCSs), are widely acknowledged as key contributors 1o diseases across multiple systems.
However, while environmental exposures are well-documented as primary drivers, genetic variations
significantly modulate individual susceptibility, disproportionately affecting vulnerable populations.
Despite its importance, the interaction between genetic predisposition and pollutant exposure remains
underexplored. leaving critical gaps in our understanding of the mechanisms driving health disparities
[11. 12, 13].

Recent advancements in genetic research have illuminated how genetic variants influence
sensitivity to oxidative stress, inflammation, DNA damage, and epigenetic modifications, all of which

are implicated in pollution-related diseases. However, significant challenges persist, including
inconsistent findings aqEEps studies due to methodological differences and the underrepresentation of
diverse populations in genetic analyses. Genome-wide association studies (GWAS) have identified
promising genetic markers, yet these findings often lack generalizability due to limited population
diversity and a lack of comprehensive models that integrate genetic and environmental factors [ 14,15].
To address these gaps, emerging methodologies such as multi-omics integration and machine
AIMS Public Health Volume 12, Issue 2, 470493
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learning are increasingly recognized as powerful tools to uncover complex gene-environment
interactions. While these techniques were not employed in the studies included in this review, they
hold great promise for future research aimed at identifying mechanistic pathways and advancing
precision health strategies [16,17,18.19].

This review addresses these gaps by systematicalffjanalyzing 16 peer-reviewed studies published
over the past decade to provide a detailed synthesis of the interplay between genetic and environmental
factors in determining health risks associated with air pollution. By focusing on oxidative stress,
inflammation, and epigenetic pathways, this review uniquely highlights genetic mechanisms that
modulate susceptibility to pollution-related diseases. It also identifies critical research gaps, such as
the reliance on cross-sectional designs, and proposes future directions to improve the robustness and
generalizability of findings.

The review further aims to outline a novel framework for advancing precision health strategies by
integrating genetic insights with emerging methodologies such as multi-omics, machine learning, and
longitudinal study designs. By doing so, it seeks to inform public health policies aimed at mitigating
air pollution-related }mallhks., particularly in vulnerable populations.

A detailed overview of the included studies. including author, year, location, study design,
population and sample size. exposure variables. health outcomes. and age range. is presented in Table
$1. This table provides a comprehensive summary of the key characteristics of the included studies,
enabling comparison and the identification of research gaps.

Despite the growing body of epidemiological research, the underlying biological mechanisms of
gene-environment (GXE) interactions remain complex and not fully understood. In addition to
epidemiological studies, mechanistic data from in vivo and organoid models also provide crucial
insights into the biological pathways underlying GXE interactions. Recent studies have demonstrated
how such models can elucidate the cellular responses to environmental exposures in genetically
predisposed individuals [8.20.21], which are discussed further in the Discussion section.

? Materials and methods

2.1. Protocol and Registration
10

gis scoping review was conducted following the methodological framework proposed by Arksey
and O'Malley (2005) and further elaborated by Levac et al. Z910). Recognizing the importance of
transparency and methodological rigor for evidence synthesis, the protocol for this scoping review was
retrospectively registered with the Open Science Framework (OSF) on May 22,2025, The public URL
for this registration is hups;//osfio/3r8ap/ and its Registration ID is 3r8ap. At the time of this
manuscript submission, the protocol is currently pending moderation approval,, and its public URL and
Registration ID will be provided here upon approval and publication by OSF moderators [22].

2.2, Search strategy:

1
To ensure transparency and credibility, ,systematic literature search was conducted across
multg}e databases, including PubMed, Google Scholar, and ResearchGate to identify relevant studies.
The search was limited to articles published in English between January 1. 2015, and December 31,
2024. The following search strate as used:

«  PubMed: ("air pollution”"|[MeSH Terms] OR "air pollution"|Title/Abstract] OR "air
pollutants"[ Title/Abstract]) AND ("genetic susceptibility’(MeSH Terms] OR “genetic
polymorphism”[Title/Abstract] OR  "oxidative stress"[MeSH Terms] OR "oxidative
stress"[Title/Abstract]) AND ("disease risk”|Title/Abstract] OR "health
outcomes"[ Title/Abstract])
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+  Google Scholar: "air pollution” AND ("genetic susceptibility” OR "oxidative stress") AND
("disease risk” OR "health outcomes" )

+  ResearchGate: ("air pollution” OR "air pollutants” OR “pencemaran udara") AND ("genetic
susceptibility" OR "genetic predisposition” OR "oxidative stress" OR "stress oksidatif”) AND
("disease risk" OR "health outcomes” OR "dampak keschatan”)

o DOAJ: "air pollution” AND ("genetic susceptibility” OR "oxidative stress™) AND ("disease risk”
OR "health outcomes")

The following filters wemapplied: Human studies. English language. publication date (2015-
2024), study type (including review, meta-analysis, randomized controlled trial, cohort study, case-
control study, and cross-sectional study), and peer-reviewed status.

2.3, Study Selection Process:
1

Articles were screened for relevance using gtwu—slep process: (1) title af) abstract screening,
followed by (2) full-text review. From this systematic search, 16 peer-reviewed articles were selected
based on their relevance to the topic. Data from the selected articles were then systematically extracted.
Data extraction prioritized information on genetic markers, their roles in modulating susceptibility, and
theirassociations with health effects induced by air pollution. The data synthesis employed a qualitative
approach to igggrate findings from these studies, focusing on the influence of genetic factors on
susceptibility to air pollution and the interaction between genctic variations and environmental
exposures. This enabled the identification of patterns and relationships between genetic variations and
health risks associated with air pollution, providing a comprehensive perspective on how genetics
inflyggices responses Lo environmental pollutants [23.24 25].
To ensure the transparency and reproducibility of this review, the study selection process was
guided by the PRISMA-ScR (Preferred Reporting ltems for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) framework. A PRISMA-ScR flow diagram was used to illustrate the
process of study selection. and adherence to PRISMA guidelines was maintained throughout the data
extraction and synthesis phases [26,27 28].
Step 1: Identifying Studies. Relevant studies were initially identified through a comprehensive search
across multiple databases. including PubMed, Web of Science, and Google Scholar. A combination of
keywords like "air pollution," "genetic susceptibility.” "oxidative stress." and "disease risk” wgg used
1o locate pertinent articles. These searches aimed to capture a broad range of studies related to genetic
factors and their interactions with environmental exposures.
The search results were carefully reviewed, € studies meeting the predefined inclusion eriteria were
selected for further assessment. Studies that did not meet the inclusion criteria, were not substantially
relevant to the research topic, or contained duplicated references were excluded.
This step ensures the selection of studies that contribute meaningful and relevant insights to the review,
avoiding redundancy and maintaining the quality and integrity of the synthesis [26 27 28].
Step 2: Study Screening. The next step involved screening the identified studies based on predefined
inclusion and exclusion criteria. Two re@@wers independently screened the titles and abstracts of the
studies retrieved from the initial search. Studies were selected for inclusion if they met the following
criteria;

. Focused on genetic susceptibility to air pollution.
. Provided explicit methodologies.
. Offered quantitative or mechanistic insights into genetic-environment interactions.

Studies that were excluded at this stage included those not published in English, non-peer-reviewed
articles, conference abstracts. and reviews that did not directly address genetic susceptibility to air
AIMS Public Health Volume 12, Issue 2, 470493
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pollution. The remaining articles underwent a full-text review 1o confirm their eligibility before being
included in the final analysis [26.27 28].

62
Step 3: gata Extraction. Data were extracted from the selected studies using a standardized extraction
form. The extraction process involved collecting detailed information on genetic markers, biomarkers,
healggutcomes related to air pollution exposure, and other relevant details like study design, sample
size, and key findings. The data were then synthesized qualitatively to identify key themes, patterns,
and relationships across the studies 26,27 28].

Step 4: Data Synthesis, Data synthesis involved integrating findings from the selected studies to draw
@nclusions about the influence of genetic factors on susceptibility to air pollution. This synthesis
aimed to provide a comprehensive understanding of the mechanisms underlying genetic-environment
interactions and their implications for disease risk. The integration of findings was guided by thematic
analysis and narrative synthesis techniques, emphasizing consistency and comparability across studies
[26.27 28].

2.4. Inclusion and Exclusion Criteria:
Studies were included in this scoping review if they met the following criteria:

Inclusion Criteria:

Study Design: Studies of any design that investigate the association between air pollution exposure
(e.g.. PM25, PM10, NO2@JOx) and health outcomes in relation to genetic susceptibility were
included. This encompasses observational studies (cohort, case-control, cross-sectional ), interventional
studies (e.g., randomized controlled trials, quasi-experimental studies), and Mendelian Randomization
studies. Scoping reviews are particularly suitable for mapping evidence on complex and heterogeneous
topics, as outlined by Page and Moher (2017), and Tricca et al. (2018). The focus was on studies
examining various genetic factors influencing susceptibility to air pollution rather than specific genetic
polymorphisms [26,27,28].

Population: Human participants of any age, sex, or ethnicity. Studies focusing on specific
subpopulations (e.g., children, elderly, individuals with specific pre-existing conditions) will also be
included.

Exposure: Measurable exposure to PM2.5, PM10, NO2, or NOx. Studies must provide quantitative or
qualitative data on one or more of these pollutants. Exposure assessment methods should be clearly
described (e.g., air quality monitoring data, self-reported exposure, residential proximity to pollution

sources). 19
Health Outcomes: Any health outcomes relevant to the research question, including but not limited
10 respiratory diseases (e.g., asth COPD), cardi lar di ,mental health effects, pregnancy

complications, and skin conditions. Studies must report specific health outcomes and diagnostic criteria
used.

Gene-Environment Interaction (Primary and Essential Criterion): Studies must present statistical
analyses that directly test for a gene-environment interaction (e.g., using interaction terms in regression
models, stratified analyses by genotype, interaction meta-regression), Studies reporting only the main
effects of air pollution or genetic associations separately will be excluded. Studies that mention gene-
environment interaction but do not perform formal statistical testing of the interaction will also be
excluded [8.29.30].

Exdusion Criteria:
Studies were excluded if they met any of the following criteria:
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1. Irrelevance to the Topic:

o Studies that did not address the health effects of air pollution.

o Studies that focused exclusively on pollutants other than PM2.5 {eg., only NO2 or 03), Studies
addressing PM2.5 along with other pollutants were considered if PM2.5-specific information could be
extracted.

& Studies that examined the environmental impact of air pollution but not human health effects.

o Studies solely focused on interventions or policies to reduce air pollution without addressing genetic
aspects.,

2. Lack of Genetic Focus:

o Purely epidemiological studies that only measured air pollution exposure and health outcomes without
considering genetic factors.

o I vitro orin vive toxicological studies that did not investigate genetic variations or gene polymarphisms,

3. Inappropriate Publication Type:

o Opinions, editorials, letters to the editor, and conference abstracts (unless the abstracts contained
significant information not available in a full-text publication).

& Books and book chapters (unless they contained relevant systematic reviews or meta-analyses).

o Government or non-govemmental organization reports (unless they contained significant data or
analyses not available in peer-reviewed publications).

4. Language and Accessibility:

o Studies not published in languages accessible 1o the review team (e.g., English and Indonesian).

o Studies for which full-text access could not be obtained after reasonuble search efforts (e.g., through
library databases or direct requests to authors).

5. Duplication:
& Studies published more than once (in which case. the most complete and recent version was included).
6. Methodological Concerns (with specific consideration for scoping reviews):

o While scoping reviews generally do not assess the methodological guality of studies as rigorously as
systematic reviews, studies with substantial methodological flaws (e.g.. severely flawed study design or
erroneous data amalysis) could be excluded. This criterion was applied cautiously and transparently
[31.32.33].

