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Abstract: Air pollution, comprising a complex mixture of gaseous and particulate pollutants, 

remains a major global health concern that disproportionately affects vulnerable populations. In this 

scoping review, we aim to systematically investigate the role of genetic susceptibility in health 

outcomes associated with exposure to air pollution, with a particular emphasis on fine particulate 

matter (PM2.5), particulate matter (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx); key 

pollutants consistently linked to adverse health effects. By exploring the gene-environment 

interactions underlying air pollution-related conditions, this review offers new insights into how 

genetic factors may modulate individual responses to air pollutants and their implications for 

precision health. Analyzing 16 peer-reviewed studies published in the last decade, we highlight 

genetic markers and pathways involved in regulating oxidative stress, inflammation, and DNA repair, 

which are thought to influence individual variation in responses to PM2.5, PM10, NO2, and NOx. 

Although none of the included studies entailed multi-omics or machine learning approaches, we 

identified these tools as promising directions for future research aimed at elucidating mechanistic 

pathways and informing personalized strategies. These techniques could significantly improve the 

understanding of gene-environment interactions, and are suggested as emerging methodologies for 

future studies. However, the scarcity of longitudinal studies and the underrepresentation of diverse 

populations limit the generalizability of the current findings. Addressing these gaps will be essential 

for advancing research, improving environmental health equity, and informing policy in the context 

of air pollution and genetic susceptibility.  
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Figure 1. Graphical abstract. 

Figure 1 illustrates the conceptual pathway from the interaction of genetic susceptibility (DNA 

helix) and air pollution exposure (smokestacks), which leads to an increased disease risk in 

individuals. The green pathway highlights how precision health strategies, tailored to an individual’s 

unique genetic and environmental profile, can serve as a targeted solution to mitigate this risk. 

1. Introduction 

Air pollution remains one of the most significant environmental risk factors worldwide, 

contributing to an estimated 7 million premature deaths annually, according to the World Health 

Organization [1–3]. Among the most harmful pollutants are fine particulate matter (PM2.5), coarse 

particulate matter (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), which are consistently 

associated with adverse health outcomes [4–6]. 

PM2.5 and PM10 refer to airborne particles with aerodynamic diameters ≤2.5 and ≤10 micrometers, 

respectively. These particles can penetrate deep into the respiratory tract, triggering oxidative stress, 

inflammation, endothelial dysfunction, and systemic effects beyond the lungs. NO2 and NOx, primarily 

emitted from vehicle exhaust and industrial processes, contribute to airway inflammation, impaired lung 

function, and increased cardiovascular risk. Exposure to these pollutants has been linked to the 

development and exacerbation of chronic diseases such as asthma, chronic obstructive pulmonary disease 

(COPD), ischemic heart disease, stroke, and neurodegenerative conditions [4–6]. 
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Recent fine-scale modeling and exposure assessment studies, such as that of Nisticò et al. (2025), 

emphasize the importance of high-resolution pollution data in identifying vulnerable populations and 

guiding local-level interventions. Understanding the complex interplay between environmental 

exposures and individual susceptibility, particularly at the molecular level, is crucial for developing 

targeted public health interventions. This necessitates the integration of detailed environmental 

monitoring data with comprehensive health surveillance and molecular research, including the 

investigation of genetic factors that may modify an individual’s response to air pollution [7]. 

Genetic susceptibility to air pollution refers to the predisposition of certain individuals to experience 

heightened adverse health effects due to specific genetic variations. Genes involved in oxidative stress 

pathways play critical roles in neutralizing reactive oxygen species generated by pollutants like fine 

particulate matter (PM2.5). Understanding these genetic mechanisms is crucial for explaining why some 

populations exhibit increased vulnerability to air pollution-related diseases [8–10]. 

Air pollution remains a major global health challenge, imposing significant health burdens worldwide. 

Primary pollutants, such as PM2.5, nitrogen dioxide (NO2), ozone, and volatile organic compounds (VOCs), 

are widely acknowledged as key contributors to diseases across multiple systems. However, while 

environmental exposures are well-documented as primary drivers, genetic variations significantly 

modulate individual susceptibility, disproportionately affecting vulnerable populations. Despite its 

importance, the interaction between genetic predisposition and pollutant exposure remains underexplored, 

leaving critical gaps in our understanding of the mechanisms driving health disparities [11–13]. 

Recent advancements in genetic research have illuminated how genetic variants influence 

sensitivity to oxidative stress, inflammation, DNA damage, and epigenetic modifications, all of which 

are implicated in pollution-related diseases. However, significant challenges persist, including 

inconsistent findings across studies due to methodological differences and the underrepresentation of 

diverse populations in genetic analyses. Genome-wide association studies (GWAS) have identified 

promising genetic markers, yet these findings often lack generalizability due to limited population 

diversity and a lack of comprehensive models that integrate genetic and environmental factors [14,15]. 

To address these gaps, emerging methodologies such as multi-omics integration and machine 

learning are increasingly recognized as powerful tools to uncover complex gene-environment 

interactions. While these techniques were not employed in the studies included in this review, they 

hold great promise for future research aimed at identifying mechanistic pathways and advancing 

precision health strategies [16–19]. 

In this review, we address these gaps by systematically analyzing 16 peer-reviewed studies 

published over the past decade to provide a detailed synthesis of the interplay between genetic and 

environmental factors in determining health risks associated with air pollution. By focusing on 

oxidative stress, inflammation, and epigenetic pathways, we uniquely highlight genetic mechanisms 

that modulate susceptibility to pollution-related diseases. We also identify critical research gaps, such 

as the reliance on cross-sectional designs, and propose future directions to improve the robustness and 

generalizability of findings. 

We further aim to outline a novel framework for advancing precision health strategies by 

integrating genetic insights with emerging methodologies such as multi-omics, machine learning, and 

longitudinal study designs. By doing so, we seek to inform public health policies aimed at mitigating 

air pollution-related health risks, particularly in vulnerable populations. 
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A detailed overview of the included studies, including author, year, location, study design, 

population and sample size, exposure variables, health outcomes, and age range, is presented in 

Supplementary Table S1. This table provides a comprehensive summary of the key characteristics of 

the included studies, enabling comparison and the identification of research gaps. 

Despite the growing body of epidemiological research, the underlying biological mechanisms of 

gene-environment (GxE) interactions remain complex and not fully understood. In addition to 

epidemiological studies, mechanistic data from in vivo and organoid models also provide crucial 

insights into the biological pathways underlying GxE interactions. Researchers have demonstrated how 

such models can elucidate the cellular responses to environmental exposures in genetically predisposed 

individuals [8,20,21], which are discussed further in the Discussion section. 

2. Materials and methods 

2.1. Protocol and registration  

This scoping review was conducted following the methodological framework proposed by Arksey 

and O’Malley (2005) [22] and further elaborated by Levac et al. (2010) [23]. Recognizing the 

importance of transparency and methodological rigor for evidence synthesis, the protocol for this 

scoping review was retrospectively registered with the Open Science Framework (OSF) on May 22, 

2025. The public URL for this registration is https://osf.io/3r8ap/ and its Registration ID is 3r8ap. This 

protocol is publicly available on the OSF platform [24]. 

2.2. Search strategy 

To ensure transparency and credibility, a systematic literature search was conducted across 

multiple databases, including PubMed, Google Scholar, and ResearchGate to identify relevant studies. 

The search was limited to articles published in English between January 1, 2015, and December 31, 

2024. The following search strategy was used: 

• PubMed: (“air pollution” [MeSH Terms] OR “air pollution” [Title/Abstract] OR “air 

pollutants” [Title/Abstract]) AND (“genetic susceptibility” [MeSH Terms] OR “genetic polymorphism” 

[Title/Abstract] OR “oxidative stress” [MeSH Terms] OR “oxidative stress” [Title/Abstract]) AND 

(“disease risk” [Title/Abstract] OR “health outcomes” [Title/Abstract]). 

• Google Scholar: “air pollution” AND (“genetic susceptibility” OR “oxidative stress”) AND 

(“disease risk” OR “health outcomes”). 

• ResearchGate: (“air pollution” OR “air pollutants” OR “pencemaran udara”) AND (“genetic 

susceptibility” OR “genetic predisposition” OR “oxidative stress” OR “stress oksidatif”) AND 

(“disease risk” OR “health outcomes” OR “dampak kesehatan”). 

• DOAJ: “air pollution” AND (“genetic susceptibility” OR “oxidative stress”) AND (“disease 

risk” OR “health outcomes”). 

The following filters were applied: Human studies, English language, publication date (2015–

2024), study type (including review, meta-analysis, randomized controlled trial, cohort study, case-

control study, and cross-sectional study), and peer-reviewed status. 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
https://osf.io/3r8ap/
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2.3. Study selection process 

Articles were screened for relevance using a two-step process: (1) Title and abstract screening, 

followed by (2) full-text review. From this systematic search, 16 peer-reviewed articles were selected 

based on their relevance to the topic. Data from the selected articles were then systematically extracted. 

Data extraction prioritized information on genetic markers, their roles in modulating susceptibility, 

and their associations with health effects induced by air pollution. The data synthesis employed a 

qualitative approach to integrate findings from these studies, focusing on the influence of genetic 

factors on susceptibility to air pollution and the interaction between genetic variations and 

environmental exposures. This enabled the identification of patterns and relationships between genetic 

variations and health risks associated with air pollution, providing a comprehensive perspective on 

how genetics influences responses to environmental pollutants [25–27]. 

To ensure the transparency and reproducibility of this review, the study selection process was 

guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

extension for Scoping Reviews) framework. A PRISMA-ScR flow diagram was used to illustrate the 

process of study selection, and adherence to PRISMA guidelines was maintained throughout the data 

extraction and synthesis phases [28–30].  

Step 1: Identifying Studies. Relevant studies were initially identified through a comprehensive 

search across multiple databases, including PubMed, Web of Science, and Google Scholar. A 

combination of keywords like “air pollution,” “genetic susceptibility,” “oxidative stress,” and “disease 

risk” was used to locate pertinent articles. These searches aimed to capture a broad range of studies 

related to genetic factors and their interactions with environmental exposures.  

The search results were carefully reviewed, and studies meeting the predefined inclusion criteria 

were selected for further assessment. Studies that did not meet the inclusion criteria, were not 

substantially relevant to the research topic, or contained duplicated references were excluded. 

This step ensured the selection of studies that contribute meaningful and relevant insights to the 

review, avoiding redundancy and maintaining the quality and integrity of the synthesis [28–30].  

Step 2: Study Screening. The next step involved screening the identified studies based on 

predefined inclusion and exclusion criteria. Two reviewers independently screened the titles and 

abstracts of the studies retrieved from the initial search. Studies were selected for inclusion if they met 

the following criteria: 

• Focused on genetic susceptibility to air pollution. 

• Provided explicit methodologies. 

• Offered quantitative or mechanistic insights into genetic-environment interactions. 

Studies that were excluded at this stage included those not published in English, non-peer-

reviewed articles, conference abstracts, and reviews that did not directly address genetic susceptibility 

to air pollution. The remaining articles underwent a full-text review to confirm their eligibility before 

being included in the final analysis [28–30].  

Step 3: Data Extraction. Data were extracted from the selected studies using a standardized 

extraction form. The extraction process involved collecting detailed information on genetic markers, 

biomarkers, health outcomes related to air pollution exposure, and other relevant details like study 

design, sample size, and key findings. The data were then synthesized qualitatively to identify key 
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themes, patterns, and relationships across the studies [28–30].  

Step 4: Data Synthesis. Data synthesis involved integrating findings from the selected 

studies to draw conclusions about the influence of genetic factors on susceptibility to air pollution. 

This synthesis aimed to provide a comprehensive understanding of the mechanisms underlying 

genetic-environment interactions and their implications for disease risk. The integration of 

findings was guided by thematic analysis and narrative synthesis techniques, emphasizing 

consistency and comparability across studies [28–30].  

2.4. Inclusion and exclusion criteria 

Studies were included in this scoping review if they met the following criteria:  

2.4.1. Inclusion criteria 

2.4.1.1. Study design 

Studies of any design that investigated the association between air pollution exposure (e.g., PM2.5, 

PM10, NO2, and NOx) and health outcomes in relation to genetic susceptibility were included. This 

encompasses observational studies (cohort, case-control, cross-sectional), interventional studies (e.g., 

randomized controlled trials, and quasi-experimental studies), and Mendelian Randomization studies. 

Scoping reviews are particularly suitable for mapping evidence on complex and heterogeneous topics, 

as outlined by Tricco et al. (2018) [28], Page et al. (2021) [29], and Page and Moher (2017) [30]. The 

focus was on studies examining various genetic factors influencing susceptibility to air pollution than 

specific genetic polymorphisms.  

2.4.1.2. Population 

Human participants of any age, sex, or ethnicity. Studies focusing on specific subpopulations (e.g., 

children, elderly, and individuals with specific pre-existing conditions) were also included. 

2.4.1.3. Exposure 

Measurable exposure to PM2.5, PM10, NO2, or NOx. Studies must provide quantitative or 

qualitative data on one or more of these pollutants. Exposure assessment methods should be clearly 

described (e.g., air quality monitoring data, self-reported exposure, and residential proximity to 

pollution sources). 

2.4.1.4. Health outcomes 

Any health outcomes relevant to the research question, including but not limited to respiratory 

diseases (e.g., asthma, and COPD), cardiovascular diseases, mental health effects, pregnancy complications, 

and skin conditions. Studies must report specific health outcomes and diagnostic criteria used.  
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2.4.1.5. Gene-environment interaction (primary and essential criterion) 

Studies must present statistical analyses that directly test for a gene-environment interaction (e.g., 

using interaction terms in regression models, stratified analyses by genotype, interaction meta-

regression). Studies reporting only the major effects of air pollution or genetic associations separately 

were excluded. Studies that mention gene-environment interaction but did not perform formal 

statistical testing of the interaction were also excluded [8,31,32].  

2.4.2. Exclusion criteria 

Studies were excluded if they met any of the following criteria: 

2.4.2.1. Irrelevance to the topic 

o Studies that did not address the health effects of air pollution. 

o Studies that focused exclusively on pollutants other than PM2.5 (e.g., only NO2 or O3).  

o Studies addressing PM2.5 along with other pollutants were considered if PM2.5-specific 

information could be extracted. 

o Studies that entailed the environmental impact of air pollution but not human health effects. 

o Studies solely focused on interventions or policies to reduce air pollution without addressing 

genetic aspects. 

2.4.2.2. Lack of genetic focus 

o Purely epidemiological studies that measured only air pollution exposure and health outcomes 

without considering genetic factors. 

o In vitro or in vivo toxicological studies that did not investigate genetic variations or gene 

polymorphisms. 

