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Abstract: Air pollution, comprising a complex mixture of gaseous and particulate pollutants,
remains a major global health concern that disproportionately affects vulnerable populations. In this 
scoping review, we aim to systematically investigate the role of genetic susceptibility in health
outcomes associated with exposure to air pollution, with a particular emphasis on fine particulate
matter (PM2.5), particulate matter (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx); key
pollutants consistently linked to adverse health effects. By exploring the gene-environment
interactions underlying air pollution-related conditions, this review offers new insights into how
genetic factors may modulate individual responses to air pollutants and their implications for
precision health. Analyzing 16 peer-reviewed studies published in the last decade, we highlight
genetic markers and pathways involved in regulating oxidative stress, inflammation, and DNA repair,
which are thought to influence individual variation in responses to PM2.5, PM10, NO2, and NOx.
Although none of the included studies entailed multi-omics or machine learning approaches, we 
identified these tools as promising directions for future research aimed at elucidating mechanistic
pathways and informing personalized strategies. These techniques could significantly improve the
understanding of gene-environment interactions, and are suggested as emerging methodologies for
future studies. However, the scarcity of longitudinal studies and the underrepresentation of diverse
populations limit the generalizability of the current findings. Addressing these gaps will be essential
for advancing research, improving environmental health equity, and informing policy in the context
of air pollution and genetic susceptibility.
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Figure 1. Graphical abstract. 

Figure 1 illustrates the conceptual pathway from the interaction of genetic susceptibility (DNA 
helix) and air pollution exposure (smokestacks), which leads to an increased disease risk in 
individuals. The green pathway highlights how precision health strategies, tailored to an individual s 
unique genetic and environmental profile, can serve as a targeted solution to mitigate this risk. 

1. Introduction 

Air pollution remains one of the most significant environmental risk factors worldwide, 
contributing to an estimated 7 million premature deaths annually, according to the World Health 
Organization [1 3]. Among the most harmful pollutants are fine particulate matter (PM2.5), coarse 
particulate matter (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), which are consistently 
associated with adverse health outcomes [4 6]. 

PM2.5 and PM10 refer to airborne particles with aerodynamic diameters  and  micrometers, 
respectively. These particles can penetrate deep into the respiratory tract, triggering oxidative stress, 
inflammation, endothelial dysfunction, and systemic effects beyond the lungs. NO2 and NOx, primarily 
emitted from vehicle exhaust and industrial processes, contribute to airway inflammation, impaired lung 
function, and increased cardiovascular risk. Exposure to these pollutants has been linked to the 
development and exacerbation of chronic diseases such as asthma, chronic obstructive pulmonary disease 
(COPD), ischemic heart disease, stroke, and neurodegenerative conditions [4 6]. 
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Recent fine-scale modeling and exposure assessment studies, such as that of Nisticò et al. (2025), 
emphasize the importance of high-resolution pollution data in identifying vulnerable populations and 
guiding local-level interventions. Understanding the complex interplay between environmental 
exposures and individual susceptibility, particularly at the molecular level, is crucial for developing 
targeted public health interventions. This necessitates the integration of detailed environmental 
monitoring data with comprehensive health surveillance and molecular research, including the 
investigation of genetic factors that may modify an individual s response to air pollution [7]. 

Genetic susceptibility to air pollution refers to the predisposition of certain individuals to experience 
heightened adverse health effects due to specific genetic variations. Genes involved in oxidative stress 
pathways play critical roles in neutralizing reactive oxygen species generated by pollutants like fine 
particulate matter (PM2.5). Understanding these genetic mechanisms is crucial for explaining why some 
populations exhibit increased vulnerability to air pollution-related diseases [8 10]. 

Air pollution remains a major global health challenge, imposing significant health burdens worldwide. 
Primary pollutants, such as PM2.5, nitrogen dioxide (NO2), ozone, and volatile organic compounds (VOCs), 
are widely acknowledged as key contributors to diseases across multiple systems. However, while 
environmental exposures are well-documented as primary drivers, genetic variations significantly 
modulate individual susceptibility, disproportionately affecting vulnerable populations. Despite its 
importance, the interaction between genetic predisposition and pollutant exposure remains underexplored, 
leaving critical gaps in our understanding of the mechanisms driving health disparities [11 13]. 