2.5.9&5 Extraction and Synthesis

Data from included studies were extracied using a standardized data extraction form, The

following information was extracted: study characteristics (e.g.. author, year, study design,
population), exposure assessment methods, genetic markm investigated, health outcomes assessed,
and key findings related to gene-environment interactions. A detailed overview of these extracted data.
presented in Table §1, provides a comprehensive summary of the key characteristics of the included

studies, enabling comparison and identification of research gaps. A narrative synthesis of the findings
will then be conducted to map the existing literature and identify key themes and research gaps

2.6. Quality Assessment of Included Studies
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To strengthen the methodological rigor of our review, we conducted a formal quality appraisal of
all 16 included full-text articles. Given the wvariety of study designs, we employed appropriate
asscsqmer@nls tailored to each design type:

The 13 prospective cohort studies were assessed using the Neweastle-Ottawa Scale (NOS) [34].
« The | cross-sectional study was evaluated using a modified version of NOS tailored for cross-

sectional designs,
« The | meta-analysis (Gruzieva et al.,

which are widely accepted for systematic reviews and meta-analyses [35].
o Thel ﬂmculm—eplgmetlc cohort study (Chen et al., 2024), although fundamentally prospective in
design, was evaluated using the JBI Critical Appraisal Checklist for Cohort Studies due to its
integration of biological, genetic. and epigenetic data [36].

3. Resulis

2016) was assessed narratively using AMSTAR 2 criteria,

21
?lma! of 322 records were identified through database searching (PubMed n=100, Google Scholar
=109, Research Gate n=107, and DOAJ n=7).
underwent title and abstract screening. Of these. 283 were excluded as they did not meet the inclusion
criffa (e.g., not focused on genetic susceptibility to air pollution, review articles, non-human studies).
35 full-text articles were assessed for eligibility, and 19 were further excluded due to methodological
concerns (e.g.. lack of a clear methodology, f@@s on non-PM2.5 pollutants), or lack of investigation
of gene-environment interaction). Finally, 16 studies met all inclusion criteria and were included in

this scoping review (Figure 1).
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3.1 Study Characteristics

This scoping review included 16 studies investigating the interpfj between genetic susceptibility
and air pollution, particularly PM2.5, on various health outcomes. A diverse range of study designs
were employed, including 1 cross-sectional study, 14 prospective cohort studies, 1 meta-analysis of
@hort studies, and 1 Mendelian Randomization study. This heterogeneity in study design is typical in
a scoping review, aiming (o map the available evidence regardless of methodological rigor. Only one
study employed Mendelian Randomization anal ysis as its core methodological approach [37-35].

The majority of studies focused on adult populations, with a reported age range spanning from 37
to 73 years. Geographically, the research was predominantly conducted in Europe (n=12). with one
study encompassing both Europe and North America (n=1), and a smaller number conducted in Asia
(n=3). This geographical distribution highlights a potential gap in reseggh from other regions,
Furthermore, 15 out of the 16 studies investigated the combined effects of particulate matter (PM2.5
and/or PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx). Only one study, Gruzieva et al.
(2016), focused solely on prenatal NO2 exposure. This pattern suggests that PM2.5 and NO2 are
dominant environmental factors in the studies and highlights the need for further exploration of NO2
exposure, particularly in its isolated form, to better understand its specific role in genetic susceptibility
to diseases [37-52].

PM2.5 exposure was the most commonly assessed air pollutant, primarily using air quality
monitoring data (n=16). It should be noted that some studies used multiple methods for exposure
assessment. Some studies utilized land-use regression models to estimate PM2.5 exposure based on
spatial data and environmental characteristics, while others employed self-reported questionnaires
focusing on residential location and daily activities. For instance, Huang et al. (2021) and Gao et al.
(2023) used land-use regression models within the UK Biobank to estimate individual exposures. Li et
al. (2022) wsed land-use regression models in China. Air quality monito@B data typically involves
measurements taken at fixed monitoring stations, providing information on ambient air pollution levels
in specific locations. Land-use regression models, on the other hand. incorporate spatial data such as
traffic density. land use types. and meteorological factors to create more refined estimates of pollution
exposure at a finer spatial scale [38.43 53]. These different methods have varying degrees of accuracy
and may introduce different types of measurement error.

Operational Definitions of Variables: PM2.5 was most often defined as the annual average
concentration at the participants’ residential address. However, some studies used different averaging
periods (e.g.. 24-hour average) or considered specific sources of PM2.5 (e.g., traffic-related PM2.5).
Health outcomes varied acroffJstudies, encompassing cardiovascular diseases (e.g., myocardial
infarction, stroke), respiratory diseases (e.2.. chronic obstructive pulmonary disease (COPD), lung
cancer), and metabolic disorders (e.g., type 2 diabetes). This variability in outcome definitions should
be considered when interpreting the findings.

Exposure Measurement Methods (Further Details): Studies using air quality monitoring data
often linked particip@F}' residential addresses to the nearest monitoring station. Land-use regression
models incorporated geographic information system (GIS) data on traffic, land use, and topography.
Self-reported questionnaires typically asked participants about their residential history, time spent
outdoors, and proximity to pollution sources.

Justification for Study Selection: Mendelian Randomization studies were included because they
provide stronger evidence for causal inference by using genetic variants as instrumental variables,
reducing the potential for confounding and reverse causation. Studies employing other designs, such
as cohort studies, were included to provide a broader overview of the existing evidence base
[49.53.54.55].

Information on sex was consistently reported, with approximately equal representation of men and
women across the studies, However, reporting on other demographic characteristics, such as ethnicity
and socioeconomic status (SES), was less consistent. Where reported, SES was often categorized based
on indicators such as education level, occupation. or income. Some studies also considered other
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participant characteristics such as smoking status and pre-existing health conditions as potential
confounders.

Interventions or Moderating Factors: Several studies investigated potential moderating facgzs
such as genetic polymorphisms (as mentioned previously), dietary intake, and physical activity. For
instance, a study by Huang et al. (2021) examined whether the association between PM2.5 and lung
function wus modified by genetic variations in angxidant enzymes [37].

Sixteen studies investigated the interactions of PM2.5, PM10, NO2, and NOx on various gene
polymorjsms associated with increased disease risk. These studies often examined specific gene
variants known to be involved in pathways related to inflammation, oxidative stress, or DNA repair,
which are mechanisms through which air pollution @ghought to exert its effects. Mendelian
Randomization studies were included to provide stronger causal evide§Z: for the relationship between
air pollution and health outcomes, Mendelian Randomization utilizes genetic varianis as instrumental
variables to assess the causal effect of an exposure (e.g.. air pollution) on af@uicome (e.g., disease
risk), minimizing the influence of confounding fuctors [47@@3-54]. Only one meta-analysis of cohort
studies specifically examined the relationship between NO2 exposure during pregnan@find cord blood
DNA methylation. This meta-analysis synthesized data from multiple cohort studies to investigate the
potential impact of prenatal NO2 exposure on epigenctic modifications in newborns [37]. @

Brief Summary of Key Findings: Overall, the studies consistently suggested a positive
association between long-term exposure to air pollutants. particularly PM2.5, and adverse health
outcomes, including cardiovascular and respiratory diseases. Some studies also found evidence of
associations with metabolic disorders andgpither health outcomes. Studies investigating gene-
environment interactions provided evidence that genetic susceptibility can modify the effects of air
pollution [36-51].

Some studies used genotyping to assess genetic susceptibility and data from air quality nf@nitoring
stations to measure PM2.5 exposure. The findings of the included studies generally suggested a positive
association between long-term exposure to air pollutants. particularly PM2.5, and adverse health
outcomes [36-51].

A dewailed overview of the included studies, including author, year, loggion, study design,
population and sample size, exposure variables, health outcome, and age range, is presented in Table
S1.

To assess the methodological rigor of the included studies, a formal quality appraisal was
conducted using tools appropriate foreach study design, as detailed in the Methods section (see Section
2.6). A comprehensive summary of the methodological qualfgg assessment for all 16 included full-text
articles is presented in Table 1. The results showed that the majority of studies met high-quality
criteria, supporting the reliability of the extracted findings. For a detailed breakdown of individual
study scores and their respective quality assessments, please refer to Supplementary Table S4.

Table 1. Summary of Methodological Quality Assessment of the Included Studies Based on Study
Design.
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Having established the characteristics of the included studies and the methods used to assess
exposure and outcomes, the following section will detail the methods used to assess genetic
susceptibility and pollutant exposure, before presenting the key findings related to gene-environment
interactions [36-51],

3.1.1  Overview and Categorization of Health Outcome

The studies in this review report a diverse range of health outcomes associated with air pollution
exposure. involving both physical and mental health conditions across diffgrent populations. These
outcomes span multiple disease categories, highlighting the broad impact of pollutants such as PM2.5,
PM 10, NO2, and NOx [36-51].

To facilitate analysis, the included studies were categorized into seven primary groups: respiratory
diseases, cardiovascular diseases, neurological and psychiatric disorders, cancers, autoimmune and
inflammatory conditions, and other diseases, Cardiovascular and neurological conditions were the most
frequently studied, with consistent associations reported for PM2.5. PM ggNO2, and NOx exposure.
Notable findings include stronger associations of air pollution exposure with coronary artery disease
(Fu et al., 2023: Li et al., 2022) and major depressive disorder (Li et al., 2023) associated with these
pollutants |39 40 46]. Additionally, autoimmune conditions such as inflammatory bowel disease (Chen
etal., 2024) were linked to long-term exposure to PM 2.5 and NOx [47].

1. Respiratory Diseases
AIMS Public Health Volume 12, Issue 2, 470493
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Several studies focus on respiratory conditions, particularly in relation to particulate matter and

nitrogen oxides:

« Wang et al. (2022): Chronic obstructive pulmonary disease (COPD) associated with PM2.5,
PM 10, NO2, and Nox [44].

Cardiovascular Diseases

Aigpollution exposure is strongly linked to various cardiovascular conditions:

« Fuetal (2023) and Li et al. (2022): Coronary artery disease (CAD) [40.46].

s Maet al. (2024): Abdominal aortic ancurysm [38].

« Rhee etal. (2024): General cardiovascular diseases [45].

Neurological and Psychiatric Disorders

Mental health and cognitive impairments are key areas of concemn:

« Zhang etal, (2024): Dementia [51].

o Liuetal, (2024): Schizophrenia [42].

« Gaoetal (2023): Depression and anxiety [50].

+ Zhang etal. (2024); Speed processing deficits [49].

« Lietal (2023): Major depressive disorder [39].

Cancer

A study reports a significant association between air pollution and lung cancer:

+ Huang etal. (2021): Lung cancer [37].

Autoimmune and Inflammatory Conditions

o Chen et al. (2024): Ulcerative colitis [47].

« Wuetal. (2024): Psoriasis [48].

Eigenetic Changes

Air pollution exposure, particularly in early life, has been shown to cause epigenetic changes, such

as differential DNA methylation;

« Gruzieva et al (2016): Differential offspring DNA methylation at CpG site in cord
blood newborns [36].

Other Diseases

Several studies have also linked air pollution to other health conditions:

o Huang et al. (2024): Parkinson’s disease [43].

o Maet al. (2024): Stroke [41].

3.1.2 Methods of Exposure and Outcome Assessment

In this scoping review. the methods used 1o assess air pollution exposure and health outcomes

varied across studies, reflecting the diversity of study designs and populations.

Exposure Assessment

1.

Air Quality Monitoring Data: The most commonly used method for assessing exposure to air
pollution was air quality monitoring data, with all 16 studies utilizing this approach. Air quality
monitoring typically involved measurements taken at fixed monitoring stations to capture ambient
air pollution |‘-"‘"-‘ﬂ in specific locations, This method provides reliable and consistent data on
concentrations of pollutants such as PM2.5, PM10, NO2, and Nox [38 40].