2.4.2.3. Inappropriate publication type 

o Opinions, editorials, letters to the editor, and conference abstracts (unless the abstracts 

contained significant information not available in a full-text publication). 

o Books and book chapters (unless they contained relevant systematic reviews or meta-analyses). 

o Government or non-governmental organization reports (unless they contained significant data 

or analyses not available in peer-reviewed publications). 

2.4.2.4. Language and accessibility 

o Studies not published in languages accessible to the review team (e.g., English and Indonesian). 

o Studies for which full-text access could not be obtained after reasonable search efforts (e.g., 

through library databases or direct requests to authors). 
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2.4.2.5. Duplication 

o Studies published more than once (in which case, the most complete and recent version was 

included). 

2.4.2.6. Methodological concerns (with specific consideration for scoping reviews) 

o While scoping reviews generally do not assess the methodological quality of studies as 

rigorously as systematic reviews, studies with substantial methodological flaws (e.g., severely 

flawed study design or erroneous data analysis) could be excluded. This criterion was applied 

cautiously and transparently [33–34]. 

2.5. Data extraction and synthesis 

Data from included studies were extracted using a standardized data extraction form. The following 

information was extracted: Study characteristics (e.g., author, year, study design, and population), exposure 

assessment methods, genetic markers investigated, health outcomes assessed, and key findings related to 

gene-environment interactions. A detailed overview of these extracted data, presented in Supplementary 

Table S1, provides a comprehensive summary of the key characteristics of the included studies, enabling 

comparison and identification of research gaps. A narrative synthesis of the findings were then conducted 

to map the existing literature and identify key themes and research gaps [28–30,33,34].  

2.6. Quality assessment of included studies 

To strengthen the methodological rigor of our review, we conducted a formal quality appraisal of 

all 16 included full-text articles. Given the variety of study designs, we employed appropriate 

assessment tools tailored to each design type: 

• The 13 prospective cohort studies were assessed using the Newcastle-Ottawa Scale (NOS) [35]. 

• The 1 cross-sectional study was evaluated using a modified version of NOS tailored for cross-

sectional designs. 

• The 1 meta-analysis was assessed narratively using AMSTAR 2 criteria, which were widely 

accepted for systematic reviews and meta-analyses [36]. 

• The 1 molecular-epigenetic cohort study, although fundamentally prospective in design, was 

evaluated using the JBI Critical Appraisal Checklist for Cohort Studies due to its integration of 

biological, genetic, and epigenetic data [37]. 

3. Results 

A total of 322 records were identified through database searching (PubMed n = 100, Google 

Scholar n = 109, Research Gate n = 107, and DOAJ n = 7). After removing duplicates (n = 5), 315 

records underwent title and abstract screening. Of these, 283 were excluded as they did not meet the 

inclusion criteria (e.g., not focused on genetic susceptibility to air pollution, review articles, or non-

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view?usp=sharing
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human studies). A total of 35 full-text articles were assessed for eligibility, and 19 were further 

excluded due to methodological concerns (e.g., lack of a clear methodology, or focus on non-PM2.5 

pollutants), or lack of investigation of gene-environment interaction). Finally, 16 studies met all 

inclusion criteria and were included in this scoping review (Figure 2). 

 

Figure 2. PRISMA-ScR flow diagram. 

3.1. Study characteristics 

This scoping review included 16 studies investigating the interplay between genetic susceptibility and 

air pollution, particularly PM2.5, on various health outcomes. A diverse range of study designs were 

employed, including 1 cross-sectional study, 14 prospective cohort studies, 1 meta-analysis of cohort 

studies, and 1 Mendelian Randomization study. This heterogeneity in study design is typical in a scoping 

review, aiming to map the available evidence regardless of methodological rigor [38–53]. Only one study 

employed Mendelian Randomization analysis [54–56] as its core methodological approach. 

Most studies focused on adult populations, with a reported age range spanning from 37 to 73 

years. Geographically, the research was predominantly conducted in Europe (n = 12), with one 

study encompassing both Europe and North America (n = 1), and a smaller number conducted in 

Asia (n = 3). This geographical distribution highlights a potential gap in research from other 
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regions. Furthermore, 15 out of the 16 studies investigated the combined effects of particulate 

matter (PM2.5 and/or PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx). Only one study, 

Gruzieva et al. (2016) [38], focused solely on prenatal NO2 exposure. This pattern suggests that 

PM2.5 and NO2 are dominant environmental factors in the studies and highlights the need for further 

exploration of NO2 exposure, particularly in its isolated form, to better understand its role in 

genetic susceptibility to diseases [39–53]. 

PM2.5 exposure was the most commonly assessed air pollutant, primarily using air quality 

monitoring data (n = 16). It should be noted that some studies used multiple methods for exposure 

assessment. Some studies utilized land-use regression models to estimate PM2.5 exposure based on 

spatial data and environmental characteristics, while others employed self-reported questionnaires 

focusing on residential location and daily activities. For instance, Huang et al. (2021) [39] and Gao et 

al. (2023) [52] used land-use regression models within the UK Biobank to estimate individual 

exposures. Li et al. (2023) [41] used land-use regression models in China. Air quality monitoring data 

typically involves measurements taken at fixed monitoring stations, providing information on ambient 

air pollution levels in specific locations. Land-use regression models, on the other hand, incorporate 

spatial data such as traffic density, land use types, and meteorological factors to create more refined 

estimates of pollution exposure at a finer spatial scale [39,41,52]. These methods have varying degrees 

of accuracy and may introduce different types of measurement error. 

Operational Definitions of Variables: PM2.5 was most often defined as the annual average 

concentration at the participants’ residential address. However, some studies used different averaging 

periods (e.g., 24-hour average) or considered specific sources of PM2.5 (e.g., traffic-related PM2.5). 

Health outcomes varied across studies, encompassing cardiovascular diseases (e.g., myocardial 

infarction, stroke), respiratory diseases (e.g., chronic obstructive pulmonary disease (COPD), lung 

cancer), and metabolic disorders (e.g., type 2 diabetes). This variability in outcome definitions should 

be considered when interpreting the findings. 

Exposure Measurement Methods (Further Details): Studies using air quality monitoring data 

often linked participants’ residential addresses to the nearest monitoring station. Land-use regression 

models incorporated geographic information system (GIS) data on traffic, land use, and topography. 

Self-reported questionnaires typically asked participants about their residential history, time spent 

outdoors, and proximity to pollution sources. 

Justification for Study Selection: Mendelian Randomization studies were included because they 

provide stronger evidence for causal inference using genetic variants as instrumental variables, reducing 

the potential for confounding and reverse causation. Studies employing other designs, such as cohort 

studies, were included to provide a broader overview of the existing evidence base [49,54–56]. 

Information on sex was consistently reported, with approximately equal representation of men 

and women across the studies. However, reporting on other demographic characteristics, such as 

ethnicity and socioeconomic status (SES), was less consistent. Where reported, SES was often 

categorized based on indicators such as education level, occupation, or income. Some researchers also 

considered other participant characteristics such as smoking status and pre-existing health conditions 

as potential confounders. 

Interventions or Moderating Factors: Several studies investigated potential moderating factors 

such as genetic polymorphisms (as mentioned previously), dietary intake, and physical activity. For 
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instance, Huang et al. (2021) examined whether the association between PM2.5 and lung function was 

modified by genetic variations in antioxidant enzymes [39]. 

Sixteen studies entailed the interactions of PM2.5, PM10, NO2, and NOx on various gene 

polymorphisms associated with increased disease risk. These studies often examined specific gene 

variants known to be involved in pathways related to inflammation, oxidative stress, or DNA repair, 

which are mechanisms through which air pollution is thought to exert its effects. Mendelian 

Randomization studies were included to provide stronger causal evidence for the relationship between 

air pollution and health outcomes. Mendelian Randomization utilizes genetic variants as instrumental 

variables to assess the causal effect of an exposure (e.g., air pollution) on an outcome (e.g., disease 

risk), minimizing the influence of confounding factors [49,54–56]. Only one meta-analysis of cohort 

studies specifically examined the relationship between NO2 exposure during pregnancy and cord blood 

DNA methylation. This meta-analysis synthesized data from multiple cohort studies to investigate the 

potential impact of prenatal NO2 exposure on epigenetic modifications in newborns [39]. 

Brief Summary of Key Findings: Overall, the studies consistently suggested a positive association 

between long-term exposure to air pollutants, particularly PM2.5, and adverse health outcomes, including 

cardiovascular and respiratory diseases. Some studies also found evidence of associations with metabolic 

disorders and other health outcomes. Researchers investigating gene-environment interactions provided 

evidence that genetic susceptibility can modify the effects of air pollution [38–53]. 

Some researchers used genotyping to assess genetic susceptibility and data from air quality 

monitoring stations to measure PM2.5 exposure. The findings of the included studies generally 

suggested a positive association between long-term exposure to air pollutants, particularly PM2.5, and 

adverse health outcomes [38–53]. 

A detailed overview of the included studies, including author, year, location, study design, 

population and sample size, exposure variables, health outcome, and age range, is presented in 

Supplementary Table S1. 

To assess the methodological rigor of the included studies, a formal quality appraisal was 

conducted using tools appropriate for each study design, as detailed in the Methods section (see Section 

2.6). A comprehensive summary of the methodological quality assessment for all 16 included full-text 

articles is presented in Table 1. The results showed that most studies met high-quality criteria, 

supporting the reliability of the extracted findings. For a detailed breakdown of individual study scores 

and their respective quality assessments, please refer to Supplementary File S2. 

3.1.1. Overview and categorization of health outcome 

The studies in this review report a diverse range of health outcomes associated with air pollution 

exposure, involving both physical and mental health conditions across different populations. These 

outcomes span multiple disease categories, highlighting the broad impact of pollutants such as PM2.5, 

PM10, NO2, and NOx [38–53]. 

To facilitate analysis, the included studies were categorized into seven primary groups: Respiratory 

diseases, cardiovascular diseases, neurological and psychiatric disorders, cancers, autoimmune and 

inflammatory conditions, and other diseases. Cardiovascular and neurological conditions were the most 

frequently studied, with consistent associations reported for PM2.5, PM10, NO2, and NOx exposure. Notable 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
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findings include stronger associations of air pollution exposure with coronary artery disease (Fu et al., 2023; 

Li et al., 2022) and major depressive disorder (Li et al., 2023) associated with these pollutants [41,42,48]. 

Additionally, autoimmune conditions such as inflammatory bowel disease (Chen et al., 2024) were linked 

to long-term exposure to PM2.5 and NOx [49]. 

Table 1. Summary of methodological quality assessment of the included studies based on 

study design. 

No. Study (First 

Author, Year) 

Study Design Quality 

Assessment Tool 

Score/Result Notes 

1 Gruzieva et al., 

2016 [38] 

Meta-analysis 

(Cohort Data) 

AMSTAR 2 High Quality Evaluated narratively using 

AMSTAR 2 

2 Huang et al., 2021 

[39] 

Prospective Cohort NOS 9/9 UK Biobank, lung cancer 

3 Ma et al., 2024 [40] Prospective Cohort NOS 9/9 UK Biobank, AAA 

4 Li et al., 2023 [41] Prospective Cohort NOS 9/9 UK Biobank, MDD 

5 Fu et al., 2023 [42] Prospective Cohort NOS 9/9 Based on UK Biobank, 

CAD 

6 Ma et al., 2024 [43] Prospective Cohort NOS 9/9 Stroke, robust adjustment 

7 Liu et al., 2024 [44] Prospective Cohort NOS 9/9 Schizophrenia 

8 Huang et al., 2024 

[45] 

Prospective Cohort NOS 9/9 Parkinson’s disease 

9 Wang et al., 2022 

[46] 

Prospective Cohort NOS 9/9 COPD + interaction 

lifestyle 

10 Rhee et al., 2024 

[47] 

Prospective Cohort NOS 9/9 Cardiovascular disease 

11 Li et al., 2022 [48] Prospective Cohort NOS 9/9 PM2.5 and CAD 

12 Chen et al., 2024 

[49] 

Molecular-

Epigenetic Cohort 

JBI Checklist 

(Cohort) 

High Quality Epigenetic focus, UK 

Biobank based 

13 Wu et al., 2024 [50] Prospective Cohort NOS 9/9 Psoriasis 

14 Zhang et al., 2024 

[51] 

Cross-Sectional Modified NOS 

(Cross-Sectional) 

9/10 High quality cross-sectional 

design 

15 Gao et al., 2023 

[52] 

Prospective Cohort NOS 9/9 Depression and anxiety 

16 Zhang et al., 2024 

[53] 

Prospective Cohort NOS 9/9 Dementia 

Note: Abbreviations: AMSTAR 2, Assessment of Multiple Systematic Reviews-2 (A Measurement Tool to Assess 

Systematic Reviews 2); NOS, Newcastle-Ottawa Scale; JBI, Joanna Briggs Institute; AAA, Abdominal Aortic Aneurysm; 

MDD, Major Depressive Disorder; CAD, Coronary Artery Disease; COPD, Chronic Obstructive Pulmonary Disease; and 

PM2.5, Particulate Matter with a diameter ≤ 2.5 μm. 

Having established the characteristics of the included studies and the methods used to assess 

exposure and outcomes, in the following section, we detail the methods used to assess genetic 

susceptibility and pollutant exposure before presenting the key findings related to gene-

environment interactions [38–53]. 

3.1.1.1. Respiratory diseases 

Several studies focus on respiratory conditions, particularly in relation to particulate matter and 

nitrogen oxides: 
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• Wang et al. (2022): Chronic obstructive pulmonary disease (COPD) associated with PM2.5, 

PM10, NO2, and NOx [46]. 

3.1.1.2. Cardiovascular diseases 

Air pollution exposure is strongly linked to various cardiovascular conditions: 

• Ma et al. (2024): Abdominal aortic aneurysm [40]. 

• Fu et al. (2023): Coronary artery disease (CAD) [42]. 

• Rhee et al. (2024): General cardiovascular diseases [47]. 

• Li et al. (2022): Coronary artery disease (CAD) [48] 

3.1.1.3. Neurological and psychiatric disorders 

Mental health and cognitive impairments are key areas of concern: 

• Li et al. (2023): Major depressive disorder [41]. 

• Liu et al. (2024): Schizophrenia [44]. 

• Zhang et al. (2024): Speed processing deficits [51]. 

• Gao et al. (2023): Depression and anxiety [52]. 

• Zhang et al. (2024): Dementia [53]. 

3.1.1.4. Cancer 

A study reports a significant association between air pollution and lung cancer: 

• Huang et al. (2021): Lung cancer [39]. 