Recent advancements in genetic research have illuminated how genetic variants influence 
sensitivity to oxidative stress, inflammation, DNA damage, and epigenetic modifications, all of which 
are implicated in pollution-related diseases. However, significant challenges persist, including 
inconsistent findings across studies due to methodological differences and the underrepresentation of 
diverse populations in genetic analyses. Genome-wide association studies (GWAS) have identified 
promising genetic markers, yet these findings often lack generalizability due to limited population 
diversity and a lack of comprehensive models that integrate genetic and environmental factors [14,15]. 

To address these gaps, emerging methodologies such as multi-omics integration and machine 
learning are increasingly recognized as powerful tools to uncover complex gene-environment 
interactions. While these techniques were not employed in the studies included in this review, they 
hold great promise for future research aimed at identifying mechanistic pathways and advancing 
precision health strategies [16 19]. 

In this review, we address these gaps by systematically analyzing 16 peer-reviewed studies 
published over the past decade to provide a detailed synthesis of the interplay between genetic and 
environmental factors in determining health risks associated with air pollution. By focusing on 
oxidative stress, inflammation, and epigenetic pathways, we uniquely highlight genetic mechanisms 
that modulate susceptibility to pollution-related diseases. We also identify critical research gaps, such 
as the reliance on cross-sectional designs, and propose future directions to improve the robustness and 
generalizability of findings. 

We further aim to outline a novel framework for advancing precision health strategies by 
integrating genetic insights with emerging methodologies such as multi-omics, machine learning, and 
longitudinal study designs. By doing so, we seek to inform public health policies aimed at mitigating 
air pollution-related health risks, particularly in vulnerable populations. 
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A detailed overview of the included studies, including author, year, location, study design, 
population and sample size, exposure variables, health outcomes, and age range, is presented in 
Supplementary Table S1. This table provides a comprehensive summary of the key characteristics of 
the included studies, enabling comparison and the identification of research gaps. 

Despite the growing body of epidemiological research, the underlying biological mechanisms of 
gene-environment (GxE) interactions remain complex and not fully understood. In addition to 
epidemiological studies, mechanistic data from in vivo and organoid models also provide crucial 
insights into the biological pathways underlying GxE interactions. Researchers have demonstrated how 
such models can elucidate the cellular responses to environmental exposures in genetically predisposed 
individuals [8,20,21], which are discussed further in the Discussion section. 

2. Materials and methods 

2.1. Protocol and registration  

This scoping review was conducted following the methodological framework proposed by Arksey 
and O Malley (2005) [22] and further elaborated by Levac et al. (2010) [23]. Recognizing the 
importance of transparency and methodological rigor for evidence synthesis, the protocol for this 
scoping review was retrospectively registered with the Open Science Framework (OSF) on May 22, 
2025. The public URL for this registration is https://osf.io/3r8ap/ and its Registration ID is 3r8ap. This 
protocol is publicly available on the OSF platform [24]. 

2.2. Search strategy 

To ensure transparency and credibility, a systematic literature search was conducted across 
multiple databases, including PubMed, Google Scholar, and ResearchGate to identify relevant studies. 
The search was limited to articles published in English between January 1, 2015, and December 31, 
2024. The following search strategy was used: 

 PubMed: ( air pollution  [MeSH Terms] OR air pollution  [Title/Abstract] OR air 
pollutants  [Title/Abstract]) AND ( genetic susceptibility  [MeSH Terms] OR genetic polymorphism  
[Title/Abstract] OR oxidative stress  [MeSH Terms] OR oxidative stress  [Title/Abstract]) AND 
( disease risk  [Title/Abstract] OR health outcomes  [Title/Abstract]). 

 Google Scholar: air pollution  AND ( genetic susceptibility  OR oxidative stress ) AND 
( disease risk  OR health outcomes ). 

 ResearchGate: ( air pollution  OR air pollutants  OR pencemaran udara ) AND ( genetic 
susceptibility  OR genetic predisposition  OR oxidative stress  OR stress oksidatif ) AND 
( disease risk  OR health outcomes  OR dampak kesehatan ). 