42
Land-Use Regression Models: Several studies (eg., Huang et al., 2021) employed ald-usc
regression (LUR) models to estimate individual-level exposures to air pollution. LUR models use
spatial data on environmental and urban characteristics, such as traffic density, land use, and
meteorological factors, to predict exposure to pollutants at a finer geographic scale. These models
can provide more localized estimates of exposure,, accounting for variation in pollution levels that
may not be captured by monitoring stations [37 39.50].
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3. Self-Reported Questionnaires: A few studies included in this review also used self-reported
questionnaires, asking participants about their residential history, time spent outdoors, and
proximity to pollution sources. This method, while less accurate than air quality monitoring or
LUR models, allowed researchers to estimate individual exposure based on participants' reported
behaviors and locations [48].

4. Genetic  Susceptibility (Genotyping): Sggpe studies also explored gene-environment
interactions, examining how genetic factors may modify the effects of air pollution exposure on
health outcomes [44.4551|. These studies typically combined genetic data (e.g., blood or saliva
samples) with exposure data (from monitoring stations or Land Use Regression (LUR) models)

Outcome Assessment

1. g8galth Outcomes: A broad range of health outcomes were assessed across the studies, including
respiratory diseases (e.g., COPD, asthma), cardiovascular disea {e.g., coronary artery disease,
myocardial infarction), neurological conditions (e.g.. dementia, depression), metabolic disorders
(e.g.. type 2 diabetes) , and autoimmune/inflammatory discases (e.g., ulcerative colitis). Each study
defined and measured these outcomes differently, with some relying on clinical diagnoses. hospital
records, or self-reported health conditions [36-51].

=

Objective Health Measurements: Many studies used objective health measures, such as lung
function tests, blood pressure readings, or biomarkers, to assess the impact of air pollution on
various health conditions. These measurements provided more precise and quantifiable data
compared to self-reported health information.

3. Gene-Environment Interactions: A subset of studies explored how genetic susceptibility
madifies the impact of air pollution on health outcomes. These studies integrated genetic data (e.g.,
from genotyping or epigenetic analyses) with environmental exposure estimates.
A detailed methodological examination of how gene-environment interactions were assessed is
provided in the next section (3.1.4).

313 Gene-Environment Interaction Analysis

To enhance transparency and methodological rigor, we examined hovgrghe included studies
assessed gene-environment (GxE) interactions. All 16 studies investigated the modifying role of
genetic susceptibility on the association between air pollution exposure and health outcomes. However,
the methodological approaches varied.

Several studies employed Cox regression models to estimate has ratios and to evaluate
interaction effects [37-44 46 47 51]. Among these, a subset formally tested additive interaction metrics,
such as the Relative Excess Risk due to Interaction (RERI) and Attributable Proportion (AP), which
provide insight into the biological synergy between genetic risk and environmental exposure
[36,37.39.40.43 46 50]. Multiplicative interactions, expressed through interaction coefficients in Cox
models. were also reported in some studies.

Only a subset of studies formally tested genc—environmnl interactions, either through additive
metrics (e.g., RERL, AP) or multiplicative interaction terms. Several studies (e.g.. Fu etal., Rhee et al.)
reported combined effect estimates without direct interaction testing, which may limit interpretability.
We have reflected these methodological distinctions in Supplementary Table 83. To support
methodological clarity in future research, we encourage adherence to established guidelines for GxE
analysis, including the use of formal interaction testing and transparent reporting of effect modification
approaches.
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While most studies did not apply formal multiple testing corrections (e.g.. Bonferroni or false
discovery rate), two studies—Gruzieva et al. (2016) and Zhang et al. (2024)—did report correction
procedures [36.51]. However, the lack of correction in the majority of studies may limit the
interpretability of interaction findings in the presence of multiple comparisons. This issue is
particularly relevant given the large number of exposures and genetic markers tested, which increases
the chance of false-positive results,

A detailed summary of the interaction testing methods, effect sizes, p-values, and confidence
intervals is provided in Supplementary Table 83, To improve visibility and address reviewer
concerns, we have clarified key methodological features in this section and will consider integrating
selected elements of Supplementary Table S3 into the main manuscript if appropriate.

complement Supplementary Table 83, which details the interaction testing methods used in
each study, Table 2 summarizes key methodological characteristics of the included studies, focusing
on the statistical approaches used to evaluate gene—environment interactions, the type of interaction
tested (multiplicative or additive), the significance of interaction terms (e.g., p-values), and the
application of multiple testing corrections. This structured summary enhances methodological
transparency and supports interpretation of the findings by distinguishing between formal and informal
testing strategies.

Table 2. Overview of Formal and Informal Testing Methods, Interaction Type. and Multiple Testing
Cormrection in Gene-Environment Interaction Studies.
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3.2, Methods of Assessing Genetic Susceptibility and Pollutant Exposure

This section describes the specific methods used within the 16 included studies to assess genetic
susceptibility and pollutant exposure. This focuses on how these measurements were implemented in
the context of the reviewed literature, rather than providing a general overview of these methods.

3.2.1 Assessment of Genetic Susceptibility
Among the 16 articles reviewed, 14 focused on genetic susceptibility, | examined epigenetic

modification, and | study investigated both genetic susceptibility and epigenetic modification. Table
3 summarizes the focus of these articles.

Table 3. Summary of study focus.

Genetic Susceptibility

Epigenetic Modification

Both Genetic and Epigenetic 1
Note: Table 3 provided a breakdown of the types of studies included in this review.

After assessing general genetic susceptibility, the review also explored gene-environment (GxE)
interactions—how genetic factors may modity the health effects of air pollution exposure. Table 4
presents an overview of these studies, specifically focusing on the use of genotyping or DNA
methylation methodologies.

Table 4. Overview of Studies on GxE Interactions Using Genotyping or DNA Methylation.
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Table 4 provides an overview of studies on gene-environment interactions (GxE) using genotyping or
DNA methylation. The studies listed highlight how genetic factors may influence the health outcomes
of air pollution exposure, with a particular focus on epigenetic modifications like DNA methylation at
specific CpG sites.

The assessment of genelic susceptibility in the included studies primarily focused on identifying
specific genetic variants associated with increased risk of adverse health outcomes rdfled to air
pollution exposure. Many studies aimed to explore how genetic differences could modify the harmful
effects of pollutants like PM2.5, PM10, NO2, and NOx on health outcomes.

+«  Genotyping Methods Used in Included Studies: The majority of studies employed genotyping
techniques, with SNP arrays being the most common method (n=14). These arrays allowed for
the detection of a wide range of single nucleotide polymorphisms (SNPs) across multiple genes.
Mumina HumanOmniExpress arrays were utilized in some studies to assess SNPs related to
oxidative stress and inflammatory pathways. Additionally, PCR-based genotyping methods, such
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as TagMan assays, were used in a few studies to investigate specific candidate genes linked to air
pollution-related health effects. Only a smaller number of studies (n=2) employed whole-gen@iZe
sequencing (WGS) to explore broader genetic variations. although this method was applied in a
limited number of participants due to cost and technical constrainis.

Candidate Genes and Genome-Wide Association Studies (GWAS): A combination of
candidate gene approuches (n=8) and GWAS (n=7) were used in these studies to explore the
genetic basis of susceptibility to air pollution-related health risks. Candidate gene studies often
targeted well-known genes involved in inflammation or detoxification. In contrast, GWAS
allowed for the identification of novel genetic variants associated with exposure to pollutants.
Gene-Environment Interactions: Sefpyal studies in this review focused on gene-environment
interactions, which investigate how genetic susceptibility can modify the health effects of air
pollution exposure. In these studies, genetic data were typically obtained from blood, saliva, or
buccal samples, and air pollution exposure was assessed through monitoring data or Land Use
Regression (LUR) models [37 39.40]. Notably, the studies by Zhang et al., 2024 employed
genotyping methods to examine the role of genetic polymorphisms in genes such as APOE g4,
FRMDS, DDX1, DNMT3L, MORCI, and TGM2 which are involved in specific biological
pathways relevant to air pollution exposure such oxidative stress, neuroinflammation,
epigenetic regulation. These studies found that certain genetic variants significantly influenced the
association between air pollution exposure and incident Demensia [51].

Data Analysis and Quality Control: Rigorous data anal ysis methods were employed across the
studies to ensure the accuracy of genetic susceptibility results. Standard quality control measures,
including filtering based on minor allele frequency, call rates, and testing for Hardy-Weinberg
equilibrium, were commonly used to minimize errors, These procedures ensured that the
genotyping data were reliable for assessing the associations between genetic variants and health
outcomes [43].

3.2.2 Assessment of Pollutant Exposure

The assessment of pollutant exposure in the included studies predominantly relied on

environmental monitoring, modeling techniques, and personal exposure measurements to estimate the
levels of air pollution to which study participants were exposed.

Environmental Monitoring and Air Quality Data: A common method used in the studies was
1o obtain air quality data from government or environmital monitoring stations. These stations
typically provide reliable data on the concentrations of @&jlutants, such as PM2.5, PM10, NO2,
and NOx, at specific geographic locations. For example, several studies (e.g., Zhang et al., 2023;
Wang et al., 2022) utilized data from national or regional monitoring stations to estimate exposure
for large cohorts. These data were often combined with residential or work addresses to estimate
long-term exposure levels [42.49].

Land Use Regression (LUR) Maodels: Many studies (e.g., Huang et al., 2021: Li etal gg023: Gao
etal., 2023) employed land use regression (LUR) models to predict pollutant levels in areasgghere
direct monitoring data were not available. LUR models are particularly useful in estimating spatial
variation in air pollution exposure by integrating geographical data, land use patterns, and other
environmental factors. These models were applied to derive individual-level exposure estimates
based on participants” residential locations. Different LUR models were used across studies, with
varying levels of complexity and input data [32 37 48].

Personal Exposure Measurement: A subset of studies (e.g., Lietal., 2022; Ma et al., 2024) used
personal exposure measurement devices, such as portable air pollution monitors or wearable
sensors, to capture real-time exposure data. This method provided more accurate and
individualized measurements of pollution exposure, particularly in studies focused on short-term
exposures or specific events like traffic-related pollution [36.44].
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«  Modeling Approaches: Some studies (e.g Huang et al., 2021: Zhu et al., 2024) employed
sophisticated atmospheric madels to estimate pollutant levels based on meteorological conditions
and emission sources. These models helped estimate exposure levels in regions without direct
monitoring stations or personal exposure data [27 36].

+  Exposure Duration and Temporal Patterns: Most studies evaluated long-term exposure (e.g.,
chronic exposure over years), but a few focused on short-term or acute exposure in relation to
specific health outcomes (e.g., respiratory exacerbations or cardiovascular events), However,
seasonal variations or temporal patterns of exposure were generally not explored in detail.

+ Exposure-Response Assessment: Many studies included an exposure-response analysis to
explore the relationship betweeng)llutant levels and specific health outcomes. These studies often
adjusted for confounding factors such as age, pender socioeconomic status, and pre-existing health
conditions to determine the strength and consistency of the exposure-response relationship
[37.3945].

In summary, the assessment of pollutant exposure in the reviewed studies utilized a combination
of monitoring data, modeling techniques. and personal exposure measurements, The choice of exposure
assessment method varied depending on the available resnurces.mld)f design, and research objectives.
The methodologies employed provided valuable insights into the health effects of air pollution by
offering both spatially and temporally accurate exposure estimates.

3.2.3 Integration of Genetic and Exposure Assessments

The integration of genetic and exposure asgggrments is essential for understanding the complex
interactions between genetic susceptibility and environmental exposures such as air pollution. This
section describes how studies in this review combined gengsc and environmental exposure data to
examine gxnc-clﬁonmcnl interactions (GxE), providing a deeper understanding of how genetic
factors influence the effects of air pollution on health cutcomes.