3.1.1.5. Autoimmune and inflammatory conditions 

• Chen et al. (2024): Ulcerative colitis [49]. 

• Wu et al. (2024): Psoriasis [50]. 

3.1.1.6. Epigenetic changes 

Air pollution exposure, particularly in early life, has been shown to cause epigenetic changes, 

such as differential DNA methylation: 

• Gruzieva et al (2016): Differential offspring DNA methylation at CpG site in cord blood 

newborns [38]. 

3.1.1.7. Other diseases 

Several studies have also linked air pollution to other health conditions: 

• Ma et al. (2024): Stroke [43]. 

• Huang et al. (2024): Parkinson’s disease [45]. 
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3.1.2. Methods of exposure and outcome assessment 

In this scoping review, the methods used to assess air pollution exposure and health outcomes 

varied across studies, reflecting the diversity of study designs and populations. 

3.1.2.1. Exposure assessment 

In this review, we categorized the approaches used to assess exposure to air pollution into three 

main groups: 

1) Air Quality Monitoring and Dispersion Models: Exposure estimated from fixed-site 

monitoring data or government-provided dispersion models (e.g., DEFRA in the UK). These methods 

provide spatially resolved estimates of pollutants such as PM2.5, PM₁₀, NO₂, and NOₓ [40,44,51].  

2) Land-Use Regression Models: Several researchers (e.g., Huang et al., 2021) employed land-

use regression (LUR) models to estimate individual-level exposures to air pollution. LUR models use 

spatial data on environmental and urban characteristics, such as traffic density, land use, and 

meteorological factors, to predict exposure to pollutants at a finer geographic scale. These models can 

provide more localized estimates of exposure, accounting for variation in pollution levels that may not 

be captured by monitoring stations [39,41,52]. 

3) Self-Reported Questionnaires: A few researchers included in this review also used self-

reported questionnaires, asking participants about their residential history, time spent outdoors, and 

proximity to pollution sources. This method, while less accurate than air quality monitoring or LUR 

models, enabled researchers to estimate individual exposure based on participants’ reported behaviors 

and locations [50]. 

4) Satellite-based Approaches: A limited number of studies estimated exposure using 

satellite-derived data, such as aerosol optical depth (AOD), often combined with meteorological 

and land-use variables through machine learning models to provide high-resolution estimates of 

ambient PM2.5 concentrations [48]. 

3.1.2.2. Outcome assessment 

1) Health Outcomes: A broad range of health outcomes were assessed across the studies, 

including respiratory diseases (e.g., COPD, and asthma), cardiovascular diseases (e.g., coronary artery 

disease, and myocardial infarction), neurological conditions (e.g., dementia, and depression), 

metabolic disorders (e.g., type 2 diabetes), and autoimmune/inflammatory diseases (e.g., ulcerative 

colitis). Each study defined and measured these outcomes differently, with some relying on clinical 

diagnoses, hospital records, or self-reported health conditions [38–53]. 

2) Objective Health Measurements: Many researchers used objective health measures, such 

as lung function tests, blood pressure readings, or biomarkers, to assess the impact of air pollution on 

various health conditions. These measurements provided more precise and quantifiable data compared 

to self-reported health information. 
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3) Gene-Environment Interactions: A subset of studies explored how genetic 

susceptibility modifies the impact of air pollution on health outcomes. These studies integrated 

genetic data (e.g., from genotyping or epigenetic analyses) with environmental exposure estimates. 

Details of methodological examination of gene–environment interactions are provided in 

section (3.1.3). 

3.1.3. Gene–environment interaction analysis 

To enhance transparency and methodological rigor, we examined how the included studies 

assessed gene–environment (GxE) interactions. All 16 studies investigated the modifying role of 

genetic susceptibility on the association between air pollution exposure and health outcomes. However, 

the methodological approaches varied. 

Several researchers employed Cox regression models to estimate hazard ratios and to evaluate 

interaction effects [39–46,48,49,53]. Among these, a subset formally tested additive interaction 

metrics, such as the Relative Excess Risk due to Interaction (RERI) and Attributable Proportion 

(AP), which provide insight into the biological synergy between genetic risk and environmental 

exposure [38,39,41,42,45,48,52]. Multiplicative interactions, expressed through interaction 

coefficients in Cox models, were also reported in some studies. 

Only a subset of researchers formally tested gene–environment interactions, either through 

additive metrics (e.g., RERI, and AP) or multiplicative interaction terms. Several studies (e.g., Fu 

et al. and Rhee et al.) reported combined effect estimates without direct interaction testing, which 

may limit interpretability. We have reflected these methodological distinctions in Supplementary 

Table S3. To support methodological clarity in future research, we encourage adherence to 

established guidelines for GxE analysis, including the use of formal interaction testing and 

transparent reporting of effect modification approaches. 

While most researchers did not apply formal multiple testing corrections (e.g., Bonferroni or false 

discovery rate), two studies, those by Gruzieva et al. (2016) and Zhang et al. (2024), did report 

correction procedures [38,53]. However, the lack of correction in most studies may limit the 

interpretability of interaction findings in the presence of multiple comparisons. This issue is 

particularly relevant given the large number of exposures and genetic markers tested, which increases 

the chance of false-positive results. 

A detailed summary of the interaction testing methods, effect sizes, p-values, and confidence 

intervals is provided in Supplementary Table S3. To improve visibility and address reviewer concerns, 

we have clarified key methodological features in this section and will consider integrating selected 

elements of Supplementary Table S3 into the main manuscript if appropriate. 

To complement Supplementary Table S3, which details the interaction testing methods used in each 

study, Table 2 summarizes key methodological characteristics of the included studies, focusing on the 

statistical approaches used to evaluate gene–environment interactions, the type of interaction tested 

(multiplicative or additive), the significance of interaction terms (e.g., p-values), and the application of 

multiple testing corrections. This structured summary enhances methodological transparency and supports 

interpretation of the findings by distinguishing between formal and informal testing strategies. 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
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Table 2. Overview of formal and informal testing methods, interaction type, and multiple 

testing correction in gene–environment interaction studies. 

No Study Formal 

Interaction 

Informal 

Interaction 

Interaction 

Type 

Interaction 

Significance and 

Strength 

Multiple 

Testing 

Correction 

1 Gruzieva et 

al., 2016 [38] 

Not Available Narrative 

Synthesis 

Epigenetic Not reported 

(unclear) 

False 

Discovery Rate 

(FDR) 

2 Huang et al., 

2021 [39] 

Cox proportional 

hazard models, 

RERI, AP 

- Multiplicative 

Positive 

Additive 

Not reported 

(unclear) 

Not Reported 

3 Ma et al., 

2024 [40] 

Cox proportional 

hazard models, 

RERI, AP 

- Multiplicative 

Positive 

Additive 

Not reported 

(unclear) 

Not Reported 

4 Li et al., 2023 

[41] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio) 

Stratified 

Analysis 

Multiplicative PM2.5: p = 0.036 

PM10: p = 0.025 

NO2: p = 0.030 

(Significant) 

NOx: p = 0.080 

(Not Significant) 

Not Reported 

5 Fu et al., 2023 

[42] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio), 

RERI, AP 

Subgroup HR 

Comparison 

(by PRS) 

Multiplicative 

Positive 

Additive 

All p-interaction > 

0.05 (Not 

Significant) 

Not Reported 

6 Ma et al., 

2024 [43] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio), 

RERI, AP, Aalen 

Additive Hazard 

Model 

- Multiplicative 

Positive 

Additive 

Not reported 

(unclear) 

Not Reported 

7 Liu et al., 

2024 [44] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio) 

Stratified 

Analysis 

Multiplicative PM2.5: p = 0.48 

(Not Significan 

PM10: p = 0.79 

(Not Significant) 

NO2: p < 0.07  

(Not Significant) 

Not Reported 

8 Huang et al., 

2024 [45] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio) 

Stratified 

Analysis 

Multiplicative Not reported 

(unclear) 

Not Reported 

9 Wang et al., 

2022 [46] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio), 

RERI, AP 

- Multiplicative 

Positive 

Additive 

All p-interaction > 

0.05 (Not 

Significant) 

Not Reported 

10 Rhee et al., 

2024 [47] 

Not Reported Visual Trend 

and Stratified 

HR  

Descriptive 

only 

Not reported 

(unclear) 

Not Reported 

Continued on next page 
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No Study Formal 

Interaction 
Informal 

Interaction 
Interaction 

Type 
Interaction 

Significance and 

Strength 

Multiple 

Testing 

Correction 
11 Li et al., 2022 

[48] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio) 

Narrative 

Interpretation 

Multiplicative p-interaction < 

0.001 

(Strong 

Evidence) 

Not Reported 

12 Chen et al., 

2024 [49] 

Cox proportional 

hazard regression 

models (p-

interaction and 

Hazard Ratio), 

RERI, AP 

- Multiplicative 

Positive 

Additive 

p-interaction 

(multiplicative) = 

0.275 (Not 

Significant) 

p-interaction 

(additive) = 

0.00123 

(Significant) 

Not Reported 

13 Wu et al., 

2024 [50] 

Not Available Narrative 

Association 

Informal PM10: p = 0.002 

(Significant), 

PM2.5: p = 0.105 

(Not Significant), 

NO2: p = 0.051 

(Not Significant) 

PM10 (Additive): 

Not Reported. 

Not Reported 

14 Zhang et al., 

2024 [51] 

Not Available Stratified 

Analysis 

Informal Not reported 

(unclear) 

Not Reported 

15 Gao et al., 

2023 [52] 

Not Reported Synergistic/ 

enhancing 

effect (Gene 

Environment 

Interaction) 

Multiplicative Not reported 

(unclear) 

Not Reported 

16 Zhang et al., 

2024 [53] 

Cox proportional 

hazard models (p-

interaction and 

Hazard Ratio), 

RERI, AP 

- Multiplicative 

Positive 

Additive 

HR interaction 

term reported 

(exact p not 

stated);  

RERI, and AP 

stated. 

HMP 

(harmonic 

mean p-value); 

PFWE & 

PFDR in 

imaging 

Note: Abbreviations: FDR, False Discovery Rate; RERI, Relative Excess Risk due to Interaction (the proportion of disease 

among those with both the exposure and the genotype that is attributable to their interaction); AP, Attributable Proportion 

due to Interaction (the proportion of disease in the population that is attributable to the interaction between the exposure 

and genotype); HR, Hazards Ratio; PM2.5, Particulate Matter with a diameter ≤ 2.5 μm; PM10, Particulate Matter with a 

diameter ≤ 10 μm; NO2, Nitrogen Dioxide; NOx, Nitrogen Oxides; HMP, Harmonic Mean p-value; PFWE, Permutation-

based Family-Wise Error rate; and PFDR, Permutation-based False Discovery Rate. Formal interaction testing includes 

regression-based interaction terms (e.g., p-interaction), as well as measures on the additive scale such as RERI (Relative 

Excess Risk due to Interaction), AP (Attributable Proportion), and the Synergy Index. Informal interaction testing 

includes subgroup or stratified analysis, visual inspection of effect modification across strata, or narrative/descriptive 

comparisons without formal statistical interaction terms. Interaction type refers to whether the interaction was evaluated 

on the additive scale, multiplicative scale, or only through informal exploration (without formal statistical testing). 

Multiple testing correction refers to statistical methods used to adjust for the number of tests performed, such as 

Bonferroni correction or False Discovery Rate (FDR) control, and Harmonic Mean p-value (HMP). 
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3.2. Methods to assess genetic susceptibility and pollutant exposure 

In this section, we describe the specific methods used within the 16 included studies to assess 

genetic susceptibility and pollutant exposure. We focus on how these measurements were implemented 

in the context of the reviewed literature, rather than providing a general overview of these methods. 

3.2.1. Assessment of genetic susceptibility 

Among the 16 articles reviewed, 14 focused on genetic susceptibility, 1 examined epigenetic 

modification, and 1 study entailed both genetic susceptibility and epigenetic modification. Table 3 

summarizes the focus of these articles. 

Table 3. Summary of study focus. 

Study Type Number of Articles 

Genetic Susceptibility 13 

Epigenetic Modification 2 

Both Genetic and Epigenetic 1 

Note: Table 3 provided a breakdown of the types of studies included in this review. 

After assessing general genetic susceptibility, we also explored gene-environment (GxE) interactions; 

how genetic factors may modify the health effects of air pollution exposure. Table 4 presents an overview 

of these studies, focusing on the use of genotyping or DNA methylation methodologies.
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Table 4. Overview of Studies on GxE Interactions Using Genotyping or DNA Methylation. 

Study Population Methodology Exposure 

(Pollutant) 

Outcome 

(Disease) 

Type of analysis Key findings 

Gruzieva et 

al., 2016 [38] 

Newborns, child-aged 

4 and 8 from European 

and North America (n 

= 1508 newborns, n = 

733 at age 4, n = 786 at 

age 8). 

DNA methyla-tion (Epige-

nome-Wide),meta-analysis of 

cohort study. 

Prenatal NO2 

exposure. 

Altered DNA 

methylation at 

CpG sites in 

FAM13A and 

NOTCH4. 

Epigenetic Modification. Early life epigenetic markers link to 

respiratory disease later. 

Huang et al., 

2021 [39] 

455,974 partici- pants 

aged 40–69 years (UK 

Biobank). 

PRS calculation based on 18 

SNPs In lung cancer; Land-

Use Regres-sion (LUR) 

models; Analytical cohort 

study. 

Ambient air 

pollution 

(PM2.5, NO2, 

PM10, NOx). 

Lung cancer 

incidence. 

Genetic risk interaction/ 

Environmental exposure 

Statistical ( Cox 

proportional Hazard 

models); RERI, AP. 

Air pollution exposure signi- ficantly 

associa- ted with higher likelihood of lung 

cancer (63% higher), particularly among 

individuals with high genetic susceptibility. 

Ma et al., 

2024 [40] 

449,463 participants 

aged 37–73 years from 

the UK Biobank. 

Polygenic risk score (PRS) 

based on 31 SNPs; Air 

pollution exposure data; 

cohort study. 

Long-term 

exposure to 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Abdominal 

Aortic Aneurysm 

(AAA). 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated. 

with increased likelihood of AAA; genetic 

risk (PRS) also plays a role in susceptibility. 

Li et al., 2023 

[41] 

354,897 participants 

aged 37–73 years from 

the UK Biobank. 

Polygenic risk score (PRS), 

using 17 MDD-associated 

genetic loci (17 SNPs); Land-

Use Regression (LUR) 

models; cohort study. 

Long-term 

exposure to 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Major Depressive 

Disorder. 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with increased likelihood of 

MDD; genetic risk (PRS) also plays a role 

in susceptibility. 