 DOAJ: air pollution  AND ( genetic susceptibility  OR oxidative stress ) AND ( disease 
risk  OR health outcomes ). 

The following filters were applied: Human studies, English language, publication date (2015
2024), study type (including review, meta-analysis, randomized controlled trial, cohort study, case-
control study, and cross-sectional study), and peer-reviewed status. 
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2.3. Study selection process 

Articles were screened for relevance using a two-step process: (1) Title and abstract screening, 
followed by (2) full-text review. From this systematic search, 16 peer-reviewed articles were selected 
based on their relevance to the topic. Data from the selected articles were then systematically extracted. 
Data extraction prioritized information on genetic markers, their roles in modulating susceptibility, 
and their associations with health effects induced by air pollution. The data synthesis employed a 
qualitative approach to integrate findings from these studies, focusing on the influence of genetic 
factors on susceptibility to air pollution and the interaction between genetic variations and 
environmental exposures. This enabled the identification of patterns and relationships between genetic 
variations and health risks associated with air pollution, providing a comprehensive perspective on 
how genetics influences responses to environmental pollutants [25 27]. 

To ensure the transparency and reproducibility of this review, the study selection process was 
guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
extension for Scoping Reviews) framework. A PRISMA-ScR flow diagram was used to illustrate the 
process of study selection, and adherence to PRISMA guidelines was maintained throughout the data 
extraction and synthesis phases [28 30].  

Step 1: Identifying Studies. Relevant studies were initially identified through a comprehensive 
search across multiple databases, including PubMed, Web of Science, and Google Scholar. A 
combination of keywords like air pollution,  genetic susceptibility,  oxidative stress,  and disease 
risk  was used to locate pertinent articles. These searches aimed to capture a broad range of studies 
related to genetic factors and their interactions with environmental exposures.  

The search results were carefully reviewed, and studies meeting the predefined inclusion criteria 
were selected for further assessment. Studies that did not meet the inclusion criteria, were not 
substantially relevant to the research topic, or contained duplicated references were excluded. 

This step ensured the selection of studies that contribute meaningful and relevant insights to the 
review, avoiding redundancy and maintaining the quality and integrity of the synthesis [28 30].  

Step 2: Study Screening. The next step involved screening the identified studies based on 
predefined inclusion and exclusion criteria. Two reviewers independently screened the titles and 
abstracts of the studies retrieved from the initial search. Studies were selected for inclusion if they met 
the following criteria: 

 Focused on genetic susceptibility to air pollution. 
 Provided explicit methodologies. 
 Offered quantitative or mechanistic insights into genetic-environment interactions. 

Studies that were excluded at this stage included those not published in English, non-peer-
reviewed articles, conference abstracts, and reviews that did not directly address genetic susceptibility 
to air pollution. The remaining articles underwent a full-text review to confirm their eligibility before 
being included in the final analysis [28 30].  

Step 3: Data Extraction. Data were extracted from the selected studies using a standardized 
extraction form. The extraction process involved collecting detailed information on genetic markers, 
biomarkers, health outcomes related to air pollution exposure, and other relevant details like study 
design, sample size, and key findings. The data were then synthesized qualitatively to identify key 
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themes, patterns, and relationships across the studies [28 30].  
Step 4: Data Synthesis. Data synthesis involved integrating findings from the selected 

studies to draw conclusions about the influence of genetic factors on susceptibility to air pollution. 
This synthesis aimed to provide a comprehensive understanding of the mechanisms underlying 
genetic-environment interactions and their implications for disease risk. The integration of 
findings was guided by thematic analysis and narrative synthesis techniques, emphasizing 
consistency and comparability across studies [28 30].  