«  Stratified Analysis: Some studies in this review employed stratified analysis, where participants
were divided into subgroups based on specitic genetic variants to assess whether the effects of
exposure differed between these subgroups. While not all studies used this approach, stratified
analysis is commonly used to identify gene-environment interactions. For example, previous
research has focused on polymorphisms in genes like GSTPI, involved in detoxification pathways,
to explore how genetic variation might influence the response to air pollution. This approach
provides deeper insights into how genetic factors can modify the health impacts of air pollution
exposure (42,43 49],

+ Interaction Terms in Regression Models: Statistical models (e.g., linear regression, logistic
regression) are used to test for the interaction between genetic variants and exposure variables. An
interaction term is included in the model to assess whether the effect of exposure differs depending
@ zenotype [37-44 46 47 51).

s+  (Gene-Environment Interaction (GxE): Gene-environment interaction (GxE) occurs when the
impact of environmental exposure, such as air pollution, on health outcomes varies according to
an individual's genetic profile. Among the 16 included studies. several explicitly tested GxE
interactions using either multiplicative interaction terms in regression models or stratified analyses
based on genetic risk categories (e.g., polygenic risk scores). These studies demonstrated that
genetic susceptibility can madify the relationship between exposure to pollutants (e.g., PM2.5,
NO:) and outcomes such as cardiovascular disease, major depressive disorder, or stroke. For
example, some studies reported significantly greater adverse effects of air pollution among
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individuals in the highest tertile of genetic risk compared to those at lower risk
[39.40.42 44 46 47 48].

In summary, the integration of genetic and exposure assessments using methods such as stratified
analysis, regression models with interaction terms, GWIS, and consideration of gene-environment
correlations provides valuable inggghts into how genetic susceptibility influences the health effects of
air pollution, These approachesggphance our understanding of gene-environment interactions and are
crucial for advancing precision medicine, where interventions can be tailored based on an individual's
genetic profile and environmental exposures.

Note on Supplementary Materials: Due to the extensive ngure of the data presented, Table S2
provides a detailed summary of the key findings, conclusions. and limitations of the included studies.
To ensure the flow and readability of the main text, this table has been moved to the Supplementary
Materials section. Readers can refer to Table 82 in the supplementary materials for a comprehensive
overview of the studies included in this review.

3.2.4 Gene-Environment Interactions

A detailed analysis of gene-environment interactions was conducted to explore how genetic
predisposition modulates the health effects of air pollution. Table S3 (Supplementary Mggrials)
summarizes the interactions between various genetic markers and environmental exposures, such as
PMas, PMio, NO2, and NOx, across multiple health outcomes, including cardiovascular diseases,
respiratory conditions, and mental health disorders.

Key findings include:

«  Significant interactions between specific genetic polymorphisms and pollutant exposure levels,
with the strongest effects observed for cardiovascular diseases and mental health disorders.

+  Variations in effect sizes (e.g., odds ratios, hazard ratios) highlight the heterogeneity in genetic
susceptibility to air pollutiogggxposure across populations.

«  Specific metrics such as Relative Excess Risk due to Interaction (RERI) and Autributable
Proportion (AP) underscore the additive effects of genetic predisposition and environmental
exposures 0 disease risk.

1

This table provides a comprehensive overview of the statistical evidence supporting the modifying
role of genetic susceptibility in health outcomes associated with air pollution.

4. Discussion

The complex interplay between genetic predisposition and environmental exposures has emerged
€A key area of research in understanding disease risk and health disparities. Thmeview contributes
1o the growing body of literature by examining gene-environment interactions in the context of air
pollution and their impact on various health outcomes [8,33,55].

4.1 Regarding the Association Between Genetic Predisposition and Air Pollution Exposure:

The interaction between genetic predisposition and environmental factors, such as air pollution,
has garnered increasing attention in recent years due to its potential impa@@n disease risk. Our findings
contribute to this growing body of literature, highlighting the significant role that genetic susceptibility
plays in modifying the effects of air pollution on health outcomes [11,30 36,41 46 47 48 55 56 57 58].

The additive effects observed in individuals with both high genetic susceptibility and high
exposure 1o air pollution align with prior studies suggesting that genetic factors may amplify the
adverse health effects of environmental pollutants. Specifically, we found that individuals at higher
AIMS Public Health Volume 12, Issue 2,470-493
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genetic risk exhibited more pronounced heaf deterioration when exposed to higher levels of air
pollution. This combined effect, where the interaction between genetic susceptibility and
environmental exposure exceed the sum of their individual effects, is consistent with previous studies
emphasizing the exacerbating role of genetic factors in the harmful effects of environmental stressors
[37.46].

Furthermore, genetic predisposition appears to modify the impact of air pollution exposure across
various diseases, including cardiovascular diseases (CVD), respiratory conditions, and mental health
disorders. These findings underscore the critical role of gene-environment interactions in shaping
health outcomes. A detailed summary of gene-environment interactions, including the effect sizes, p-
values, and health outcomes, is provided in Table 83 (Supplementary Materials).

4.2 Regarding Disease-Specific Findings:

In line with previous sludies,ﬂg-ﬁerm exposure to pollutants such as PM2.5, NO2_ and PMI10
was significantly associated with a higher likelihood of various diseases (e.g., lung cancer,
cardiovascular disease. stroke, etc.), especially among individuals with higher genetic susceptibility
[36-51].

Our results confirm that the combined effect of air pollution and genetic predisposition plays a
critical role in the development of complex diseases, including mental health disorders (e.g.,
schizophrenia, Major Depressive Disorder) and cardiovascular diseases (e.g.. abdominal aortic
aneurysms). For conditions like ulcerative colitis and psoriasis, our findings suggest that air pollution
exposure may be a modifiable environmental contributor, particularly for those genetically
predisposed. This highlights the potential for public health interventions to target these conditions by
addressing environmental exposures, such as through improved air quality policies. Further details of
these interactions are presented in Table S3.

4.3 Implications for Public Health and Precision Medicine:

These findings un@@score the need for personalized approaches in environmental health, where
genetic susceptibility should be considered when ing the potential impact of air pollution
exposure. Identifying individuals with high genetic susceptibility for specific diseases and high
exposure to air pollution could help target interventions and preventive strategies more effectivggy. For
example, individuals with genetic susceptibility to respiratory diseases might benefit from policies
aimed at reducing air pollution exposure in urban areas. Public health strategies could include
prioritizing air quality improvements in regions with high genetic vulnerability indices, or
incorporating genotyping into early screening programs in pollution-heavy urban centers. [47 48.36].

While this review does not provide in-depth methodological analysis of these tools, we emphasize
their future relevance for advancing the field. Although none of the included studies employed
integrative multi-omics or machine learning techniques, these emerging methodologies are
increasingly recognized as powerful tools in precision environmental health, They hold promise for
uncovering novel mechanistic pathways and enabling more accurate risk stratification based on
complex gene-environment interactions. While this review does not provide in-depth methodological
analysis of these tools, we emphasize their future relevance for advancing the field | 18-21 39-61].

Specifically, multi-omics and machine learning could significantly improve our understanding of
how genetic factors modulate responses to air pollution, providing insights that could refine health
outcome predictions and support personalized prevention strategies [18-21,59-611.

Although genome-wide interaction studies (GWIS) were not identified among the included
studies, future research should consider applying GWIS to detect novel loci involved in pollution-
related health effects [30,5657.62]. In addition, gene—environment correlation (rGE)—where certain
genetic Iraits predispose individuals to environments with higher pollution exposure—was not
addressed in the included studies but remains an important methodological consideration for future
AIMS Public Health Volume 12, Issue 2, 470493
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analyses [63.64]. Experimental studies have also highlighted the relevance of mechanistic pathways,
such as aryl hydrocarbon receptor (AhR) signaling in response to PM2.5 exposure, yet this pathway
was not explored in the reviewed epidemiological literature. These mechanisms warrant further
investigation to strengthen the biological plausibility of GxE associations [65.66]. In addition, future
studies employing toxicological or experimental approaches—such as in vivo or organoid models—
are needed to explore mechanistic pathways (e.g.. oxidative stress, inflammation, and epigenetic
regulation), which would strengthen the biological plausibility of observed GxE associations.

The data in Table 83 support the potential value of combining genetic and environmental risk
profiling in public health efforts, particularly in identifying and protecting vulnerable populations. As
such, future research integrating genetic data with high-resolution exposure models, epigenomics,
and machine learning algorithms could substantially enhance targeted prevention strategies [36-51].

4.4 Limitations and Recommendations for Future Research:

While most included studies relied on observational designs, our findings are limited by the
inability to establish causality and may be affected by residual confounding, particularly in the
assessment of genetic susceptibility and environmental exposure [52.67]. Based on the current
evidence, we provide several recommendations for future research directions.

While we acknowledge that 12 of the 16 included studies were conducted in European populations
or used UK Biobank data, the implications of this geographic and ethnic skew deserve deeper
discussion. The lack of representation from non-European ancestry groups raises concerns about the
external validity and equity of current GxE findings, particularly in the context of global precision
health efforts. Equity and diversity should be central considerations when translating GxE insights into
public health strategies |68 69]. Recent advances in interaction testing frameworks have made it more
feasible to detect complex GxE effects across diverse populations [70]. Future research must explicitly
include underrepresented populations, both to validate current findings and 1o uncover population-
specific interactions that may be masked in predominantly European datasets |71]. This approach will
enhance the relevance and fairness of GXE-informed precision health interventions on a global scale.

Further studies should address these limitations by incorporating more accurate exposuremm.
such as personal monitoring of air pollution, and exploring gene-environment interactions in more
diverse populations to enhance the generalizability of the results [8.70.71.72].

One study included in this review—Chen et al. (2024)—presents distinct methodological
considerations. While described as a cohort study, its structure is more akin to a cross-sectional or
nested case-control design. as it lacks precise temporal data on ulcerative colitis onset [46]. This
weakens the temporal relationship and introduces potential for reverse causation, which may limit
causal inference. To mitigate these limitations. the authors employed epigenetic analysis and
Mendelian randomization as complementary methods to strengthen causal interpretation [52.53 54].
Nevertheless, the absence of longitudinal follow-up reduces its methodological comparability with the
prospective cohort studies included in this review. Therefore, quality assessment was performed using
the JBI checklist rather than the Newcastle-Ottawa Scale, which better aligns with the study's
epigenetic and case-control framework [33.35]. Future studies investigating gene-environment
interactions in ulcerative colitis should aim to replicate these findings using longitudinal designs with
clearer temporal sequencing and larger population-based samples.

In addition, future studies would benefit from utilizing multi-omics approaches and machine
learning techniques to explore the mechanistic pathways that link air pollution exposure with
epigenetic changes and genetic predisposition in the development of complex discases. These
technologies have been highlighted as powerful tools to advance exposome research and understand
causal biological mechanisms [18.19.20 21]. Such approaches hold great promise in identifying new
biomarkers and uncover complex. multifactorial interactions that might otherwise be missed. The
AIMS Public Health Volume 12, Issue 2, 470493
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section on emerging technologies such as Al and multi-omics could also be expanded in future research
to provide more detailed elaboration on their potential applications in improving exposure modeling,
identifying complex gene-environment interactions, and enhancing risk prediction |21].

Moreover, longitudinal designs with larger, multi-cthnic samples and standardized exposure
assessments will improve the robustmess of future findings and enable a more nuanced interpretation
of gene-environment dynamics over time. Although causality cannot be definitively inferred from
observational data, enhancing study design and incorporating mechanistic approaches—such as multi-
omics and molecular exposomics—can substantially strengthen the evidence base and help clarify
potential biological pathways [20.21.73-80].

Finally, disease-specific recommendations should be considered. For instance, prioritizing the
development and validation of polygenic risk scores (PRS) for conditions such as stroke—where strong
genetic signals have been identified (e.g.. Ma et al., 2024)—may help refine individual-level
susceptibility profiling and enable more targeted public health responses [73-80]. Furthermore, as the
field progresses towards potential applications of genetic information in public health strategies , careful
consideration must be given 1o the ethical implications of genetic screening. These include ensuring
robust data privacy and security measures, obtaining informed consent, addressing the potential for
genetic discrimination, ensuring equitable access and implementation, and promoting responsible
interpretation and application of genetic risk profiles [81].