Fu et al., 

2023 [42] 

407,470 participants 

aged 40–69 years from 

the UK Biobank. 

CAD genomewide association 

meta-analysis with-out the 

UK Biobank population with 

40 SNPs; cohort study. 

Long-term 

exposure to 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Coronary Artery 

Disease (CAD). 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models, RERI, AP). 

Long-term air pollution exposure is 

associated with increased likelihood of 

CAD; genetic risk (PRS) also plays a role in 

susceptibility. 

Ma et al., 

2024 [43] 

452,196 partici years 

from the UK Biobank. 

Polygenic risk score (PRS) 

Calculation With 71 SNPs; 

cohort study 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Stroke, Ischemic 

Stroke, 

Hemorrhagic 

Stroke. 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with increased likelihood of 

stroke. genetic risk (PRS) also plays a role 

in susceptibility. 

Continued on next page 
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Study Population Methodology Exposure 

(Pollutant) 

Outcome 

(Disease) 

Type of analysis Key findings 

Liu et al., 

2024 [44] 

485,288 participants) 

aged 37–73 years from 

the UK Biobank. 

Genome-wide association 

studies; Polygenic risk score 

(PRS) calculation, cohort 

study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

schizophrenia. 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with stronger association with 

schizophrenia; genetic risk (PRS) also plays 

a role in susceptibility. 

Huang et al., 

2024 [45] 

over 312,000 

participants. Average 

aged 57 years. 

Polygenic risk score (PRS) 

Calculation; cohort study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Parkinson’s 

Disease (PD). 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with higher odds of Parkinson’s 

Disease (PD); genetic risk (PRS) also plays 

a role in susceptibility. 

Wang et al., 

2022 [46] 

452,762 participants 

aged 37–73 years from 

the UK Biobank. 

Genotyping by Affymetrix 

Research Services Laboratory 

in 106 sequential batches of 

ap Prox. 4,700 samples; 

selected 22 SNPs associated 

with COPD; Weighted 

genetic risk score calculation; 

cohort study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

chronic 

obstructed 

Pulmonary 

Disease (COPD). 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with stronger likelihood of 

COPD; Weighted genetic risk also plays a 

role in susceptibility. 

Rhee et al., 

2024 [47] 

249 082 participants 

aged 40–69 years. 

Genotyping of 807411 SNPs; 

Polygenic risk score (PRS) 

calculation, cohort study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incident 

CardioVascular 

Disease (CVD). 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with increased odds of 

Cardiovascular Disease (CAD); genetic risk 

(PRS) also plays a role in susceptibility. No 

significant interactions between genetic risk 

and PM2.5 exposure on cardiovascular 

death or CVD events. 

Li et al., 2022 

[48] 

41,149 participants 

from China-PAR. 

Polygenic risk score (PRS) 

calculation based on 540 

genetic variants; cohort study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Coronary Artery 

Disease (CAD). 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Long-term air pollution exposure is 

associated with increased odds of Coronary 

Artery Disease (CAD); polygenic risk score 

(PRS) also plays a role in susceptibility. 

Chen et al., 

2024 [49] 

453,919 individuals 

aged 40–69 years; 

White European 

descent. 

DNA methylation alterations 

at CXCR2 and sites within the 

MHC class III region. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incidence of 

Ulcerative colitis 

(UC). 

Epigenetic Modification; 

Statistical (Cox proportional 

hazard models; epigenetic 

Mendelian Randomization 

approach). 

Higher exposures to NOx, NO2, PM2.5 and 

combined air pollution score were 

associated with incident UC but not CD.  

Continued on next page 
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Study Population Methodology Exposure 

(Pollutant) 

Outcome 

(Disease) 

Type of analysis Key findings 

Wu et Al., 

2024 [50] 

474,055 participants 

aged 40–69 yaers. 

Polygenic risk Score (PRS) 

Calculation; cohort study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incident 

Psoriasis. 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models); RestricTed 

Cubic Spline Models; 

sensitivity analyses. 

There was an interaction between air 

pollution and genetic suscptibibility in 

relation to psoriasis. 

Zhang et al., 

2024 [51] 

522 healthy 

participants aged 40–

69 years living in 

Beijing 

Polygenic risk score (PRS) 

calculation; DNA 

methylation; cross-sectional 

study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Depression on 

processing speed. 

- Genetic susceptibility: 

PRS; - Epigenetic 

Modification: DNA 

Methylation; - Genetic 

Modification (of 

EnVironmental Effects): 

GLM, and PLSR. 

Air pollution may be associated with an 

increased likelihood of cognitive 

impairment in individuals genetically 

predisposed to dePression. The article does 

not provide specific effect sizes, but it 

describes the direction of the interaction 

(worsening effect with combined exposure 

and higher polygenic risk score).  

Gao et al., 

2023 [52] 

502,536 participants 

from the UK Biobank, 

recruited in 2006–

2010. 

Polygenic risk score 

calculation (Depression: 37 

SNPs Anxiety: 9 SNPs); 

Land-Use Regression (LUR) 

models; cohort study. 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Risk of 

Depression and 

Anxiety. 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models). 

Elevated levels of the five air pollutants 

were associated with higher odds of mental 

disorders at baseline. 

Zhang et al., 

2024 [53] 

401,244 participants 

aged 40–69 years. 

This article used genotyping 

data in2 ways: * Targeted 

genotyping: To get the APOE 

ε4 status. * Genome-wide 

genotyping: As the basis for 

calculating a PRS that 

incorporates many genetic 

variants associated with the 

outcome of interest (likely 

dementia or related traits). 

Long-term 

air pollutants 

(PM2.5, PM10, 

NO2, NOx). 

Incident 

Demensia. 

Genetic susceptibility, 

Statistical (Cox proportional 

hazard models and 

Restricted Cubic Spline 

Regression). 

Joint exposure to multiple air pollutants is 

associated with higher odds of dementia, 

especially among individuals with high 

genetic susceptibility. 

Note: Abbreviations: GxE: Genotype by Environment; DNA: Deoxyribonucleic Acid; NO2: Nitrogen Dioxide; CpG: Cytosine-phosphate-Guanine; FAM13A, NOTCH4: Specific gene names involved in 

various biological processes (Further explanation could be provided in the main text if relevant to the study’s focus). Italicized gene names indicate standard gene nomenclature; PRS: Polygenic Risk Score; 

LUR: Land-Use Regression; PM2.5: Particulate Matter with a diameter of 2.5 micrometers or less; PM10: Particulate Matter with a diameter of 10 micrometers or less; GLM, General Linear Model; and 

PLSR, Partial Least Squares Regression. 
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Table 4 provides an overview of studies on gene-environment interactions (GxE) using 

genotyping or DNA methylation. The studies listed highlight how genetic factors may influence the 

health outcomes of air pollution exposure, with a particular focus on epigenetic modifications like 

DNA methylation at specific CpG sites. 

The assessment of genetic susceptibility in the included studies primarily focused on identifying 

specific genetic variants associated with increased risk of adverse health outcomes related to air 

pollution exposure. Many studies aimed to explore how genetic differences could modify the harmful 

effects of pollutants like PM2.5, PM10, NO2, and NOx on health outcomes. 

• Genotyping Methods Used in Included Studies: Most researchers employed genotyping 

techniques, with SNP arrays being the most common method (n = 14). These arrays enabled the 

detection of a wide range of single nucleotide polymorphisms (SNPs) across multiple genes. Illumina 

Human Omni Express arrays were utilized in some studies to assess SNPs related to oxidative stress 

and inflammatory pathways. Additionally, PCR-based genotyping methods, such as TaqMan assays, 

were used in a few studies to investigate specific candidate genes linked to air pollution-related health 

effects. Only a smaller number of studies (n = 2) employed whole-genome sequencing (WGS) to 

explore broader genetic variations, although this method was applied in a limited number of 

participants due to cost and technical constraints. 

• Candidate Genes and Genome-Wide Association Studies (GWAS): A combination of 

candidate gene approaches (n = 8) and GWAS (n = 7) were used in these studies to explore the genetic 

basis of susceptibility to air pollution-related health risks. Candidate gene studies often targeted well-

known genes involved in inflammation or detoxification. In contrast, GWAS enabled the identification 

of novel genetic variants associated with exposure to pollutants. 

• Gene-Environment Interactions: Several researchers in this review focused on gene-

environment interactions, which investigate how genetic susceptibility can modify the health effects 

of air pollution exposure. In these studies, genetic data were typically obtained from blood, saliva, or 

buccal samples, and air pollution exposure was assessed through monitoring data or Land Use 

Regression (LUR) models [39,41,52]. Notably, the studies by Zhang et al. (2024) employed 

genotyping methods to examine the role of genetic polymorphisms in genes such as APOE ε4, FRMD8, 

DDX1, DNMT3L, MORC1, and TGM2 which are involved in specific biological pathways relevant 

to air pollution exposure such oxidative stress, neuroinflammation, and epigenetic regulation. These 

researchers found that certain genetic variants significantly influenced the association between air 

pollution exposure and incident Dementia [53]. 

• Data Analysis and Quality Control: Rigorous data analysis methods were employed across 

the studies to ensure the accuracy of genetic susceptibility results. Standard quality control measures, 

including filtering based on minor allele frequency, call rates, and testing for Hardy-Weinberg 

equilibrium, were commonly used to minimize errors. These procedures ensured that the genotyping 

data were reliable for assessing the associations between genetic variants and health outcomes [47]. 
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3.2.2. Assessment of pollutant exposure 

The assessment of pollutant exposure in the included studies predominantly relied on 

environmental monitoring, modeling techniques, and personal exposure measurements to estimate the 

levels of air pollution to which study participants were exposed. 

• Environmental Monitoring and Air Quality Data: A common method used in the studies 

was to obtain air quality data from government or environmental monitoring stations. These stations 

typically provide reliable data on the concentrations of pollutants, such as PM2.5, PM10, NO2, and NOx, 

at specific geographic locations. For example, several researchers (e.g., Zhang et al., 2024) utilized 

data from national or regional monitoring stations to estimate exposure for large cohorts. These data 

were often combined with residential or work addresses to estimate long-term exposure levels [51]. 

• Land Use Regression (LUR) Models: Many researchers (e.g., Huang et al., 2021, Li et al., 

2023, Fu et al., 2023; and Gao et al., 2023) employed land use regression (LUR) models to predict 

pollutant levels in areas where direct monitoring data were not available. LUR models are particularly 

useful in estimating spatial variation in air pollution exposure by integrating geographical data, land 

use patterns, and other environmental factors. These models were applied to derive individual-level 

exposure estimates based on participants’ residential locations. Different LUR models were used 

across studies, with varying levels of complexity and input data [39,41,42,52]. 

• Modeling Approaches: Some studies employed advanced modeling approaches, including 

dispersion models and satellite-based models, to estimate air pollution exposure. For example, 

several studies based on the UK Biobank (e.g., Ma et al., 2024 [40]; Liu et al., 2024 [44]; Wu et al., 

2024 [50]; Zhang et al., 2024 [53]) used DEFRA air dispersion models with a 1 × 1 km resolution to 

assign annual average pollutant concentrations to participants’ residential addresses. In addition, Li et 

al., 2022 [48] applied a satellite-based model that combined aerosol optical depth (AOD) data with 

meteorological and land-use information using machine learning algorithms to estimate fine-scale 

PM2.5 exposure. These modeling approaches are particularly valuable in regions without dense 

monitoring station coverage. 

• Exposure Duration and Temporal Patterns: Most studies evaluated long-term exposure 

(e.g., chronic exposure over years), but a few focused on short-term or acute exposure in relation to 

specific health outcomes (e.g., respiratory exacerbations or cardiovascular events). However, seasonal 

variations or temporal patterns of exposure were generally not explored in detail. 

• Exposure-Response Assessment: Many studies included an exposure-response analysis to 

explore the relationship between pollutant levels and specific health outcomes. These studies often 

adjusted for confounding factors such as age, gender, socioeconomic status, and pre-existing health 

conditions to determine the strength and consistency of the exposure-response relationship [39,41,47]. 

In summary, the assessment of pollutant exposure in the reviewed studies utilized a combination 

of monitoring data and modeling techniques (including LUR, dispersion models, and satellite-based 

approaches). None of the included studies used personal exposure monitoring devices. The 

methodologies employed provided valuable insights into the health effects of air pollution by offering 

both spatially and temporally accurate exposure estimates. 
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3.2.3. Integration of genetic and exposure assessments 

The integration of genetic and exposure assessments is essential for understanding the complex 

interactions between genetic susceptibility and environmental exposures such as air pollution. In this 

section, we describe how researchers in this review combined genetic and environmental exposure 

data to examine gene-environment interactions (GxE), providing a deeper understanding of how 

genetic factors influence the effects of air pollution on health outcomes. 

• Stratified Analysis: Some researchers in this review employed stratified analysis, where 

participants were divided into subgroups based on specific genetic variants to assess whether the effects of 

exposure differed between these subgroups. While not all studies used this approach, stratified analysis is 

commonly used to identify gene-environment interactions. For example, researchers have focused on 

polymorphisms in genes like GSTP1, involved in detoxification pathways, to explore how genetic variation 

might influence the response to air pollution. This approach provides deeper insights into how genetic 

factors can modify the health impacts of air pollution exposure [44,45,51]. 

• Interaction Terms in Regression Models: Statistical models (e.g., linear regression, and 

logistic regression) are used to test for the interaction between genetic variants and exposure variables. 

An interaction term is included in the model to assess whether the effect of exposure differs depending 

on genotype [39–46,48,49,53]. 

• Gene-Environment Interaction (GxE): Gene–environment interaction (GxE) occurs when 

the impact of environmental exposure, such as air pollution, on health outcomes varies according to 

an individual’s genetic profile. Among the 16 included studies, several explicitly tested GxE 

interactions using either multiplicative interaction terms in regression models or stratified analyses 

based on genetic risk categories (e.g., polygenic risk scores). These studies demonstrated that genetic 

susceptibility can modify the relationship between exposure to pollutants (e.g., PM2.5, and NO₂) and 

outcomes such as cardiovascular disease, major depressive disorder, or stroke. For example, some 

studies reported significantly greater adverse effects of air pollution among individuals in the highest 

tertile of genetic risk compared to those at lower risk [41,42,44,46,48–50]. 

In summary, the integration of genetic and exposure assessments using methods such as stratified 

analysis, regression models with interaction terms, GWIS, and consideration of gene-environment 

correlations provides valuable insights into how genetic susceptibility influences the health effects of 

air pollution. These approaches enhance our understanding of gene-environment interactions and are 

crucial for advancing precision medicine, where interventions can be tailored based on an individual’s 

genetic profile and environmental exposures. 