2.4. Inclusion and exclusion criteria 

Studies were included in this scoping review if they met the following criteria:  

2.4.1. Inclusion criteria 

2.4.1.1. Study design 

Studies of any design that investigated the association between air pollution exposure (e.g., PM2.5, 
PM10, NO2, and NOx) and health outcomes in relation to genetic susceptibility were included. This 
encompasses observational studies (cohort, case-control, cross-sectional), interventional studies (e.g., 
randomized controlled trials, and quasi-experimental studies), and Mendelian Randomization studies. 
Scoping reviews are particularly suitable for mapping evidence on complex and heterogeneous topics, 
as outlined by Tricco et al. (2018) [28], Page et al. (2021) [29], and Page and Moher (2017) [30]. The 
focus was on studies examining various genetic factors influencing susceptibility to air pollution than 
specific genetic polymorphisms.  

2.4.1.2. Population 

Human participants of any age, sex, or ethnicity. Studies focusing on specific subpopulations (e.g., 
children, elderly, and individuals with specific pre-existing conditions) were also included. 

2.4.1.3. Exposure 

Measurable exposure to PM2.5, PM10, NO2, or NOx. Studies must provide quantitative or 
qualitative data on one or more of these pollutants. Exposure assessment methods should be clearly 
described (e.g., air quality monitoring data, self-reported exposure, and residential proximity to 
pollution sources). 

2.4.1.4. Health outcomes 

Any health outcomes relevant to the research question, including but not limited to respiratory 
diseases (e.g., asthma, and COPD), cardiovascular diseases, mental health effects, pregnancy complications, 
and skin conditions. Studies must report specific health outcomes and diagnostic criteria used.  



922 

AIMS Public Health  Volume 12, Issue 3, 916 951. 

2.4.1.5. Gene-environment interaction (primary and essential criterion) 

Studies must present statistical analyses that directly test for a gene-environment interaction (e.g., 
using interaction terms in regression models, stratified analyses by genotype, interaction meta-
regression). Studies reporting only the major effects of air pollution or genetic associations separately 
were excluded. Studies that mention gene-environment interaction but did not perform formal 
statistical testing of the interaction were also excluded [8,31,32].  

2.4.2. Exclusion criteria 

Studies were excluded if they met any of the following criteria: 

2.4.2.1. Irrelevance to the topic 

o Studies that did not address the health effects of air pollution. 
o Studies that focused exclusively on pollutants other than PM2.5 (e.g., only NO2 or O3).  
o Studies addressing PM2.5 along with other pollutants were considered if PM2.5-specific 

information could be extracted. 
o Studies that entailed the environmental impact of air pollution but not human health effects. 
o Studies solely focused on interventions or policies to reduce air pollution without addressing 

genetic aspects. 

2.4.2.2. Lack of genetic focus 

o Purely epidemiological studies that measured only air pollution exposure and health outcomes 
without considering genetic factors. 

o In vitro or in vivo toxicological studies that did not investigate genetic variations or gene 
polymorphisms. 

2.4.2.3. Inappropriate publication type 

o Opinions, editorials, letters to the editor, and conference abstracts (unless the abstracts 
contained significant information not available in a full-text publication). 

o Books and book chapters (unless they contained relevant systematic reviews or meta-analyses). 
o Government or non-governmental organization reports (unless they contained significant data 

or analyses not available in peer-reviewed publications). 

2.4.2.4. Language and accessibility 

o Studies not published in languages accessible to the review team (e.g., English and Indonesian). 
o Studies for which full-text access could not be obtained after reasonable search efforts (e.g., 

through library databases or direct requests to authors). 
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2.4.2.5. Duplication 

o Studies published more than once (in which case, the most complete and recent version was 
included). 

2.4.2.6. Methodological concerns (with specific consideration for scoping reviews) 

o While scoping reviews generally do not assess the methodological quality of studies as 
rigorously as systematic reviews, studies with substantial methodological flaws (e.g., severely 
flawed study design or erroneous data analysis) could be excluded. This criterion was applied 
cautiously and transparently [33 34]. 

2.5. Data extraction and synthesis 

Data from included studies were extracted using a standardized data extraction form. The following 
information was extracted: Study characteristics (e.g., author, year, study design, and population), exposure 
assessment methods, genetic markers investigated, health outcomes assessed, and key findings related to 
gene-environment interactions. A detailed overview of these extracted data, presented in Supplementary 
Table S1, provides a comprehensive summary of the key characteristics of the included studies, enabling 
comparison and identification of research gaps. A narrative synthesis of the findings were then conducted 
to map the existing literature and identify key themes and research gaps [28 30,33,34].  