4.5 Mechanistic Evidence Supporting GxE Effects

Recent studies using animal models and organoid systems demonstrate that air pollution triggers
molecular events such as ROS overproduction, mitochondrial dysfunction, and cytokine dysregulation,
which may interact with genetic predispositions to exacerbate disease processes [82,83]. For example,
in vivo models have shown that particulate matter exposure leads to neuroinflammation and cognitive
impairment via the NF-xB and Nrf2 signaling pathways, providing insight into mechanisms potentially
relevant to mental health outcomes |84,85]. Similarly, lung and cardiovascular organoid models have
revealed pollutant-induced endothelial dysfunction and inflammatory responses that mirror pathways
implicated in human genetic risk loci [86.87].

A recent review highlights how organoid and animal-based approaches are increasingly used to
uncover the cellular and molecular mechanisms linking environmental exposures with chronic disease
phenotypes. These mechanistic insights are essential for interpreting GxE interactions and underscore
the need for integrative frameworks that combine epidemiological. genetic. and experimental evidence
in environmental health research [88.89].

To provide biological plausibility to the epidemiological associations observed in this review, it is
important to consider experimental studies it elucidate underlying mechanisms. Toxicological and
in vivo models hagggonsistently shown that exposure to air pollutants such as PM2.5, NO:, and diesel
exhaust particles can induce oxidative stress. systemic inflammation, and epigenetic changes—
pathways that are also implicated in the genetic susceptibility to complex diseases [90.91].

5. Conclusions

This review underscores the critical role of gene-environment interactions in shaping health
outcomes, particularly in the context of air pollution exposure. Our findings suggest that genetic
susceptibility may modify the associations of air pollution across various diseases, including
cardiovascular conditions, respiratory disorders, and mental health challenges. These results provide
compelling evidence for the need to integrate genetic data into environmental health research,
enhancing our understanding of the complex relationships between pollution exposure and disease risk.
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Given the observational nature of the included studies, causal relationships cannot be definitively
established, Nonetheless, the patterns identified across the reviewed literature point to potentially
important gene-environment interactions that merit further investigation through mechanistic and
experimental studies.

The implications of these findings extend beyond scientific research, emphasizing the
development of precision public health strategies. Identifying individuals with heightened genetic risk
can enable the development of targeted prevention strategies, such as localized air quality interventions
or early screening efforts for at-risk populations. In parallel, these insights reinforce the need for broad
efforts to reduce air pollution exposure as a population-wide preventive strategy.

To improve the applicability of these findings, we recommend prioritizing the development of
polygenic risk scores (PRS) for diseases with strong and consistent GxE signals—particularly stroke,
as highlighted in recemt studies such as Ma et al. (2024). Furthermore, enhancing air pollution
monitoring systems in rapidly urbanizing low- and middle-income countries (LMICs) is essential to
address current data gaps and guide targeted public health interventions.

Future research should also incorporate mechanistic studies, including those using organoid and
in vivo models, to support the biological plausibility of GxE effects. These experimental approaches
can help elucidate key pathways such as oxidative stress, inflammation, and epigenetic modifications,
thereby strengthening the interpretation of epidemiological associations.

Finally, to ensure the equity and global relevance of GxE research, future studies must include
more diverse populations beyond those of European ancestry. By integrating genetic. environmental,
and mechanistic evidence, future precision health strategies can be more effectively tailored to protect
high-risk individuals and address the growing global burden of pollution-refated diseases.
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Abstract: Air pollution, a complex mixture of gaseous and particulate pollutants, presents a major
global health challenge, disproportionately affecting vulnerable populations. This scoping review
aims to systematically investigate the role of genetic susceptibility in health outcomes associated
with exposure to air pollution, with a particular emphasis on fine particulate matter (PM2.5),
particulate matter (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), all of which are
key pollutants linked to adverse health effects. By exploring the gene-environment interactions
underlying air pollution-related diseases, the review offers new insights into how genetic factors
modulate individual responses to air pollutants and their implications for precision health.
Analyzing 16 peer-reviewed studies published in the last decade, we highlight genetic markers and
pathways involved in regulating oxidative stress, inflammation, and DNA repair, which play
critical roles in modulating responses to PM2.5, PM10, NO2, and NOx. The novelty of this review
lies in its focus on integrating genetic data with emerging technologies, including multi-omics and
machine learning, to unravel mechanistic pathways and enhance precision health strategies.
However, the scarcity of longitudinal studies and the underrepresentation of diverse populations
limit the generalizability of the findings. Overcoming these challenges will be essential for
advancing research, informing policy decisions, and developing effective interventions to
mitigate the global burden of air pollution-related diseases, ultimately unlocking the potential
of precision health in this context.
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English Language and Style

() Extensive editing of English language and style required
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() I don't feel qualified to judge about the English Language and Style

Comments for Author

This scoping review offers a timely and increasingly relevant exploration of gene-environment
interactions in the context of air pollution, aiming to synthesize how genetic susceptibility shapes
health outcomes and the implications for precision health. The manuscript is well-intentioned,
addressing a critical area at the intersection of environmental and genomic epidemiology. It covers
a range of studies that apply polygenic risk scores (PRS), genotyping, and epigenetic assessments
to evaluate the health effects of air pollution. The inclusion of diverse disease outcomes and
pollutants like PM2.5, PM10, NO2, and NOx is commendable. However, despite the
comprehensive ambition,

Firstly, the study selection process described lacks clarity in its practical execution. Although the
PRISMA-ScR approach is claimed, there is no explicit registration of the protocol (e.g., in Open
Science Framework or PROSPERO), nor is there a clear justification for including only 16 studies
out of an initial 322 records. For instance, the reasons listed in the flow diagram (p. 7) for excluding
19 full-text articles are vague (“methodological concerns”) without further elaboration or a formal
quality appraisal process, which weakens the transparency and reproducibility of the review
process.

Secondly, the paper repeatedly emphasizes the novelty of integrating multi-omics and machine
learning approaches (e.g., Abstract, lines 20-21; Discussion, p. 19), yet no included studies
employed such techniques. This disconnect between the stated goals and actual evidence
undermines the central claims and may mislead readers about the current state of the field.

Third, while the manuscript purports to address gene-environment interactions (GxE), it includes
studies that are inconsistent in their application of GXE methodology. Several studies, such as Fu
et al. (2023) and Rhee et al. (2024), do not formally test interaction terms or stratified analyses.
The inclusion of these studies, without sufficient discussion of their methodological limitations or
the absence of direct GXE testing, dilutes the rigor of the review’s conclusions. The authors should

consider  referencing  clearer = methodological  standards such as those in
doi:10.3389/fendo.2024.1371682.

Fourth, while Table 2 (pp. 12—15) provides a helpful overview of included studies, it lacks key
information that would allow readers to critically appraise each study's GxE validity. Specifically,
it does not indicate which studies used additive interaction metrics such as RERI or AP, nor



whether multiple testing corrections were applied. This is crucial information for interpreting
interaction results and should be added or moved into the main manuscript rather than relegated to
the supplementary.

Fifth, the discussion section heavily cites associations without critically analyzing heterogeneity
between studies. For example, significant geographical skew (12 of 16 studies are from Europe or
the UK Biobank) and the lack of ethnic diversity in participant cohorts are acknowledged (line
256), but the implications for external validity are insufficiently discussed. The authors should
draw on frameworks such as those in doi:10.3389/fpubh.2022.895659 to contextualize these
limitations in precision health strategies.

Sixth, while disease categories are well organized (pp. 9-10), some causal language is
inappropriately used. The term “risk™ is repeatedly employed (e.g., “associated with increased risk
of schizophrenia”) without considering the observational nature of the studies, even when
Mendelian randomization is not employed. This violates best practice guidelines in causal
inference and may overstate the implications of the findings. The authors may benefit from
referencing methods-focused reviews such as doi:10.26355/eurrev_202302 31377 for appropriate
terminology use.

Seventh, the review does not meaningfully integrate toxicological or experimental data that could
provide biological plausibility to support the epidemiological observations. Considering the focus
on oxidative stress and inflammation, a discussion of relevant mechanistic studies—particularly
those using in vivo or organoid models—would enrich the review. The integration of studies
similar to those in doi:10.1016/j.jhazmat.2025.138105 would significantly enhance this
discussion.

Lastly, the conclusion is overly broad and reiterates previously stated limitations without offering
concrete future directions. Suggestions such as “including more diverse populations” and
“leveraging advanced exposure monitoring” are valid but generic. A more refined conclusion
should offer disease-specific recommendations, such as prioritizing PRS development for stroke
(based on the strong findings from Ma et al., 2024) or enhancing air pollution monitoring in rapidly
urbanizing LMIC regions, where such data are currently lacking.

In summary, the manuscript presents a potentially valuable synthesis of a growing field but is
currently hampered by methodological imprecision, overinterpretation, and lack of critical
appraisal of included studies. A major revision is necessary to improve methodological
transparency, tone down unsupported claims, and more critically evaluate the strength of the
evidence.
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Author's Reply to the Review Report

Please add your reply into the box below. You may upload an additional PDF or Word file with
your replies. Comments here will be seen by the reviewer.

RESPONSE TO REVIEWER 1

We sincerely thank the reviewer for their constructive and detailed feedback. We have addressed
the concerns raised point-by-point as follows:

English Language and Writing Style

We appreciate the reviewer’s observation regarding the need for moderate improvements in
English language and writing style. In response, we have thoroughly revised the manuscript to
improve clarity, grammar, and overall coherence. Particular attention was given to refining
technical terminology, sentence structure, and logical transitions to enhance readability and ensure
a more polished academic tone. We believe that these revisions have substantially improved the
quality and flow of the manuscript.

1. Rebuttal to Reviewerl Comment #1: Study Selection Methodology
a. Lack of Detailed Description of Study Selection Process

We appreciate the importance of transparency in study selection. In response, we have
revised the Methods section to provide a more comprehensive and step-by-step description
of our study selection process, including the number of reviewers involved, criteria used at
each stage, and decision flow. Additionally, a PRISMA-ScR flow diagram (Figure 1) is
included in the manuscript to visually represent the full screening and inclusion process.

b. Protocol Registration

While protocol registration is not mandatory for scoping reviews, we agree that it enhances
transparency and methodological rigor. Scoping reviews are not eligible for registration on
PROSPERO; however, we have addressed this by registering our protocol with the Open
Science Framework (OSF), which accommodates a wide range of review types. The
registration was completed retrospectively as part of the current revision process. The OSF
registration link is now included in the revised manuscript. We thank the reviewer for this
valuable recommendation.

c. Clarification on Why Only 16 Out of 322 Articles Were Included



The initial database search identified 322 records. After removing duplicates and applying
automation tools and initial screening criteria, 54 articles remained. Of these, 19 were
excluded due to lack of full-text availability, and the remainder were excluded based on
predefined inclusion/exclusion criteria, such as irrelevance to the topic or lack of
methodological detail. This process is clearly detailed in the revised PRISMA-ScR diagram
and is now described more thoroughly in the text.

Furthermore, we emphasize that only full-text articles could be included for further
methodological quality assessment, in line with best practices for scoping reviews.

. Exclusion of 19 Articles — Clarification of Rationale

We would like to clarify that the 19 articles were not excluded based on methodological
judgment, but rather due to insufficient access to the necessary information for quality
assessment. As clearly stated in the PRISMA-ScR diagram (Figure X), the 19 excluded
articles consisted of:

e Abstract-only publications (n=3)

o Lay summaries (n=1)

o Articles with inaccessible full texts (n=12)

e Articles outside the time span (n=1)

e Articles with inappropriate research focus (n=2)

Methodological quality evaluation cannot be meaningfully conducted without access to
the full manuscript text. Therefore, exclusion was based on information insufficiency,
not methodological inadequacy. We have clarified this in the revised manuscript and are
happy to elaborate further if needed.