Note on Supplementary Materials: Due to the extensive nature of the data presented, 

Supplementary Table S4 provides a detailed summary of the key findings, conclusions, and limitations 

of the included studies. To ensure the flow and readability of the main text, this table has been moved 

to the Supplementary Materials section. Readers can refer to Supplementary Table S4 in the 

supplementary materials for a comprehensive overview of the studies included in this review. 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
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3.2.4. Gene-environment interactions 

A detailed analysis of gene-environment interactions was conducted to explore how genetic 

predisposition modulates the health effects of air pollution. In Supplementary Table S3, we summarize 

the interactions between genetic markers and environmental exposures, such as PM2.5, PM10, NO2, and 

NOx, across multiple health outcomes, including cardiovascular diseases, respiratory conditions, and 

mental health disorders. 

Key findings include: 

• Significant interactions between specific genetic polymorphisms and pollutant exposure levels, 

with the strongest effects observed for cardiovascular diseases and mental health disorders. 

• Variations in effect sizes (e.g., odds ratios, and hazard ratios) highlight the heterogeneity in 

genetic susceptibility to air pollution exposure across populations. 

• Specific metrics such as Relative Excess Risk due to Interaction (RERI) and Attributable 

Proportion (AP) underscore the additive effects of genetic predisposition and environmental 

exposures on disease risk. 

This table provides a comprehensive overview of the statistical evidence supporting the 

modifying role of genetic susceptibility in health outcomes associated with air pollution. 

4. Discussion 

The complex interplay between genetic predisposition and environmental exposures has emerged 

as a key area of research in understanding disease risk and health disparities. This review contributes 

to the growing body of literature by examining gene-environment interactions in the context of air 

pollution and their impact on various health outcomes [8,35,57]. 

4.1. Regarding the association between genetic predisposition and air pollution exposure 

The interaction between genetic predisposition and environmental factors, such as air pollution, has 

garnered increasing attention in recent years due to its potential impact on disease risk. Our findings 

contribute to this growing body of literature, highlighting the significant role that genetic susceptibility 

plays in modifying the effects of air pollution on health outcomes [11,32,38,43,48–50,57–60]. 

The additive effects observed in individuals with both high genetic susceptibility and high exposure 

to air pollution align with prior studies suggesting that genetic factors may amplify the adverse health 

effects of environmental pollutants. Specifically, we found that individuals at higher genetic risk exhibited 

more pronounced health deterioration when exposed to higher levels of air pollution. This combined effect, 

where the interaction between genetic susceptibility and environmental exposure exceed the sum of their 

individual effects, is consistent with other studies emphasizing the exacerbating role of genetic factors in 

the harmful effects of environmental stressors [39,48]. 

Furthermore, genetic predisposition appears to modify the impact of air pollution exposure across 

various diseases, including cardiovascular diseases (CVD), respiratory conditions, and mental health 

disorders. These findings underscore the critical role of gene-environment interactions in shaping 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
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health outcomes. A detailed summary of gene-environment interactions, including the effect sizes, p-

values, and health outcomes, is provided in Supplementary Table S3. 

4.2. Regarding disease-specific findings 

In line with other studies, long-term exposure to pollutants such as PM2.5, NO2, and PM10 was 

significantly associated with a higher likelihood of various diseases (e.g., lung cancer, cardiovascular 

disease, and stroke), especially among individuals with higher genetic susceptibility [38–53]. 

Our results confirm that the combined effect of air pollution and genetic predisposition plays a 

critical role in the development of complex diseases, including mental health disorders (e.g., 

schizophrenia, and Major Depressive Disorder) and cardiovascular diseases (e.g., abdominal aortic 

aneurysms). For conditions like ulcerative colitis and psoriasis, our findings suggest that air pollution 

exposure may be a modifiable environmental contributor, particularly for those genetically 

predisposed. This highlights the potential for public health interventions to target these conditions by 

addressing environmental exposures, such as through improved air quality policies. Further details of 

these interactions are presented in Supplementary Table S3. 

4.3. Implications for public health and precision medicine 

These findings underscore the need for personalized approaches in environmental health, where 

genetic susceptibility should be considered when assessing the potential impact of air pollution 

exposure. Identifying individuals with high genetic susceptibility for specific diseases and high 

exposure to air pollution could help target interventions and preventive strategies more effectively. For 

example, individuals with genetic susceptibility to respiratory diseases might benefit from policies 

aimed at reducing air pollution exposure in urban areas. Public health strategies could include 

prioritizing air quality improvements in regions with high genetic vulnerability indices, or 

incorporating genotyping into early screening programs in pollution-heavy urban centers [49,50,58]. 

While this review does not provide in-depth methodological analysis of these tools, we emphasize 

their future relevance for advancing the field. Although none of the included studies employed 

integrative multi-omics or machine learning techniques, these emerging methodologies are 

increasingly recognized as powerful tools in precision environmental health. They hold promise for 

uncovering novel mechanistic pathways and enabling more accurate risk stratification based on 

complex gene-environment interactions [17,18,21,29]. 

Specifically, multi-omics and machine learning could significantly improve our understanding of 

how genetic factors modulate responses to air pollution, providing insights that could refine health 

outcome predictions and support personalized prevention strategies [18–21,29,60,61].  

Although genome-wide interaction studies (GWIS) were not identified among the included 

studies, researchers should consider applying GWIS to detect novel loci involved in pollution-related 

health effects [29,32,58,62]. In addition, gene–environment correlation (rGE), where certain genetic 

traits predispose individuals to environments with higher pollution exposure, was not addressed in the 

included studies but remains an important methodological consideration for future analyses [63,64]. 

Experimental studies have also highlighted the relevance of mechanistic pathways, such as aryl 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view
https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view?usp=sharing
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hydrocarbon receptor (AhR) signaling in response to PM2.5 exposure, yet this pathway was not 

explored in the reviewed epidemiological literature. These mechanisms warrant further investigation 

to strengthen the biological plausibility of GxE associations [65,66]. In addition, future studies 

employing toxicological or experimental approaches, such as in vivo or organoid models, are needed 

to explore mechanistic pathways (e.g., oxidative stress, inflammation, and epigenetic regulation), 

which would strengthen the biological plausibility of observed GxE associations. 

The data in Supplementary Table S3 support the potential value of combining genetic and 

environmental risk profiling in public health efforts, particularly in identifying and protecting 

vulnerable populations. As such, future research that integrate genetic data with high-resolution 

exposure models, epigenomics, and machine learning algorithms could substantially enhance 

targeted prevention strategies [38–53]. 

4.4. Limitations and recommendations for future research 

While most included studies relied on observational designs, our findings are limited by the 

inability to establish causality and may be affected by residual confounding, particularly in the 

assessment of genetic susceptibility and environmental exposure [54,67]. Based on the current 

evidence, we provide several recommendations for future research directions. 

While we acknowledge that 12 of the 16 included studies were conducted in European 

populations or used UK Biobank data, the implications of this geographic and ethnic skew deserve 

deeper discussion. The lack of representation from non-European ancestry groups raises concerns 

about the external validity and equity of current GxE findings, particularly in the context of global 

precision health efforts. Equity and diversity should be central considerations when translating 

GxE insights into public health strategies [68,69]. Recent advances in interaction testing 

frameworks have made it more feasible to detect complex GxE effects across populations [70]. 

Future research must explicitly include underrepresented populations, both to validate current 

findings and to uncover population-specific interactions that may be masked in predominantly 

European datasets [71]. This approach will enhance the relevance and fairness of GxE-informed 

precision health interventions on a global scale. 

Further studies should address these limitations by incorporating more accurate exposure data, 

such as personal monitoring of air pollution, and exploring gene-environment interactions in more 

diverse populations to enhance the generalizability of the results [8,70–72]. 

One study included in this review, one by Chen et al. (2024), presents distinct methodological 

considerations. While described as a cohort study, its structure is more akin to a cross-sectional or 

nested case-control design, as it lacks precise temporal data on ulcerative colitis onset [49]. This 

weakens the temporal relationship and introduces potential for reverse causation, which may limit 

causal inference. To mitigate these limitations, the authors employed epigenetic analysis and 

Mendelian randomization as complementary methods to strengthen causal interpretation [54–56]. 

Nevertheless, the absence of longitudinal follow-up reduces its methodological comparability with the 

prospective cohort studies included in this review. Therefore, quality assessment was performed using 

the JBI checklist rather than the Newcastle-Ottawa Scale, which better aligns with the study’s 

epigenetic and case-control framework [35,37]. Future studies investigating gene–environment 

https://drive.google.com/file/d/1Su7PXUbocn5BFBvsqDM9RLk_Asc1Y8Wr/view?usp=sharing
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interactions in ulcerative colitis should aim to replicate these findings using longitudinal designs with 

clearer temporal sequencing and larger population-based samples. 

In addition, future studies would benefit from utilizing multi-omics approaches and machine 

learning techniques to explore the mechanistic pathways that link air pollution exposure with 

epigenetic changes and genetic predisposition in the development of complex diseases. These 

technologies have been highlighted as powerful tools to advance exposome research and understand 

causal biological mechanisms [17–21]. Such approaches hold great promise in identifying new 

biomarkers and uncover complex, multifactorial interactions that might otherwise be missed. The 

section on emerging technologies such as AI and multi-omics could also be expanded in future research 

to provide more detailed elaboration on their potential applications in improving exposure modeling, 

identifying complex gene-environment interactions, and enhancing risk prediction [21]. 

Moreover, longitudinal designs with larger, multi-ethnic samples and standardized exposure 

assessments will improve the robustness of future findings and enable a more nuanced interpretation 

of gene–environment dynamics over time. Although causality cannot be definitively inferred from 

observational data, enhancing study design and incorporating mechanistic approaches, such as multi-

omics and molecular exposomics, can substantially strengthen the evidence base and help clarify 

potential biological pathways [20,21,73–80]. 

Finally, disease-specific recommendations should be considered. For instance, prioritizing the 

development and validation of polygenic risk scores (PRS) for conditions such as stroke, where strong 

genetic signals have been identified (e.g., Ma et al., 2024) [43], may help refine individual-level 

susceptibility profiling and enable more targeted public health responses [73–80]. Furthermore, as the 

field progresses towards potential applications of genetic information in public health strategies, 

careful consideration must be given to the ethical implications of genetic screening. These include 

ensuring robust data privacy and security measures, obtaining informed consent, addressing the 

potential for genetic discrimination, ensuring equitable access and implementation, and promoting 

responsible interpretation and application of genetic risk profiles [81]. 

4.5. Mechanistic evidence supporting GxE effects 

Researchers using animal models and organoid systems demonstrate that air pollution triggers 

molecular events such as ROS overproduction, mitochondrial dysfunction, and cytokine dysregulation, 

which may interact with genetic predispositions to exacerbate disease processes [82,83]. For example, 

in vivo models have shown that particulate matter exposure leads to neuroinflammation and cognitive 

impairment via the NF-κB and Nrf2 signaling pathways, providing insight into mechanisms potentially 

relevant to mental health outcomes [84,85]. Similarly, lung and cardiovascular organoid models have 

revealed pollutant-induced endothelial dysfunction and inflammatory responses that mirror pathways 

implicated in human genetic risk loci [86,87].  

A recent review highlights how organoid and animal-based approaches are increasingly used to 

uncover the cellular and molecular mechanisms linking environmental exposures with chronic disease 

phenotypes. These mechanistic insights are essential for interpreting GxE interactions and underscore 

the need for integrative frameworks that combine epidemiological, genetic, and experimental evidence 

in environmental health research [88,89]. 
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To provide biological plausibility to the epidemiological associations observed in this review, it 

is important to consider experimental studies that elucidate underlying mechanisms. Toxicological and 

in vivo models have consistently shown that exposure to air pollutants such as PM2.5, NO₂, and diesel 

exhaust particles can induce oxidative stress, systemic inflammation, and epigenetic changes; 

pathways that are also implicated in the genetic susceptibility to complex diseases [90,91]. 

5. Conclusions 

This review underscores the critical role of gene-environment interactions in shaping health 

outcomes, particularly in the context of air pollution exposure. Our findings suggest that genetic 

susceptibility may modify the associations of air pollution across various diseases, including 

cardiovascular conditions, respiratory disorders, and mental health challenges. These results provide 

compelling evidence for the need to integrate genetic data into environmental health research, 

enhancing our understanding of the complex relationships between pollution exposure and disease risk. 

Given the observational nature of the included studies, causal relationships cannot be definitively 

established. Nonetheless, the patterns identified across the reviewed literature point to potentially 

important gene–environment interactions that merit further investigation through mechanistic and 

experimental studies. 

The implications of these findings extend beyond scientific research, emphasizing the 

development of precision public health strategies. Identifying individuals with heightened genetic risk 

can enable the development of targeted prevention strategies, such as localized air quality interventions 

or early screening efforts for at-risk populations. In parallel, these insights reinforce the need for broad 

efforts to reduce air pollution exposure as a population-wide preventive strategy. 

To improve the applicability of these findings, we recommend prioritizing the development of 

polygenic risk scores (PRS) for diseases with strong and consistent GxE signals, particularly stroke, 

as highlighted in recent studies such as Ma et al. (2024) [43]. Furthermore, enhancing air pollution 

monitoring systems in rapidly urbanizing low- and middle-income countries (LMICs) is essential to 

address current data gaps and guide targeted public health interventions. 

Researchers should also incorporate mechanistic studies, including those using organoid and in 

vivo models, to support the biological plausibility of GxE effects. These experimental approaches can 

help elucidate key pathways such as oxidative stress, inflammation, and epigenetic modifications, 

thereby strengthening the interpretation of epidemiological associations. 

Finally, to ensure the equity and global relevance of GxE research, future studies must include 

more diverse populations beyond those of European ancestry. By integrating genetic, environmental, 

and mechanistic evidence, future precision health strategies can be more effectively tailored to protect 

high-risk individuals and address the growing global burden of pollution-related diseases. 
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( ) I don't feel qualified to judge about the English Language and Style  

Comments for Author  

This scoping review offers a timely and increasingly relevant exploration of gene-environment 

interactions in the context of air pollution, aiming to synthesize how genetic susceptibility shapes 

health outcomes and the implications for precision health. The manuscript is well-intentioned, 

addressing a critical area at the intersection of environmental and genomic epidemiology. It covers 

a range of studies that apply polygenic risk scores (PRS), genotyping, and epigenetic assessments 

to evaluate the health effects of air pollution. The inclusion of diverse disease outcomes and 

pollutants like PM2.5, PM10, NO2, and NOx is commendable. However, despite the 

comprehensive ambition,  

Firstly, the study selection process described lacks clarity in its practical execution. Although the 

PRISMA-ScR approach is claimed, there is no explicit registration of the protocol (e.g., in Open 

Science Framework or PROSPERO), nor is there a clear justification for including only 16 studies 

out of an initial 322 records. For instance, the reasons listed in the flow diagram (p. 7) for excluding 

19 full-text articles are vague (“methodological concerns”) without further elaboration or a formal 

quality appraisal process, which weakens the transparency and reproducibility of the review 

process. 