. Quality Assessment of Included Studies

To enhance methodological transparency, we conducted a quality assessment of all 16 full-
text articles included in the final review. The studies were appraised using tools tailored to
their respective study designs:

13 prospective cohort studies were assessed using the Newcastle-Ottawa Scale (NOS).
1 cross-sectional study was evaluated using a modified version of the NOS adapted for
cross-sectional designs, which adjusts for the lack of follow-up and outcome incidence
measures.

1 meta-analysis of cohort studies (Gruzieva et al., 2016) was assessed narratively using
the AMSTAR 2 framework, which is specifically designed for evaluating systematic
reviews and meta-analyses.

1 molecular-epigenetic cohort study (Chen et al., 2024), although based on a prospective
cohort design, involved significant integration of biological and epigenetic mechanisms.
Therefore, we evaluated this study using the JBI Critical Appraisal Checklist for
Cohort Studies, which offers more flexibility for complex analytical designs.



The detailed methodological appraisal revealed the following score distribution:

The NOS-based results for the 14 studies were as follows:

e 13 articles scored 9/9 (high quality)

o The cross-sectional study by Zhang et al. (2024), titled "Interactive effect of air pollution

and genetic risk of depression on processing speed by resting-state functional connectivity

of occipitoparietal network", received a score of 9 out of 10 (high quality) using the
modified Newcastle-Ottawa Scale (NOS) for cross-sectional studies.

o Based on the AMSTAR 2 framework, Gruzieva et al. (2016) demonstrates high
methodological quality as a meta-analysis of IPD from cohort studies, despite the

absence of a formal protocol registration.

e The JBI assessment for Chen et al. (2024) indicated high methodological quality,
fulfilling all 11 criteria in the checklist. These included clear identification and handling
of confounders, valid and reliable measurement of exposures and outcomes, adequate
follow-up, and appropriate statistical analysis. The study’s integration of molecular data
within a large prospective design further strengthened its methodological rigor.

These results suggest that all of included studies were of high methodological quality. As

appropriate for a scoping review, our objective was not to exclude studies based on quality,

but to transparently characterize the range and rigor of the available evidence.

We have summarized these results in the manuscript in the new Table 1, and for full

transparency, we are providing the scoring details for all included studies in the

Supplementary Materials. These assessments further support the robustness of our

synthesis while addressing the reviewer's concerns regarding the clarity of study inclusion

and quality appraisal.

We trust that these revisions fully address the reviewer's concerns and improve the

methodological transparency of the manuscript.

2. Rebuttal to Reviewer Comment #2:

We sincerely thank the reviewer for pointing out this important inconsistency. We acknowledge
that none of the included studies in our scoping review employed multi-omics or machine
learning techniques directly. Our original intention was to highlight these approaches as
emerging directions for future research, rather than as existing features of the current
evidence base.

To address this concern, we have revised the Abstract, Discussion, and other relevant sections
to clarify that multi-omics integration and machine learning were not observed in the included
studies, but are suggested as promising areas for future investigation based on the identified
limitations and gaps in the literature. We believe these techniques could significantly enhance
future studies in this area, and as such, they were mentioned to emphasize the potential
directions for advancing the field.
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We have reworded the Abstract (lines 20-21) and the Implications section of the Discussion
(page 19) to ensure this distinction is clear, emphasizing that while these approaches are not yet
present in the current body of research, they represent an important avenue for future
exploration. This adjustment was made to prevent overstating the current state of the field and
to more accurately represent the existing evidence.

. Rebuttal to Reviewer Comment #3:

We appreciate the reviewer’s concern regarding the heterogeneity in GXE methodologies across

the included studies. We acknowledge that varying levels of methodological stringency exist,

with some studies, including Fu et al. (2023) and Rhee et al. (2024), not exclusively employing
formal interaction terms in regression models.

However, we respectfully note that this work is a scoping review, not a systematic review.

As such, our objective was not to apply narrow methodological inclusion criteria, but rather to

map the existing body of literature on genetic susceptibility to air pollution and its implications

for disease risk and precision health. The purpose of a scoping review is to capture the
breadth of evidence, including studies that discuss gene-environment interactions
conceptually, narratively, or descriptively—even if they do not employ formal statistical
interaction tests. Limiting inclusion strictly to studies with formal interaction terms would
have excluded potentially relevant contributions and obscured gaps in current research practice.

Given this, our inclusion criteria necessarily allowed studies that explore joint effects through

stratified analyses or combined risk categorization, even if formal interaction testing (e.g.,

inclusion of interaction terms with reported p-values) was not performed in every case. These

studies still offer valuable insights into how genetic and environmental factors may jointly
shape disease vulnerability—while differing in methodological rigor, they remain relevant to
understanding how GXE interactions are approached in practice.

Specifically,

e Fu et al. (2023) conducted formal interaction testing using Cox proportional hazards
regression models that included interaction terms (p-interaction) on the multiplicative
scale. However, all reported p-values were > 0.05 and thus not statistically significant.
In addition, they performed formal additive interaction analyses using RERI (Relative
Excess Risk due to Interaction) and AP (Attributable Proportion), which indicated a
positive additive interaction. Therefore, the study included both formal multiplicative
and additive interaction testing, even though only the additive interaction yielded
notable findings.

e Rhee et al. (2024) did not report the use of regression-based interaction terms nor formal
p-values. Instead, they used stratified hazard ratio comparisons across genetic risk
groups and visual trends to describe potential gene—environment interactions. As such, the
analysis was descriptive and informal, without formal statistical interaction testing on
either additive or multiplicative scales.

e« We would also like to emphasize that measures such as RERI and AP are widely
accepted in epidemiologic literature as formal interaction tests on the additive scale.

When confidence intervals or p-values are reported for these measures, they provide
inferential evidence analogous to p-interaction terms used for multiplicative interactions.



Therefore, studies utilizing these metrics—Ilike Fu et al. (2023)—are not informal in
their approach, even if their results on the multiplicative scale were non-significant.
e Rhee et al. (2024) included interaction terms between PM2.5 and polygenic risk scores in

their regression models, but did not report p-values for those terms. Instead, they presented
stratified hazard ratios and interpreted effect modification narratively. Although their
approach involved formal modeling, the absence of reported p-values and reliance on
descriptive interpretation places the study closer to informal testing.

e We would like to clarify that Supplementary Table S3, which was already included in the
original submission, summarizes the type and rigor of GXE analyses for each study,
including whether formal interaction testing or stratified approaches were employed.

o To further address the reviewer’s concern, we have also added Table 2 in the main
manuscript, which provides a structured summary of interaction analysis methods,
interaction type (additive, multiplicative, or informal), and the application of multiple
testing correction across all included studies. This table complements Supplementary Table
S3 and enhances clarity for the reader.

e Made these methodological distinctions more explicit in the main text, particularly in
the Results and Discussion sections.

o Regarding the reference suggested by the reviewer (doi:10.3389/fendo.2024.1371682), we
have carefully reviewed its content. However, we found that it primarily addresses
associations between physical activity, sedentary behavior, and insulin levels in short
sleepers, without any discussion of gene—environment (GxE) interaction methodology,
statistical interaction testing, or causal inference models. Therefore, we have chosen
not to cite this reference, as it does not align with the methodological focus of our
review or the specific concerns raised regarding GxE testing standards.

e Additionally, we would like to emphasize that Supplementary Table S3 already included
a detailed classification of interaction analyses (formal vs. stratified/descriptive) for each
study, including whether formal statistical interaction testing was conducted. To improve
visibility and clarity in the main manuscript, we have now added Table 2 as a
complementary summary of these methodological distinctions. This new table
highlights the type of interaction testing (multiplicative or additive), significance reporting,
and use of multiple testing correction, thus ensuring that these aspects are more explicitly
integrated into the main narrative.

We believe this approach balances inclusiveness with critical appraisal, aligning with the goals
of a scoping review while also highlighting the need for greater methodological consistency in
future GXE research. We also recognize that studies using different analytical approaches
provide varying degrees of inferential strength, and we have now reflected this in our revised
narrative.

4. Rebuttal to Reviewer Comment #4:



We appreciate the reviewer’s comment regarding the need for clearer reporting of which studies
employed additive interaction metrics (e.g., RERI, AP) and whether multiple testing corrections
were applied.

However, we would like to clarify that the table currently labeled Table 4 (formerly Table 2)
is not designed to provide detailed statistical methodology. Rather, it serves as a narrative
overview of each study’s population, exposure, outcome, GXE context, and key findings. Its
primary function is to offer readers a high-level summary of the study characteristics and
thematic findings within the GXE research landscape.

In contrast, the specific information requested by the reviewer—such as the use of RERI,
AP, formal interaction terms, and multiple testing corrections—has been available from
the outset in Supplementary Table S3. This supplementary table systematically categorizes
the type and rigor of GXE analysis used in each study, clearly indicating whether formal
interaction testing was conducted and whether statistical significance or correction procedures
were reported.

To enhance clarity and accessibility, we have now added a new Table 2 in the main

manuscript, which further synthesizes and highlights the methodological details of the
included studies. This new table complements Table S3 and ensures that the methodological
distinctions are more visible to readers without needing to consult only the Supplementary
Materials.

Therefore, we respectfully submit that Table 4 should remain unchanged, as it was not
intended to be a repository of analytical methodology but rather a descriptive summary of study-
level context and findings. The detailed methodological content is now fully accessible through
the combination of Supplementary Table S3 and the newly added Table 2 in the main
manuscript.

We hope this clarification addresses the reviewer’s concern and improves the transparency and
interpretability of our reporting.

. Rebuttal to Reviewer Comment #5:

Thank you for your insightful comment regarding the need to critically analyze the
heterogeneity between studies, especially with respect to geographical skew and ethnic
diversity. We acknowledge the importance of considering these factors in understanding the
external validity and global applicability of gene—environment (GXE) findings. Below, we
outline how we have addressed these concerns:

Acknowledging Geographical Skew and Lack of Ethnic Diversity:

We agree that the predominance of studies from Europe and the UK Biobank poses important
considerations for the external validity of our findings. In response, we have strengthened our
discussion to more thoroughly address the geographical and ethnic homogeneity of the study
populations. We now emphasize that these factors may limit the generalizability of our results,
particularly in populations outside of Europe. Additionally, we discuss how these limitations
should be considered when interpreting the findings, particularly for precision health strategies.



Furthermore, we have explicitly stated that future research should aim to include more diverse
populations across different ethnicities and geographical regions to enhance the generalizability
and applicability of findings in global settings.

Correction and Replacement of Suggested Framework:

We note that the cited article (doi:10.3389/fpubh.2022.895659) focuses on rural health

worker satisfaction and does not provide a relevant framework for genomic or GxE

research. Instead, we have now referenced more appropriate literature, such as:

o Sirugo et al. (2019), The Missing Diversity in Human Genetic Studies (NEJM), and

e Popejoy & Fullerton (2016), Genomics is failing on diversity (Nature),
which better articulate the challenges and consequences of underrepresentation in genomic
research and its implications for precision medicine.

Incorporating Conceptual Frameworks:

These new references provide the conceptual basis to contextualize how geographic and
ancestral homogeneity can bias gene—environment interaction findings, and why inclusive
representation is vital for translating GXE research into equitable precision health strategies.

Recommendations for Future Research:

We now clearly recommend that future studies prioritize recruitment of underrepresented
populations across ethnic and geographic groups. This will improve not only the
representativeness of the data but also the relevance of GXE-informed interventions globally.
We believe that these additions directly address the reviewer’s concerns, strengthen the
discussion, and improve the clarity and critical reflection regarding the limitations of the current
evidence base.

. Rebuttal to Reviewer Comment #6:

Thank you for this constructive and important observation regarding the use of causal language
in our manuscript. We appreciate your emphasis on maintaining appropriate terminology in
observational research, especially in the absence of formal causal inference methods such as
Mendelian randomization.

In response, we have carefully reviewed the entire manuscript and implemented the following
changes:

1. Terminology Refinement
We have replaced or revised instances of the term “risk” that could imply causal
relationships inappropriately, particularly in the Results and Discussion sections, as well as
in Table 4. Phrases such as “associated with increased risk of...” have been replaced with
more cautious and accurate expressions such as “associated with...”, “linked to...”, “showed
stronger association with...”, or “increased likelihood of...”, depending on context, to more

accurately reflect the associative, rather than causal, nature of the findings.



2. Clarifying the Observational Nature
We have emphasized throughout the manuscript that all included studies are
observational, and thus do not permit causal inference. This clarification is now also
highlighted in the Limitations section, where we discuss the inability to establish causality
and the importance of interpreting associations with caution.

3. Clarification on Mendelian Randomization Use
Only one study among the 16 included studies (Chen et al., 2024) employed Mendelian
randomization methods, and we have clarified this explicitly in the Methods and Results
sections. . However, this does not justify causal language in the broader manuscript, and we
have revised terminology accordingly.

4. On the Reviewer’s Suggested Reference
With respect to the article suggested by the reviewer (DOI: 10.26355/eurrev_202302_
31377), we have carefully reviewed its content. However, we found that it primarily
addresses catastrophic health expenditure among elderly populations in China and
does not contain discussion or guidance on causal inference, gene—environment
interactions, or precision health terminology. For this reason, we have chosen not to cite it,
as it does not align with the methodological context of our manuscript.

5. Broader Context of Best Practices
Instead, we have strengthened our approach by adopting terminology aligned with
established practices in epidemiological reporting and by ensuring that all interpretive
statements reflect the non-causal nature of the included studies. We remain open to including
additional methods-focused references more appropriate to the GXE and causal inference
context, should the reviewer suggest a more suitable alternative.

. Rebuttal to Reviewer Comment #7:

Thank you for this thoughtful comment. We appreciate the suggestion to integrate toxicological
or experimental evidence to support the biological plausibility of gene—environment (GxE)
interactions. However, we respectfully note that our review follows a scoping review
methodology, which aims to systematically map the extent, nature, and range of research
activity based on predefined inclusion criteria.

As this review adheres to a scoping review methodology, our inclusion criteria were limited to
peer-reviewed epidemiological studies that explicitly examined the modifying role of genetic
susceptibility in the health effects of air pollution. None of the 16 included studies employed
toxicological, in vivo, or organoid models, nor did they present mechanistic findings beyond
pathway-level interpretations (e.g., PRS pathways or epigenetic markers).

To maintain methodological integrity, we have not included studies outside the scope of our
inclusion criteria—such as those focused exclusively on biological mechanisms or toxicological
pathways—since doing so would risk conflating different bodies of evidence and overstepping
the aims of a scoping review.

However, we acknowledge the critical importance of mechanistic evidence and have included
a forward-looking recommendation in the revised Discussion (Section 4.3 — Implications for
Public Health and Precision Medicine), highlighting the potential value of future studies



integrating multi-omics and experimental models (e.g., in vivo and organoid systems) to
uncover causal pathways and strengthen the biological interpretation of observed associations.
We believe this approach respects the boundaries of scoping methodology, while
constructively acknowledging the direction for future research as suggested.

While we did not integrate the specific studies into our results, we have cited the reviewer-
suggested reference (doi:10.1016/j.jhazmat.2025.138105) in the Discussion as a representative
example of the type of mechanistic work that could inform future research directions and
enhance the biological interpretation of epidemiological findings.

We believe this approach respects the methodological scope of a scoping review while
constructively incorporating the reviewer’s suggestion to highlight relevant future research
needs.

8. Rebuttal to Reviewer Comment #8:

Thank you for this valuable suggestion to refine the Conclusion section. We fully agree that the
conclusion should go beyond reiterating general limitations and instead offer more concrete,
actionable directions for future research.

In response, we have revised the Conclusion to include:

o Adisease-specific recommendation emphasizing the prioritization of polygenic risk score
(PRS) development for stroke, based on strong and consistent findings reported by Ma et
al. (2024).

e A context-sensitive call for improved air pollution monitoring infrastructure in rapidly
urbanizing low- and middle-income countries (LMICs), where environmental and genomic
surveillance systems remain underdeveloped.

These revisions are intended to enhance the translational relevance of the review and to
provide clearer guidance for both researchers and public health stakeholders. The updated
Conclusion can be found in Section 5 (page 25) of the revised manuscript.

We appreciate the reviewer’s suggestion, which has helped us sharpen the focus and utility of
our final recommendations.

Thank you once again for the constructive and helpful feedback provided by Reviewer 1. We
believe that the revisions implemented have substantially improved the manuscript, and we
appreciate the opportunity to have benefited from their expertise. We look forward to the editor's

decision.
Kind regards,
Dr. Hari Krismanuel

hari_krismanuel@trisakti.ac.id
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English Language and Style

( ) Extensive editing of English language and style required
( ) Moderate English changes required
(x)  English  language and style are fine/minor  spell check required

() 'don't feel qualified to judge about the English Language and Style
Comments for Author

The reviewed article, titled "Exploring genetic susceptibility to air pollution and its implications
for disease risk and precision health: A scoping review" examines the role of genetic
susceptibility in health outcomes associated with exposure to air pollution, with a particular
emphasis on fine particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and nitrogen
oxides (NOx). The paper addresses the lack of synthesis in the literature regarding how genetic
predisposition modifies the health effects of air pollution, particularly through gene-environment
interactions and epigenetic mechanisms. It also highlights the underrepresentation of diverse
populations in this research domain.

The main research question is:

How does genetic susceptibility influence individual responses to air pollution, and what are the
implications for disease risk and precision public health?

The review is relevant to the fields of environmental health, public health genomics, and precision
medicine. The manuscript is mostly well-written, with a logical structure and accessible language.
However, the layout includes inconsistent font sizes, which could be improved for visual
consistency.

Some sections, especially those describing pollution exposure, could be more concise to improve
readability. Reducing redundancy would help maintain reader engagement.

The introduction would benefit from a more in-depth explanation of the specific particulate
matter and oxides analyzed in the study, along with a description of the associated pathological
consequences of exposure. In general, the introduction should be improved. Line 60-61 are not
adequate for introduction; they already indicate a result. For this section | suggest the following
article to improve it: F. Nisticd, G. Messina, C. Quercioli, S. Errico, E. Fanti, E. Frilli, M. Postiglione,
A. De Luca, A. D'Urso, N. Nante. Can “fine scale” data on air pollution be an evaluation tool for
public health professionals? Atmospheric Pollution Research, Volume 16, Issue 6, 2025. The



article contributes to scientific knowledge by synthesizing recent literature on gene-environment
interactions in air pollution-related diseases.

However, while the integration of concepts such as multi-omics and machine learning is
mentioned, it lacks sufficient methodological detail. The suggested interventions and the
discussion of policy implications remain broad and lack actionable recommendations. More
concrete suggestions for public health applications would strengthen this aspect.

Furthermore, the article does not explore these advanced methodologies in enough depth to
distinguish itself from earlier reviews.

The methodology is partially adequate but presents several shortcomings:
- The exclusion criteria are strict, potentially omitting relevant studies.
- Why did the authors not use Scopus?

- The focus on only a few pollutants restricts the scope of the review to just 16 articles from the
broader scientific literature.

- Discussions of multi-omics and machine learning are speculative and not well supported by the
data selection process.

The main tables are clear and informative. However, many critical details are relegated to the
supplementary materials, which limits their accessibility. Data quality across the included studies
varies, but this variability is not sufficiently acknowledged or evaluated. The review would benefit
from including studies involving more diverse ethnic and socioeconomic populations, as well as
from addressing gene-environment correlations.

The section on emerging technologies (e.g., Al, multi-omics) could also be expanded.

Ethical issues surrounding genetic screening for public health purposes should be briefly
discussed.

Finally, the reference list should be expanded to include additional relevant and representative
articles from the field.

English language and style are fine/minor spell check required.
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Author's Reply to the Review Report

Please add your reply into the box below. You may upload an additional PDF or Word file with
your replies. Comments here will be seen by the reviewer.

RESPONSE TO REVIEWER 2

We sincerely thank Reviewer 2 for the thorough and constructive comments. We have carefully
revised the manuscript to address all concerns. Below, we provide a point-by-point response to
each comment.

1. English language and style are fine/minor spell check required.

Response:

We thank the reviewer for the positive assessment of the manuscript’s English language and
writing style. We have performed a careful proofreading of the manuscript and corrected minor
typographical or grammatical issues.

2. Layout includes inconsistent font sizes.

Response:

We thank the reviewer for noting the inconsistency in font size. We have standardized all font sizes
and formatting for consistency throughout the manuscript. However, some of the tables—
especially those containing dense data, had slightly reduced font sizes to ensure readability and fit
within the page limits. In addition, to accommodate the large amount of information presented in
some supplementary tables, we utilized a landscape layout and, in a few instances, a slightly
smaller font size. This was done to maximize the information that could be presented on a single
page and enhance the clarity and comprehensiveness of the data. We understand that this may have
contributed to some inconsistency, and we have carefully reviewed these tables to standardize the
font type and size as much as possible while maintaining clarity and legibility. We have revised
these tables to standardize the font type and size as much as possible while maintaining clarity.
We appreciate the reviewer’s observation, as it has helped improve the overall visual presentation
and consistency of the manuscript.

3. Pollution exposure sections could be more concise.

Response:

We appreciate this suggestion. We have carefully reviewed the sections describing pollution
exposure, particularly in the Introduction, and have made revisions to improve conciseness, reduce
redundancy, and enhance clarity. Specifically, we have streamlined the initial paragraphs to
provide a more direct and integrated explanation of the global impact of air pollution and the
specific roles of PM2.5, PM10, NO2, and NOx, avoiding repetitive statements and focusing on the
unique aspects of each point.

4. Weak Introduction: More explanation of PM2.5, PM10, NO2, NOx and their pathologies.



Response:

We appreciate the reviewer's feedback regarding the need for a more in-depth explanation of the
specific pollutants and their pathological consequences in the Introduction, as well as the
suggestion to improve conciseness by reducing redundancy. In response, we have significantly
revised the Introduction. The initial paragraphs have been expanded to provide a more
comprehensive overview of the global impact of air pollution, the specific characteristics and
mechanisms of action of PM2.5, PM10, NO2, and NOx, and their links to major chronic diseases.
Simultaneously, we have streamlined the language and integrated overlapping ideas throughout
the Introduction to ensure a more focused and coherent flow of information, thereby addressing
the concern about potential redundancy. We believe these revisions provide the requested depth
and enhance reader engagement through improved clarity and conciseness.

We agree and have expanded the Introduction to include a more thorough explanation of the
pollutants studied and their associated health effects. We have also incorporated the reviewer’s
suggested reference (Nistico et al., 2025) to strengthen the scientific context. This additional
context enhances the clarity and relevance of the review’s rationale.

5. Multi-omics and machine learning mentioned but lack methodological detail.

Response:

We have clarified in the Abstract, Introduction, and Discussion (Section 4.4) that multi-omics and
machine learning are discussed as promising future directions for research, especially

given the limitations and gaps identified in the reviewed literature. We have explicitly stated that
none of the included studies employed these methodologies, and our discussion serves to highlight
their potential relevance rather than their application in the current body of evidence.

6. Policy implications remain broad and lack actionable suggestions.

Response:

We have revised the Discussion (Section 4.3) to include more specific examples of how genetic
susceptibility data, in conjunction with air pollution exposure, could inform targeted public health
policies, including potential screening strategies and environmental interventions in high-risk
areas or populations with high genetic susceptibility.

7. Advanced methodologies not differentiated from earlier reviews.

Response:

We have emphasized throughout the manuscript, particularly in the Introduction and Section 4.3,
that the discussions of multi-omics and machine learning are not based on findings from the
included studies, but are highlighted as future research directions to address the identified
limitations in current research on gene-environment interactions in air pollution. We have also
explicitly stated: While this review does not provide in-depth methodological analysis of these
tools, we emphasize their future relevance for advancing the field.