Secondly, the paper repeatedly emphasizes the novelty of integrating multi-omics and machine 

learning approaches (e.g., Abstract, lines 20–21; Discussion, p. 19), yet no included studies 

employed such techniques. This disconnect between the stated goals and actual evidence 

undermines the central claims and may mislead readers about the current state of the field. 

Third, while the manuscript purports to address gene-environment interactions (GxE), it includes 

studies that are inconsistent in their application of GxE methodology. Several studies, such as Fu 

et al. (2023) and Rhee et al. (2024), do not formally test interaction terms or stratified analyses. 

The inclusion of these studies, without sufficient discussion of their methodological limitations or 

the absence of direct GxE testing, dilutes the rigor of the review’s conclusions. The authors should 

consider referencing clearer methodological standards such as those in 

doi:10.3389/fendo.2024.1371682. 

Fourth, while Table 2 (pp. 12–15) provides a helpful overview of included studies, it lacks key 

information that would allow readers to critically appraise each study's GxE validity. Specifically, 

it does not indicate which studies used additive interaction metrics such as RERI or AP, nor 



whether multiple testing corrections were applied. This is crucial information for interpreting 

interaction results and should be added or moved into the main manuscript rather than relegated to 

the supplementary. 

Fifth, the discussion section heavily cites associations without critically analyzing heterogeneity 

between studies. For example, significant geographical skew (12 of 16 studies are from Europe or 

the UK Biobank) and the lack of ethnic diversity in participant cohorts are acknowledged (line 

256), but the implications for external validity are insufficiently discussed. The authors should 

draw on frameworks such as those in doi:10.3389/fpubh.2022.895659 to contextualize these 

limitations in precision health strategies. 

Sixth, while disease categories are well organized (pp. 9–10), some causal language is 

inappropriately used. The term “risk” is repeatedly employed (e.g., “associated with increased risk 

of schizophrenia”) without considering the observational nature of the studies, even when 

Mendelian randomization is not employed. This violates best practice guidelines in causal 

inference and may overstate the implications of the findings. The authors may benefit from 

referencing methods-focused reviews such as doi:10.26355/eurrev_202302_31377 for appropriate 

terminology use. 

Seventh, the review does not meaningfully integrate toxicological or experimental data that could 

provide biological plausibility to support the epidemiological observations. Considering the focus 

on oxidative stress and inflammation, a discussion of relevant mechanistic studies—particularly 

those using in vivo or organoid models—would enrich the review. The integration of studies 

similar to those in doi:10.1016/j.jhazmat.2025.138105 would significantly enhance this 

discussion. 

Lastly, the conclusion is overly broad and reiterates previously stated limitations without offering 

concrete future directions. Suggestions such as “including more diverse populations” and 

“leveraging advanced exposure monitoring” are valid but generic. A more refined conclusion 

should offer disease-specific recommendations, such as prioritizing PRS development for stroke 

(based on the strong findings from Ma et al., 2024) or enhancing air pollution monitoring in rapidly 

urbanizing LMIC regions, where such data are currently lacking. 

In summary, the manuscript presents a potentially valuable synthesis of a growing field but is 

currently hampered by methodological imprecision, overinterpretation, and lack of critical 

appraisal of included studies. A major revision is necessary to improve methodological 

transparency, tone down unsupported claims, and more critically evaluate the strength of the 

evidence. 
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RESPONSE TO REVIEWER 1  

We sincerely thank the reviewer for their constructive and detailed feedback. We have addressed 

the concerns raised point-by-point as follows: 

English Language and Writing Style 

We appreciate the reviewer’s observation regarding the need for moderate improvements in 

English language and writing style. In response, we have thoroughly revised the manuscript to 

improve clarity, grammar, and overall coherence. Particular attention was given to refining 

technical terminology, sentence structure, and logical transitions to enhance readability and ensure 

a more polished academic tone. We believe that these revisions have substantially improved the 

quality and flow of the manuscript. 

1. Rebuttal to Reviewer1 Comment #1: Study Selection Methodology 

a. Lack of Detailed Description of Study Selection Process 

We appreciate the importance of transparency in study selection. In response, we have 

revised the Methods section to provide a more comprehensive and step-by-step description 

of our study selection process, including the number of reviewers involved, criteria used at 

each stage, and decision flow. Additionally, a PRISMA-ScR flow diagram (Figure 1) is 

included in the manuscript to visually represent the full screening and inclusion process. 

b. Protocol Registration 

While protocol registration is not mandatory for scoping reviews, we agree that it enhances 

transparency and methodological rigor. Scoping reviews are not eligible for registration on 

PROSPERO; however, we have addressed this by registering our protocol with the Open 

Science Framework (OSF), which accommodates a wide range of review types. The 

registration was completed retrospectively as part of the current revision process. The OSF 

registration link is now included in the revised manuscript. We thank the reviewer for this 

valuable recommendation. 

c.  Clarification on Why Only 16 Out of 322 Articles Were Included 



The initial database search identified 322 records. After removing duplicates and applying 

automation tools and initial screening criteria, 54 articles remained. Of these, 19 were 

excluded due to lack of full-text availability, and the remainder were excluded based on 

predefined inclusion/exclusion criteria, such as irrelevance to the topic or lack of 

methodological detail. This process is clearly detailed in the revised PRISMA-ScR diagram 

and is now described more thoroughly in the text. 

Furthermore, we emphasize that only full-text articles could be included for further 

methodological quality assessment, in line with best practices for scoping reviews.  

d.  Exclusion of 19 Articles — Clarification of Rationale 

We would like to clarify that the 19 articles were not excluded based on methodological 

judgment, but rather due to insufficient access to the necessary information for quality 

assessment. As clearly stated in the PRISMA-ScR diagram (Figure X), the 19 excluded 

articles consisted of: 

 Abstract-only publications (n=3) 

 Lay summaries (n=1) 

 Articles with inaccessible full texts (n=12) 

 Articles outside the time span (n=1) 

 Articles with inappropriate research focus (n=2) 

Methodological quality evaluation cannot be meaningfully conducted without access to 

the full manuscript text. Therefore, exclusion was based on information insufficiency, 

not methodological inadequacy. We have clarified this in the revised manuscript and are 

happy to elaborate further if needed. 

e. Quality Assessment of Included Studies 

To enhance methodological transparency, we conducted a quality assessment of all 16 full-

text articles included in the final review. The studies were appraised using tools tailored to 

their respective study designs: 

13 prospective cohort studies were assessed using the Newcastle-Ottawa Scale (NOS). 

1 cross-sectional study was evaluated using a modified version of the NOS adapted for 

cross-sectional designs, which adjusts for the lack of follow-up and outcome incidence 

measures. 

1 meta-analysis of cohort studies (Gruzieva et al., 2016) was assessed narratively using 

the AMSTAR 2 framework, which is specifically designed for evaluating systematic 

reviews and meta-analyses. 

1 molecular-epigenetic cohort study (Chen et al., 2024), although based on a prospective 

cohort design, involved significant integration of biological and epigenetic mechanisms. 

Therefore, we evaluated this study using the JBI Critical Appraisal Checklist for 

Cohort Studies, which offers more flexibility for complex analytical designs. 



 

The detailed methodological appraisal revealed the following score distribution: 

The NOS-based results for the 14 studies were as follows: 

 13 articles scored 9/9 (high quality) 

 The cross-sectional study by Zhang et al. (2024), titled "Interactive effect of air pollution 

and genetic risk of depression on processing speed by resting-state functional connectivity 

of occipitoparietal network", received a score of 9 out of 10 (high quality) using the 

modified Newcastle-Ottawa Scale (NOS) for cross-sectional studies. 

 Based on the AMSTAR 2 framework, Gruzieva et al. (2016) demonstrates high 

methodological quality as a meta-analysis of IPD from cohort studies, despite the 

absence of a formal protocol registration. 

 The JBI assessment for Chen et al. (2024) indicated high methodological quality, 

fulfilling all 11 criteria in the checklist. These included clear identification and handling 

of confounders, valid and reliable measurement of exposures and outcomes, adequate 

follow-up, and appropriate statistical analysis. The study’s integration of molecular data 

within a large prospective design further strengthened its methodological rigor. 

These results suggest that all of included studies were of high methodological quality. As 

appropriate for a scoping review, our objective was not to exclude studies based on quality, 

but to transparently characterize the range and rigor of the available evidence. 

We have summarized these results in the manuscript in the new Table 1, and for full 

transparency, we are providing the scoring details for all included studies in the 

Supplementary Materials. These assessments further support the robustness of our 

synthesis while addressing the reviewer's concerns regarding the clarity of study inclusion 

and quality appraisal. 

We trust that these revisions fully address the reviewer's concerns and improve the 

methodological transparency of the manuscript. 

 

2. Rebuttal to Reviewer Comment #2: 

We sincerely thank the reviewer for pointing out this important inconsistency. We acknowledge 

that none of the included studies in our scoping review employed multi-omics or machine 

learning techniques directly. Our original intention was to highlight these approaches as 

emerging directions for future research, rather than as existing features of the current 

evidence base. 

To address this concern, we have revised the Abstract, Discussion, and other relevant sections 

to clarify that multi-omics integration and machine learning were not observed in the included 

studies, but are suggested as promising areas for future investigation based on the identified 

limitations and gaps in the literature. We believe these techniques could significantly enhance 

future studies in this area, and as such, they were mentioned to emphasize the potential 

directions for advancing the field. 

https://www.researchgate.net/publication/384018128_Interactive_effect_of_air_pollution_and_genetic_risk_of_depression_on_processing_speed_by_resting-state_functional_connectivity_of_occipitoparietal_network?_sg=IjuSKh04-4wSkg6qPYSj3O2jhy7ENVzPxI9VwDJt8ZJwUuLTj94Q_NHlt6qUBq_ejUmxpm-_jSC5uCU
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We have reworded the Abstract (lines 20–21) and the Implications section of the Discussion 

(page 19) to ensure this distinction is clear, emphasizing that while these approaches are not yet 

present in the current body of research, they represent an important avenue for future 

exploration. This adjustment was made to prevent overstating the current state of the field and 

to more accurately represent the existing evidence. 

3. Rebuttal to Reviewer Comment #3: 

We appreciate the reviewer’s concern regarding the heterogeneity in GxE methodologies across 

the included studies. We acknowledge that varying levels of methodological stringency exist, 

with some studies, including Fu et al. (2023) and Rhee et al. (2024), not exclusively employing 

formal interaction terms in regression models. 

However, we respectfully note that this work is a scoping review, not a systematic review.  

As such, our objective was not to apply narrow methodological inclusion criteria, but rather to 

map the existing body of literature on genetic susceptibility to air pollution and its implications 

for disease risk and precision health. The purpose of a scoping review is to capture the 

breadth of evidence, including studies that discuss gene-environment interactions 

conceptually, narratively, or descriptively—even if they do not employ formal statistical 

interaction tests. Limiting inclusion strictly to studies with formal interaction terms would 

have excluded potentially relevant contributions and obscured gaps in current research practice. 

Given this, our inclusion criteria necessarily allowed studies that explore joint effects through 

stratified analyses or combined risk categorization, even if formal interaction testing (e.g., 

inclusion of interaction terms with reported p-values) was not performed in every case. These 

studies still offer valuable insights into how genetic and environmental factors may jointly 

shape disease vulnerability—while differing in methodological rigor, they remain relevant to 

understanding how GxE interactions are approached in practice. 

Specifically, 

 Fu et al. (2023) conducted formal interaction testing using Cox proportional hazards 

regression models that included interaction terms (p-interaction) on the multiplicative 

scale. However, all reported p-values were > 0.05 and thus not statistically significant. 

In addition, they performed formal additive interaction analyses using RERI (Relative 

Excess Risk due to Interaction) and AP (Attributable Proportion), which indicated a 

positive additive interaction. Therefore, the study included both formal multiplicative 

and additive interaction testing, even though only the additive interaction yielded 

notable findings. 
 Rhee et al. (2024) did not report the use of regression-based interaction terms nor formal 

p-values. Instead, they used stratified hazard ratio comparisons across genetic risk 

groups and visual trends to describe potential gene–environment interactions. As such, the 

analysis was descriptive and informal, without formal statistical interaction testing on 

either additive or multiplicative scales. 

 We would also like to emphasize that measures such as RERI and AP are widely 

accepted in epidemiologic literature as formal interaction tests on the additive scale. 

When confidence intervals or p-values are reported for these measures, they provide 

inferential evidence analogous to p-interaction terms used for multiplicative interactions. 



Therefore, studies utilizing these metrics—like Fu et al. (2023)—are not informal in 

their approach, even if their results on the multiplicative scale were non-significant. 

 Rhee et al. (2024) included interaction terms between PM2.5 and polygenic risk scores in 

their regression models, but did not report p-values for those terms. Instead, they presented 

stratified hazard ratios and interpreted effect modification narratively. Although their 

approach involved formal modeling, the absence of reported p-values and reliance on 

descriptive interpretation places the study closer to informal testing. 

 We would like to clarify that Supplementary Table S3, which was already included in the 

original submission, summarizes the type and rigor of GxE analyses for each study, 

including whether formal interaction testing or stratified approaches were employed.  

 To further address the reviewer’s concern, we have also added Table 2 in the main 

manuscript, which provides a structured summary of interaction analysis methods, 

interaction type (additive, multiplicative, or informal), and the application of multiple 

testing correction across all included studies. This table complements Supplementary Table 

S3 and enhances clarity for the reader. 

 Made these methodological distinctions more explicit in the main text, particularly in 

the Results and Discussion sections. 

 Regarding the reference suggested by the reviewer (doi:10.3389/fendo.2024.1371682), we 

have carefully reviewed its content. However, we found that it primarily addresses 

associations between physical activity, sedentary behavior, and insulin levels in short 

sleepers, without any discussion of gene–environment (GxE) interaction methodology, 

statistical interaction testing, or causal inference models. Therefore, we have chosen 

not to cite this reference, as it does not align with the methodological focus of our 

review or the specific concerns raised regarding GxE testing standards. 

 Additionally, we would like to emphasize that Supplementary Table S3 already included 

a detailed classification of interaction analyses (formal vs. stratified/descriptive) for each 

study, including whether formal statistical interaction testing was conducted. To improve 

visibility and clarity in the main manuscript, we have now added Table 2 as a 

complementary summary of these methodological distinctions. This new table 

highlights the type of interaction testing (multiplicative or additive), significance reporting, 

and use of multiple testing correction, thus ensuring that these aspects are more explicitly 

integrated into the main narrative. 

We believe this approach balances inclusiveness with critical appraisal, aligning with the goals 

of a scoping review while also highlighting the need for greater methodological consistency in 

future GxE research. We also recognize that studies using different analytical approaches 

provide varying degrees of inferential strength, and we have now reflected this in our revised 

narrative. 

 

4. Rebuttal to Reviewer Comment #4: 



We appreciate the reviewer’s comment regarding the need for clearer reporting of which studies 

employed additive interaction metrics (e.g., RERI, AP) and whether multiple testing corrections 

were applied. 

However, we would like to clarify that the table currently labeled Table 4 (formerly Table 2) 

is not designed to provide detailed statistical methodology. Rather, it serves as a narrative 

overview of each study’s population, exposure, outcome, GxE context, and key findings. Its 

primary function is to offer readers a high-level summary of the study characteristics and 

thematic findings within the GxE research landscape. 

In contrast, the specific information requested by the reviewer—such as the use of RERI, 

AP, formal interaction terms, and multiple testing corrections—has been available from 

the outset in Supplementary Table S3. This supplementary table systematically categorizes 

the type and rigor of GxE analysis used in each study, clearly indicating whether formal 

interaction testing was conducted and whether statistical significance or correction procedures 

were reported. 

To enhance clarity and accessibility, we have now added a new Table 2 in the main 

manuscript, which further synthesizes and highlights the methodological details of the 

included studies. This new table complements Table S3 and ensures that the methodological 

distinctions are more visible to readers without needing to consult only the Supplementary 

Materials. 

Therefore, we respectfully submit that Table 4 should remain unchanged, as it was not 

intended to be a repository of analytical methodology but rather a descriptive summary of study-

level context and findings. The detailed methodological content is now fully accessible through 

the combination of Supplementary Table S3 and the newly added Table 2 in the main 

manuscript. 

We hope this clarification addresses the reviewer’s concern and improves the transparency and 

interpretability of our reporting. 

 

5. Rebuttal to Reviewer Comment #5: 

Thank you for your insightful comment regarding the need to critically analyze the 

heterogeneity between studies, especially with respect to geographical skew and ethnic 

diversity. We acknowledge the importance of considering these factors in understanding the 

external validity and global applicability of gene–environment (GxE) findings. Below, we 

outline how we have addressed these concerns: 

 

Acknowledging Geographical Skew and Lack of Ethnic Diversity: 

We agree that the predominance of studies from Europe and the UK Biobank poses important 

considerations for the external validity of our findings. In response, we have strengthened our 

discussion to more thoroughly address the geographical and ethnic homogeneity of the study 

populations. We now emphasize that these factors may limit the generalizability of our results, 

particularly in populations outside of Europe. Additionally, we discuss how these limitations 

should be considered when interpreting the findings, particularly for precision health strategies. 



Furthermore, we have explicitly stated that future research should aim to include more diverse 

populations across different ethnicities and geographical regions to enhance the generalizability 

and applicability of findings in global settings. 

 

Correction and Replacement of Suggested Framework: 

We note that the cited article (doi:10.3389/fpubh.2022.895659) focuses on rural health 

worker satisfaction and does not provide a relevant framework for genomic or GxE 

research. Instead, we have now referenced more appropriate literature, such as: 

 Sirugo et al. (2019), The Missing Diversity in Human Genetic Studies (NEJM), and 

 Popejoy & Fullerton (2016), Genomics is failing on diversity (Nature), 

which better articulate the challenges and consequences of underrepresentation in genomic 

research and its implications for precision medicine. 

 

Incorporating Conceptual Frameworks: 

These new references provide the conceptual basis to contextualize how geographic and 

ancestral homogeneity can bias gene–environment interaction findings, and why inclusive 

representation is vital for translating GxE research into equitable precision health strategies.  

 

Recommendations for Future Research: 

We now clearly recommend that future studies prioritize recruitment of underrepresented 

populations across ethnic and geographic groups. This will improve not only the 

representativeness of the data but also the relevance of GxE-informed interventions globally. 

We believe that these additions directly address the reviewer’s concerns, strengthen the 

discussion, and improve the clarity and critical reflection regarding the limitations of the current 

evidence base. 

 

6. Rebuttal to Reviewer Comment #6: 

Thank you for this constructive and important observation regarding the use of causal language 

in our manuscript. We appreciate your emphasis on maintaining appropriate terminology in 

observational research, especially in the absence of formal causal inference methods such as 

Mendelian randomization. 

In response, we have carefully reviewed the entire manuscript and implemented the following 

changes: 

1. Terminology Refinement 

We have replaced or revised instances of the term “risk” that could imply causal 

relationships inappropriately, particularly in the Results and Discussion sections, as well as 

in Table 4. Phrases such as “associated with increased risk of…” have been replaced with 

more cautious and accurate expressions such as “associated with…”, “linked to…”, “showed 

stronger association with…”, or “increased likelihood of…”, depending on context, to more 

accurately reflect the associative, rather than causal, nature of the findings. 



2. Clarifying the Observational Nature 
We have emphasized throughout the manuscript that all included studies are 

observational, and thus do not permit causal inference. This clarification is now also 

highlighted in the Limitations section, where we discuss the inability to establish causality 

and the importance of interpreting associations with caution. 

3. Clarification on Mendelian Randomization Use 

Only one study among the 16 included studies (Chen et al., 2024) employed Mendelian 

randomization methods, and we have clarified this explicitly in the Methods and Results 

sections. . However, this does not justify causal language in the broader manuscript, and we 

have revised terminology accordingly. 

4. On the Reviewer’s Suggested Reference 
With respect to the article suggested by the reviewer (DOI: 10.26355/eurrev_202302_ 

31377), we have carefully reviewed its content. However, we found that it primarily 

addresses catastrophic health expenditure among elderly populations in China and 

does not contain discussion or guidance on causal inference, gene–environment 

interactions, or precision health terminology. For this reason, we have chosen not to cite it, 

as it does not align with the methodological context of our manuscript. 

5. Broader Context of Best Practices 

Instead, we have strengthened our approach by adopting terminology aligned with 

established practices in epidemiological reporting and by ensuring that all interpretive 

statements reflect the non-causal nature of the included studies. We remain open to including 

additional methods-focused references more appropriate to the GxE and causal inference 

context, should the reviewer suggest a more suitable alternative. 

 

7. Rebuttal to Reviewer Comment #7: 

 

Thank you for this thoughtful comment. We appreciate the suggestion to integrate toxicological 

or experimental evidence to support the biological plausibility of gene–environment (GxE) 

interactions. However, we respectfully note that our review follows a scoping review 

methodology, which aims to systematically map the extent, nature, and range of research 

activity based on predefined inclusion criteria. 

As this review adheres to a scoping review methodology, our inclusion criteria were limited to 

peer-reviewed epidemiological studies that explicitly examined the modifying role of genetic 

susceptibility in the health effects of air pollution. None of the 16 included studies employed 

toxicological, in vivo, or organoid models, nor did they present mechanistic findings beyond 

pathway-level interpretations (e.g., PRS pathways or epigenetic markers). 

To maintain methodological integrity, we have not included studies outside the scope of our 

inclusion criteria—such as those focused exclusively on biological mechanisms or toxicological 

pathways—since doing so would risk conflating different bodies of evidence and overstepping 

the aims of a scoping review. 

However, we acknowledge the critical importance of mechanistic evidence and have included 

a forward-looking recommendation in the revised Discussion (Section 4.3 – Implications for 

Public Health and Precision Medicine), highlighting the potential value of future studies 



integrating multi-omics and experimental models (e.g., in vivo and organoid systems) to 

uncover causal pathways and strengthen the biological interpretation of observed associations.  

We believe this approach respects the boundaries of scoping methodology, while 

constructively acknowledging the direction for future research as suggested. 

While we did not integrate the specific studies into our results, we have cited the reviewer-

suggested reference (doi:10.1016/j.jhazmat.2025.138105) in the Discussion as a representative 

example of the type of mechanistic work that could inform future research directions and 

enhance the biological interpretation of epidemiological findings. 

We believe this approach respects the methodological scope of a scoping review while 

constructively incorporating the reviewer’s suggestion to highlight relevant future research 

needs. 

 

8. Rebuttal to Reviewer Comment #8: 

 

Thank you for this valuable suggestion to refine the Conclusion section. We fully agree that the 

conclusion should go beyond reiterating general limitations and instead offer more concrete, 

actionable directions for future research. 

In response, we have revised the Conclusion to include: 

 A disease-specific recommendation emphasizing the prioritization of polygenic risk score 

(PRS) development for stroke, based on strong and consistent findings reported by Ma et 

al. (2024). 

 A context-sensitive call for improved air pollution monitoring infrastructure in rapidly 

urbanizing low- and middle-income countries (LMICs), where environmental and genomic 

surveillance systems remain underdeveloped. 

These revisions are intended to enhance the translational relevance of the review and to 

provide clearer guidance for both researchers and public health stakeholders. The updated 

Conclusion can be found in Section 5 (page 25) of the revised manuscript. 

We appreciate the reviewer’s suggestion, which has helped us sharpen the focus and utility of 

our final recommendations. 

 

Thank you once again for the constructive and helpful feedback provided by Reviewer 1. We 

believe that the revisions implemented have substantially improved the manuscript, and we 

appreciate the opportunity to have benefited from their expertise. We look forward to the editor's 

decision. 

 

Kind regards, 

 

Dr. Hari Krismanuel 

hari_krismanuel@trisakti.ac.id 
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English Language and Style  

( ) Extensive editing of English language and style required  

( ) Moderate English changes required  

(x) English language and style are fine/minor spell check required  

( ) I don't feel qualified to judge about the English Language and Style  

Comments for Author  

The reviewed article, titled "Exploring genetic susceptibility to air pollution and its implications 

for disease risk and precision health: A scoping review" examines the role of genetic 

susceptibility in health outcomes associated with exposure to air pollution, with a particular 

emphasis on fine particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and nitrogen 

oxides (NOx). The paper addresses the lack of synthesis in the literature regarding how genetic 

predisposition modifies the health effects of air pollution, particularly through gene-environment 

interactions and epigenetic mechanisms. It also highlights the underrepresentation of diverse 

populations in this research domain. 

The main research question is: 

How does genetic susceptibility influence individual responses to air pollution, and what are the 

implications for disease risk and precision public health? 

The review is relevant to the fields of environmental health, public health genomics, and precision 

medicine. The manuscript is mostly well-written, with a logical structure and accessible language. 

However, the layout includes inconsistent font sizes, which could be improved for visual 

consistency. 

Some sections, especially those describing pollution exposure, could be more concise to improve 

readability. Reducing redundancy would help maintain reader engagement. 

The introduction would benefit from a more in-depth explanation of the specific particulate 

matter and oxides analyzed in the study, along with a description of the associated pathological 

consequences of exposure. In general, the introduction should be improved. Line 60-61 are not 

adequate for introduction; they already indicate a result. For this section I suggest the following 

article to improve it: F. Nisticò, G. Messina, C. Quercioli, S. Errico, E. Fanti, E. Frilli, M. Postiglione, 

A. De Luca, A. D'Urso, N. Nante. Can “fine scale” data on air pollution be an evaluation tool for 

public health professionals? Atmospheric Pollution Research, Volume 16, Issue 6, 2025.  The 



article contributes to scientific knowledge by synthesizing recent literature on gene-environment 

interactions in air pollution-related diseases. 

However, while the integration of concepts such as multi-omics and machine learning is 

mentioned, it lacks sufficient methodological detail. The suggested interventions and the 

discussion of policy implications remain broad and lack actionable recommendations. More 

concrete suggestions for public health applications would strengthen this aspect. 

Furthermore, the article does not explore these advanced methodologies in enough depth to 

distinguish itself from earlier reviews. 

The methodology is partially adequate but presents several shortcomings: 

- The exclusion criteria are strict, potentially omitting relevant studies. 

-  Why did the authors not use Scopus? 

- The focus on only a few pollutants restricts the scope of the review to just 16 articles from the 

broader scientific literature. 

- Discussions of multi-omics and machine learning are speculative and not well supported by the 

data selection process. 

The main tables are clear and informative. However, many critical details are relegated to the 

supplementary materials, which limits their accessibility. Data quality across the included studies 

varies, but this variability is not sufficiently acknowledged or evaluated. The review would benefit 

from including studies involving more diverse ethnic and socioeconomic populations, as well as 

from addressing gene-environment correlations. 

The section on emerging technologies (e.g., AI, multi-omics) could also be expanded. 

Ethical issues surrounding genetic screening for public health purposes should be briefly 

discussed. 

Finally, the reference list should be expanded to include additional relevant and representative 

articles from the field. 

English language and style are fine/minor spell check required. 
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Please add your reply into the box below. You may upload an additional PDF or Word file with 
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RESPONSE TO REVIEWER 2 

We sincerely thank Reviewer 2 for the thorough and constructive comments. We have carefully 

revised the manuscript to address all concerns. Below, we provide a point-by-point response to 

each comment. 

 

1. English language and style are fine/minor spell check required. 

Response: 

We thank the reviewer for the positive assessment of the manuscript’s English language and 

writing style. We have performed a careful proofreading of the manuscript and corrected minor 

typographical or grammatical issues. 

2. Layout includes inconsistent font sizes. 

Response: 
We thank the reviewer for noting the inconsistency in font size. We have standardized all font sizes 

and formatting for consistency throughout the manuscript.  However, some of the tables—

especially those containing dense data, had slightly reduced font sizes to ensure readability and fit 

within the page limits. In addition, to accommodate the large amount of information presented in 

some supplementary tables, we utilized a landscape layout and, in a few instances, a slightly 

smaller font size. This was done to maximize the information that could be presented on a single 

page and enhance the clarity and comprehensiveness of the data. We understand that this may have 

contributed to some inconsistency, and we have carefully reviewed these tables to standardize the 

font type and size as much as possible while maintaining clarity and legibility. We have revised 

these tables to standardize the font type and size as much as possible while maintaining clarity. 

We appreciate the reviewer’s observation, as it has helped improve the overall visual presentation 

and consistency of the manuscript. 

3. Pollution exposure sections could be more concise. 

Response: 

We appreciate this suggestion. We have carefully reviewed the sections describing pollution 

exposure, particularly in the Introduction, and have made revisions to improve conciseness, reduce 

redundancy, and enhance clarity. Specifically, we have streamlined the initial paragraphs to 

provide a more direct and integrated explanation of the global impact of air pollution and the 

specific roles of PM2.5, PM10, NO2, and NOx, avoiding repetitive statements and focusing on the 

unique aspects of each point. 