8. Exclusion criteria are strict, potentially omitting relevant studies.

Response:

We acknowledge this trade-off inherent in our methodological approach. We clarified in the
Methods section that our strict inclusion criteria were intentionally applied to ensure the relevance



and scientific rigor of the 16 studies included in this review, specifically focusing on human
studies directly examining gene-environment interactions related to the selected air pollutants.
However, we recognize that these strict criteria may have inadvertently led to the omission of some
broader studies that could offer valuable insights into the wider context of air pollution and health.
We have added a statement in the Limitations section (Section 4.4) acknowledging this potential
limitation and suggesting that future research could benefit from employing broader inclusion
criteria to capture a wider range of evidence while carefully considering methodological
heterogeneity.

9. Why was Scopus not used?

Response:

We appreciate the reviewer's question regarding the use of Scopus. We did not include Scopus in
our search because it is a subscription-based database, and there is significant overlap with
PubMed and Web of Science, both of which comprehensively cover biomedical literature. We
believe that the chosen databases provided sufficient coverage for the scope of this review focusing
on gene-environment interactions in air pollution-related health outcomes.

10. Only a few pollutants studied, limiting scope to 16 articles.

Response:

We appreciate the reviewer's observation regarding the limited number of articles (n=16)
included in this review. It is important to note that this number is the result of a rigorous and
systematic study selection process guided by the PRISMA-ScR framework, as detailed in the
Methods section and illustrated in Figure 1.

Initially, our search across multiple databases yielded 322 records. These records underwent a
multi-stage screening process involving the removal of duplicates and assessment against
predefined inclusion and exclusion criteria. These criteria were specifically designed to focus on
human studies investigating the interplay between genetic susceptibility and exposure to the
primary traffic-related air pollutants of interest (PM2.5, PM 10, NO2, and NOx) in relation to health
outcomes. Studies that did not meet these specific criteria, such as those focusing on other
pollutants, animal models, or lacking investigation of genetic factors, were excluded at various
stages of the PRISMA-ScR process.

Therefore, the final selection of 16 articles represents the body of evidence that directly addressed
our research question with the specified focus and methodological rigor. This focused approach,
while resulting in a limited number of studies, allowed for a more in-depth and targeted synthesis
of the gene-environment interactions related to these key pollutants, which is a central aim of this
review.

11. Multi-omics and ML discussion not well supported by the data.

Response:

We appreciate the reviewer's point regarding the speculative nature of the discussion on multi-
omics and machine learning in the context of our data selection process. As this is a scoping review
of 16 articles focused on the existing literature regarding gene-environment interactions in air



pollution and health, we acknowledge that none of the included studies explicitly employed multi-

omics or machine learning methodologies.

Our intention in discussing these advanced technologies was not to present findings directly

supported by the selected studies. Instead, we introduced them in the Introduction and Discussion

sections (particularly Section 4.4) to highlight promising future directions for research in this field.

These methodologies, while not yet widely adopted in the specific area covered by our review,

hold significant potential for addressing the identified limitations in current research, such as the

complexity of biological pathways and the need for more integrated data analysis. We now
explicitly state that these technologies are not part of the data analysis in the included studies,
and our discussion of them serves as future research directions.

Therefore, our discussion of multi-omics and machine learning should be understood as a forward-

looking perspective on how the field might evolve, rather than a reflection of the methodologies

used in the studies included in this scoping review. We have revised the relevant sections to further
clarify this distinction and emphasize that these technologies are presented as potential tools for
future research to build upon the current evidence base.

12. Important details relegated to supplementary materials.

Response:

We appreciate the reviewer's feedback regarding the clarity of the main tables and the concern

about critical details being relegated to the supplementary materials, which could limit their

accessibility. In response to this important point, we have taken the following steps to improve the
manuscript:

e Moved Key Information to Main Text: We have carefully reviewed the supplementary
materials and moved essential details, such as [sebutkan contoh spesifik jika ada, misalnya:
detailed gene-environment interaction findings, specific characteristics of the study
populations, or key methodological variations], directly into the main tables or incorporated
them within the relevant sections of the main text.

e Enhanced Referencing: We have also ensured that the main text includes clear and direct
references to any remaining supplementary materials, guiding the reader to specific tables or
sections when more granular data or detailed information is necessary.

o Clarification on Supplementary Tables: We would like to clarify that some detailed
information, particularly those that are extensive and could potentially disrupt the flow and
readability of the main article (such as the comprehensive breakdown of methodological
quality assessment and the detailed overview of testing methods and multiple testing
correction), were initially placed in the Supplementary Materials to maintain the focus and
clarity of the main text. The density of data in these tables necessitated the use of a
landscape layout and a slightly reduced font size to ensure optimal presentation and
readability. Presenting this level of detailed methodological information in the main text
would have disrupted the flow of results and discussion, making the article less accessible
to the reader.



e Addition of Two New Tables: To further enhance the clarity and accessibility of this
information, we have now included two new tables in the main manuscript: Table 1,
"Summary of Methodological Quality Assessment of the Included Studies Based on Study
Design," and Table 2, "Overview of Formal and Informal Testing Methods, Interaction
Type, and Multiple Testing Correction in Gene—Environment Interaction Studies." These
tables provide a concise and structured overview of critical methodological aspects that support
and elaborate on the findings discussed in the main text.

Our aim with these revisions is to ensure that the most critical information is readily accessible

within the main body of the manuscript, thereby improving readability and facilitating a

comprehensive understanding of our findings. We believe this addresses the reviewer's concern

about the accessibility of important details.

13. Variability in study quality is not sufficiently discussed.

Response:

We appreciate the reviewer's insightful comment regarding the variability in data quality across

the included studies. We acknowledge that the 16 studies selected through our systematic screening

and selection process, guided by the PRISMA-ScR framework, exhibit some heterogeneity in their
study designs, exposure assessment methods, and genetic analysis approaches.

We acknowledge these limitations and have taken the following steps to address them in the revised

manuscript:

e Acknowledging Data Quality Variability: We have added a brief paragraph in the Methods
section (Section 3) and expanded the Limitations section (Section 4.4) to explicitly
acknowledge the heterogeneity in study design, exposure assessment methods, and genetic
analysis approaches across the 16 included studies. We have also briefly discussed how this
variability might influence the interpretation of our findings.

o Addressing Lack of Diversity: We concur with the reviewer on the importance of including
more diverse ethnic and socioeconomic populations in studies of air pollution and genetic
susceptibility. We have now added a specific point in the Limitations section (Section 4.4)
highlighting this underrepresentation in the reviewed literature and emphasizing the need for
future research to prioritize the inclusion of diverse populations to enhance the generalizability
of findings across different demographic groups.

o Discussing Gene-Environment Correlations (GEC): We agree that addressing potential
gene-environment correlations is crucial for a comprehensive understanding of the observed
associations. We have added a paragraph in the Discussion section (Section 4.4) to discuss the
potential role of GEC in shaping the observed associations between air pollution, genetic
susceptibility, and health outcomes. We also call for future studies to employ methodologies
that can disentangle GEC from true gene-environment interactions.

By explicitly acknowledging these limitations and outlining where these points have been

addressed in the revised manuscript, we aim to provide a more transparent and comprehensive

assessment of the current state of research in this field. We believe these additions strengthen the
discussion and provide valuable directions for future research.



14. Need for inclusion of more diverse ethnic and socioeconomic groups.
Response:
We concur with the reviewer on the critical importance of including studies involving more diverse
ethnic and socioeconomic populations in research on air pollution and genetic susceptibility. We
acknowledge that the current body of literature, as reflected in the 16 studies included in our
review, has limitations in this regard. This underrepresentation of certain populations hinders the
generalizability of findings and potentially overlooks important variations in susceptibility across
different demographic groups.
We have explicitly addressed this limitation in the Discussion section (Section 4.4), emphasizing
the urgent need for future research to prioritize the inclusion of more diverse ethnic and
socioeconomic populations. We suggest that future studies should actively strive to recruit
participants from a wider range of backgrounds to provide a more comprehensive understanding
of the complex interplay between genetics, environmental exposures, and health outcomes across
different population segments. We believe that addressing this gap is essential for advancing
equitable and effective public health interventions.

15. Emerging technology section (Al, multi-omics) needs expansion.

Response:

We thank the reviewer for this suggestion. We agree that expanding the discussion on emerging

technologies such as Al and multi-omics could further strengthen the manuscript by highlighting

their potential to advance the field of gene-environment interaction research in air pollution.

In the revised manuscript, we have expanded Section 4.4 (Limitations and Future Research

Directions) to provide a more detailed elaboration on how Al, machine learning, and multi-omics

can be integrated into future studies. This expanded section now includes:

e More specific examples of how these technologies can be applied to improve exposure
modeling, identify complex gene-environment interactions, and enhance risk prediction in the
context of air pollution-related health outcomes.

o A discussion of the potential benefits of integrating different omics layers (e.g., genomics,
transcriptomics, epigenomics, proteomics) with advanced analytical techniques like machine
learning to gain a more comprehensive understanding of biological pathways.

e Brief mention of recent advancements and relevant studies (if applicable and not already
extensively cited elsewhere) that illustrate the application of these technologies in
environmental health research or related fields.

We believe this expanded discussion in Section 4.4 now provides a more robust perspective on the
future directions of research and the potential role of emerging technologies in addressing the
complexities of gene-environment interactions in air pollution.

16. Ethical issues surrounding genetic screening should be briefly discussed.

Response:

We appreciate the reviewer's important suggestion to briefly discuss the ethical issues surrounding

genetic screening for public health purposes. We agree that this is a crucial consideration as the



field of gene-environment interaction research advances and potential applications for public

health emerge.

In the revised manuscript, we have added a brief paragraph to Section 4.4 (Limitations and Future

Research Directions) to address these ethical considerations. This paragraph includes a discussion

of key aspects such as:

o Data privacy and security: The need to protect sensitive genetic information.

o Informed consent: Ensuring individuals understand the implications of genetic screening and
provide voluntary consent.

o Potential for discrimination: Addressing concerns about genetic discrimination in areas like
employment or insurance.

o Equitable access and implementation: Considering how genetic screening programs can be
implemented fairly across different populations and socioeconomic groups.

o Potential for misuse of genetic risk profiling: Highlighting the importance of responsible
interpretation and application of genetic risk information.

We believe this brief discussion in Section 4.4 now acknowledges the ethical dimensions of

applying genetic information in public health and provides a more comprehensive perspective on

the future implications of this research area.

17. Reference list should be expanded.

Response:

We appreciate the reviewer's suggestion to expand the reference list with additional relevant and

representative articles from the field. We agree that a more comprehensive list of references will

further strengthen the manuscript by providing broader context and supporting evidence for our
synthesis and discussion.

In the revised manuscript, we have taken the following steps to expand the reference list:

o Conducted further literature searches: We have performed additional searches using relevant
keywords and exploring the bibliographies of the included studies and other key articles in the
field to identify pertinent publications that may have been missed in our initial search.

e Included recent and influential articles: We have focused on incorporating more recent
studies that have significantly contributed to the understanding of gene-environment
interactions in air pollution and health, as well as influential articles that provide foundational
knowledge in this area.

o Ensured representation across key themes: We have aimed to include references that cover
the key themes discussed in our review, such as specific pollutants, genetic susceptibility
pathways (e.g., oxidative stress, inflammation, epigenetics), methodological considerations,
and implications for public health and precision medicine.

We believe that the expanded reference list now provides a more comprehensive and up-to-date

overview of the relevant literature, further supporting the rigor and depth of our review.



Thank you once again for the constructive feedback provided by Reviewer 2. We have
implemented all the suggested revisions and believe that the manuscript is now substantially
stronger. We look forward to the editor's decision.

Kind regards,

Dr. Hari Krismanuel
hari_krismanuel@trisakti.ac.id
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