4. Weak Introduction: More explanation of PM2.5, PM10, NO2, NOx and their pathologies. 



Response: 

We appreciate the reviewer's feedback regarding the need for a more in-depth explanation of the 

specific pollutants and their pathological consequences in the Introduction, as well as the 

suggestion to improve conciseness by reducing redundancy. In response, we have significantly 

revised the Introduction. The initial paragraphs have been expanded to provide a more 

comprehensive overview of the global impact of air pollution, the specific characteristics and 

mechanisms of action of PM2.5, PM10, NO2, and NOx, and their links to major chronic diseases. 

Simultaneously, we have streamlined the language and integrated overlapping ideas throughout 

the Introduction to ensure a more focused and coherent flow of information, thereby addressing 

the concern about potential redundancy. We believe these revisions provide the requested depth 

and enhance reader engagement through improved clarity and conciseness. 

We agree and have expanded the Introduction to include a more thorough explanation of the 

pollutants studied and their associated health effects. We have also incorporated the reviewer’s 

suggested reference (Nisticò et al., 2025) to strengthen the scientific context. This additional 

context enhances the clarity and relevance of the review’s rationale.  

5. Multi-omics and machine learning mentioned but lack methodological detail. 

Response: 

We have clarified in the Abstract, Introduction, and Discussion (Section 4.4) that multi-omics and 

machine learning are discussed as promising future directions for research, especially  

given the limitations and gaps identified in the reviewed literature. We have explicitly stated that 

none of the included studies employed these methodologies, and our discussion serves to highlight 

their potential relevance rather than their application in the current body of evidence.  

6. Policy implications remain broad and lack actionable suggestions. 

Response: 

We have revised the Discussion (Section 4.3) to include more specific examples of how genetic  

susceptibility data, in conjunction with air pollution exposure, could inform targeted public health 

policies, including potential screening strategies and environmental interventions in high-risk 

areas or populations with high genetic susceptibility.  

7. Advanced methodologies not differentiated from earlier reviews. 

Response: 

We have emphasized throughout the manuscript, particularly in the Introduction and Section 4.3, 

that the discussions of multi-omics and machine learning are not based on findings from the 

included studies, but are highlighted as future research directions to address the identified 

limitations in current research on gene-environment interactions in air pollution. We have also 

explicitly stated: While this review does not provide in-depth methodological analysis of these 

tools, we emphasize their future relevance for advancing the field. 

8. Exclusion criteria are strict, potentially omitting relevant studies. 

Response: 

We acknowledge this trade-off inherent in our methodological approach. We clarified in the 

Methods section that our strict inclusion criteria were intentionally applied to ensure the relevance 



and scientific rigor of the 16 studies included in this review, specifically focusing on human 

studies directly examining gene-environment interactions related to the selected air pollutants. 

However, we recognize that these strict criteria may have inadvertently led to the omission of some 

broader studies that could offer valuable insights into the wider context of air pollution and health. 

We have added a statement in the Limitations section (Section 4.4) acknowledging this potential 

limitation and suggesting that future research could benefit from employing broader inclusion 

criteria to capture a wider range of evidence while carefully considering methodological 

heterogeneity. 

9. Why was Scopus not used? 

Response: 

We appreciate the reviewer's question regarding the use of Scopus. We did not include Scopus in 

our search because it is a subscription-based database, and there is significant overlap with 

PubMed and Web of Science, both of which comprehensively cover biomedical literature. We 

believe that the chosen databases provided sufficient coverage for the scope of this review focusing 

on gene-environment interactions in air pollution-related health outcomes. 

10. Only a few pollutants studied, limiting scope to 16 articles. 

Response: 

We appreciate the reviewer's observation regarding the limited number of articles (n=16) 

included in this review. It is important to note that this number is the result of a rigorous and 

systematic study selection process guided by the PRISMA-ScR framework, as detailed in the 

Methods section and illustrated in Figure 1. 

Initially, our search across multiple databases yielded 322 records. These records underwent a 

multi-stage screening process involving the removal of duplicates and assessment against 

predefined inclusion and exclusion criteria. These criteria were specifically designed to focus on 

human studies investigating the interplay between genetic susceptibility and exposure to the 

primary traffic-related air pollutants of interest (PM2.5, PM10, NO2, and NOx) in relation to health 

outcomes. Studies that did not meet these specific criteria, such as those focusing on other 

pollutants, animal models, or lacking investigation of genetic factors, were excluded at various 

stages of the PRISMA-ScR process. 

Therefore, the final selection of 16 articles represents the body of evidence that directly addressed 

our research question with the specified focus and methodological rigor. This focused approach, 

while resulting in a limited number of studies, allowed for a more in-depth and targeted synthesis 

of the gene-environment interactions related to these key pollutants, which is a central aim of this 

review. 

11. Multi-omics and ML discussion not well supported by the data. 

Response: 

We appreciate the reviewer's point regarding the speculative nature of the discussion on multi-

omics and machine learning in the context of our data selection process. As this is a scoping review 

of 16 articles focused on the existing literature regarding gene-environment interactions in air 



pollution and health, we acknowledge that none of the included studies explicitly employed multi-

omics or machine learning methodologies. 

Our intention in discussing these advanced technologies was not to present findings directly 

supported by the selected studies. Instead, we introduced them in the Introduction and Discussion 

sections (particularly Section 4.4) to highlight promising future directions for research in this field. 

These methodologies, while not yet widely adopted in the specific area covered by our review, 

hold significant potential for addressing the identified limitations in current research, such as the 

complexity of biological pathways and the need for more integrated data analysis. We now 

explicitly state that these technologies are not part of the data analysis in the included studies, 

and our discussion of them serves as future research directions. 

Therefore, our discussion of multi-omics and machine learning should be understood as a forward-

looking perspective on how the field might evolve, rather than a reflection of the methodologies 

used in the studies included in this scoping review. We have revised the relevant sections to further 

clarify this distinction and emphasize that these technologies are presented as potential tools for 

future research to build upon the current evidence base. 

12. Important details relegated to supplementary materials. 

Response: 

We appreciate the reviewer's feedback regarding the clarity of the main tables and the concern 

about critical details being relegated to the supplementary materials, which could limit their 

accessibility. In response to this important point, we have taken the following steps to improve the 

manuscript: 

 Moved Key Information to Main Text: We have carefully reviewed the supplementary 

materials and moved essential details, such as [sebutkan contoh spesifik jika ada, misalnya: 

detailed gene-environment interaction findings, specific characteristics of the study 

populations, or key methodological variations], directly into the main tables or incorporated 

them within the relevant sections of the main text. 

 Enhanced Referencing: We have also ensured that the main text includes clear and direct 

references to any remaining supplementary materials, guiding the reader to specific tables or 

sections when more granular data or detailed information is necessary. 

 Clarification on Supplementary Tables: We would like to clarify that some detailed 

information, particularly those that are extensive and could potentially disrupt the flow and 

readability of the main article (such as the comprehensive breakdown of methodological 

quality assessment and the detailed overview of testing methods and multiple testing 

correction), were initially placed in the Supplementary Materials to maintain the focus and 

clarity of the main text. The density of data in these tables necessitated the use of a 

landscape layout and a slightly reduced font size to ensure optimal presentation and 

readability. Presenting this level of detailed methodological information in the main text 

would have disrupted the flow of results and discussion, making the article less accessible 

to the reader. 



 Addition of Two New Tables: To further enhance the clarity and accessibility of this 

information, we have now included two new tables in the main manuscript: Table 1, 

"Summary of Methodological Quality Assessment of the Included Studies Based on Study 

Design," and Table 2, "Overview of Formal and Informal Testing Methods, Interaction 

Type, and Multiple Testing Correction in Gene–Environment Interaction Studies." These 

tables provide a concise and structured overview of critical methodological aspects that support 

and elaborate on the findings discussed in the main text. 

Our aim with these revisions is to ensure that the most critical information is readily accessible 

within the main body of the manuscript, thereby improving readability and facilitating a 

comprehensive understanding of our findings. We believe this addresses the reviewer's concern 

about the accessibility of important details. 

13. Variability in study quality is not sufficiently discussed. 

Response: 

We appreciate the reviewer's insightful comment regarding the variability in data quality across 

the included studies. We acknowledge that the 16 studies selected through our systematic screening 

and selection process, guided by the PRISMA-ScR framework, exhibit some heterogeneity in their 

study designs, exposure assessment methods, and genetic analysis approaches.  

We acknowledge these limitations and have taken the following steps to address them in the revised 

manuscript: 

 Acknowledging Data Quality Variability: We have added a brief paragraph in the Methods 

section (Section 3) and expanded the Limitations section (Section 4.4) to explicitly 

acknowledge the heterogeneity in study design, exposure assessment methods, and genetic 

analysis approaches across the 16 included studies. We have also briefly discussed how this 

variability might influence the interpretation of our findings. 

 Addressing Lack of Diversity: We concur with the reviewer on the importance of including 

more diverse ethnic and socioeconomic populations in studies of air pollution and genetic 

susceptibility. We have now added a specific point in the Limitations section (Section 4.4) 

highlighting this underrepresentation in the reviewed literature and emphasizing the need for 

future research to prioritize the inclusion of diverse populations to enhance the generalizability 

of findings across different demographic groups. 

 Discussing Gene-Environment Correlations (GEC): We agree that addressing potential 

gene-environment correlations is crucial for a comprehensive understanding of the observed 

associations. We have added a paragraph in the Discussion section (Section 4.4) to discuss the 

potential role of GEC in shaping the observed associations between air pollution, genetic 

susceptibility, and health outcomes. We also call for future studies to employ methodologies 

that can disentangle GEC from true gene-environment interactions. 

By explicitly acknowledging these limitations and outlining where these points have been 

addressed in the revised manuscript, we aim to provide a more transparent and comprehensive 

assessment of the current state of research in this field. We believe these additions strengthen the 

discussion and provide valuable directions for future research. 



14. Need for inclusion of more diverse ethnic and socioeconomic groups. 

Response: 

We concur with the reviewer on the critical importance of including studies involving more diverse 

ethnic and socioeconomic populations in research on air pollution and genetic susceptibility. We 

acknowledge that the current body of literature, as reflected in the 16 studies included in our 

review, has limitations in this regard. This underrepresentation of certain populations hinders the 

generalizability of findings and potentially overlooks important variations in susceptibility across 

different demographic groups. 

We have explicitly addressed this limitation in the Discussion section (Section 4.4), emphasizing 

the urgent need for future research to prioritize the inclusion of more diverse ethnic and 

socioeconomic populations. We suggest that future studies should actively strive to recruit 

participants from a wider range of backgrounds to provide a more comprehensive understanding 

of the complex interplay between genetics, environmental exposures, and health outcomes across 

different population segments. We believe that addressing this gap is essential for advancing 

equitable and effective public health interventions. 

15. Emerging technology section (AI, multi-omics) needs expansion. 

Response: 

We thank the reviewer for this suggestion. We agree that expanding the discussion on emerging 

technologies such as AI and multi-omics could further strengthen the manuscript by highlighting 

their potential to advance the field of gene-environment interaction research in air pollution. 

In the revised manuscript, we have expanded Section 4.4 (Limitations and Future Research 

Directions) to provide a more detailed elaboration on how AI, machine learning, and multi-omics 

can be integrated into future studies. This expanded section now includes: 

 More specific examples of how these technologies can be applied to improve exposure 

modeling, identify complex gene-environment interactions, and enhance risk prediction in the 

context of air pollution-related health outcomes. 

 A discussion of the potential benefits of integrating different omics layers (e.g., genomics, 

transcriptomics, epigenomics, proteomics) with advanced analytical techniques like machine 

learning to gain a more comprehensive understanding of biological pathways. 

 Brief mention of recent advancements and relevant studies (if applicable and not already 

extensively cited elsewhere) that illustrate the application of these technologies in 

environmental health research or related fields. 

We believe this expanded discussion in Section 4.4 now provides a more robust perspective on the 

future directions of research and the potential role of emerging technologies in addressing the 

complexities of gene-environment interactions in air pollution. 

16. Ethical issues surrounding genetic screening should be briefly discussed. 

Response: 

We appreciate the reviewer's important suggestion to briefly discuss the ethical issues surrounding 

genetic screening for public health purposes. We agree that this is a crucial consideration as the 



field of gene-environment interaction research advances and potential applications for public 

health emerge. 

In the revised manuscript, we have added a brief paragraph to Section 4.4 (Limitations and Future 

Research Directions) to address these ethical considerations. This paragraph includes a discussion 

of key aspects such as: 

 Data privacy and security: The need to protect sensitive genetic information. 

 Informed consent: Ensuring individuals understand the implications of genetic screening and 

provide voluntary consent. 

 Potential for discrimination: Addressing concerns about genetic discrimination in areas like 

employment or insurance. 

 Equitable access and implementation: Considering how genetic screening programs can be 

implemented fairly across different populations and socioeconomic groups. 

 Potential for misuse of genetic risk profiling: Highlighting the importance of responsible 

interpretation and application of genetic risk information. 

We believe this brief discussion in Section 4.4 now acknowledges the ethical dimensions of 

applying genetic information in public health and provides a more comprehensive perspective on 

the future implications of this research area. 

17. Reference list should be expanded. 

Response: 

We appreciate the reviewer's suggestion to expand the reference list with additional relevant and 

representative articles from the field. We agree that a more comprehensive list of references will 

further strengthen the manuscript by providing broader context and supporting evidence for our 

synthesis and discussion. 

In the revised manuscript, we have taken the following steps to expand the reference list: 

 Conducted further literature searches: We have performed additional searches using relevant 

keywords and exploring the bibliographies of the included studies and other key articles in the 

field to identify pertinent publications that may have been missed in our initial search.  

 Included recent and influential articles: We have focused on incorporating more recent 

studies that have significantly contributed to the understanding of gene-environment 

interactions in air pollution and health, as well as influential articles that provide foundational 

knowledge in this area. 

 Ensured representation across key themes: We have aimed to include references that cover 

the key themes discussed in our review, such as specific pollutants, genetic susceptibility 

pathways (e.g., oxidative stress, inflammation, epigenetics), methodological considerations, 

and implications for public health and precision medicine. 

We believe that the expanded reference list now provides a more comprehensive and up-to-date 

overview of the relevant literature, further supporting the rigor and depth of our review.  

 



Thank you once again for the constructive feedback provided by Reviewer 2. We have 

implemented all the suggested revisions and believe that the manuscript is now substantially 

stronger. We look forward to the editor's decision. 

Kind regards, 

 

Dr. Hari Krismanuel 

hari_krismanuel@trisakti.ac.id 
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