2.6. Quality assessment of included studies 

To strengthen the methodological rigor of our review, we conducted a formal quality appraisal of 
all 16 included full-text articles. Given the variety of study designs, we employed appropriate 
assessment tools tailored to each design type: 

 The 13 prospective cohort studies were assessed using the Newcastle-Ottawa Scale (NOS) [35]. 
 The 1 cross-sectional study was evaluated using a modified version of NOS tailored for cross-

sectional designs. 
 The 1 meta-analysis was assessed narratively using AMSTAR 2 criteria, which were widely 

accepted for systematic reviews and meta-analyses [36]. 
 The 1 molecular-epigenetic cohort study, although fundamentally prospective in design, was 

evaluated using the JBI Critical Appraisal Checklist for Cohort Studies due to its integration of 
biological, genetic, and epigenetic data [37]. 

3. Results 

A total of 322 records were identified through database searching (PubMed n = 100, Google 
Scholar n = 109, Research Gate n = 107, and DOAJ n = 7). After removing duplicates (n = 5), 315 
records underwent title and abstract screening. Of these, 283 were excluded as they did not meet the 
inclusion criteria (e.g., not focused on genetic susceptibility to air pollution, review articles, or non-
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human studies). A total of 35 full-text articles were assessed for eligibility, and 19 were further 
excluded due to methodological concerns (e.g., lack of a clear methodology, or focus on non-PM2.5 
pollutants), or lack of investigation of gene-environment interaction). Finally, 16 studies met all 
inclusion criteria and were included in this scoping review (Figure 2). 

 

Figure 2. PRISMA-ScR flow diagram. 

3.1. Study characteristics 

This scoping review included 16 studies investigating the interplay between genetic susceptibility and 
air pollution, particularly PM2.5, on various health outcomes. A diverse range of study designs were 
employed, including 1 cross-sectional study, 14 prospective cohort studies, 1 meta-analysis of cohort 
studies, and 1 Mendelian Randomization study. This heterogeneity in study design is typical in a scoping 
review, aiming to map the available evidence regardless of methodological rigor [38 53]. Only one study 
employed Mendelian Randomization analysis [54 56] as its core methodological approach. 

Most studies focused on adult populations, with a reported age range spanning from 37 to 73 
years. Geographically, the research was predominantly conducted in Europe (n = 12), with one 
study encompassing both Europe and North America (n = 1), and a smaller number conducted in 
Asia (n = 3). This geographical distribution highlights a potential gap in research from other 
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regions. Furthermore, 15 out of the 16 studies investigated the combined effects of particulate 
matter (PM2.5 and/or PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx). Only one study, 
Gruzieva et al. (2016) [38], focused solely on prenatal NO2 exposure. This pattern suggests that 
PM2.5 and NO2 are dominant environmental factors in the studies and highlights the need for further 
exploration of NO2 exposure, particularly in its isolated form, to better understand its role in 
genetic susceptibility to diseases [39 53]. 

PM2.5 exposure was the most commonly assessed air pollutant, primarily using air quality 
monitoring data (n = 16). It should be noted that some studies used multiple methods for exposure 
assessment. Some studies utilized land-use regression models to estimate PM2.5 exposure based on 
spatial data and environmental characteristics, while others employed self-reported questionnaires 
focusing on residential location and daily activities. For instance, Huang et al. (2021) [39] and Gao et 
al. (2023) [52] used land-use regression models within the UK Biobank to estimate individual 
exposures. Li et al. (2023) [41] used land-use regression models in China. Air quality monitoring data 
typically involves measurements taken at fixed monitoring stations, providing information on ambient 
air pollution levels in specific locations. Land-use regression models, on the other hand, incorporate 
spatial data such as traffic density, land use types, and meteorological factors to create more refined 
estimates of pollution exposure at a finer spatial scale [39,41,52]. These methods have varying degrees 
of accuracy and may introduce different types of measurement error. 

Operational Definitions of Variables: PM2.5 was most often defined as the annual average 
concentration at the participants  residential address. However, some studies used different averaging 
periods (e.g., 24-hour average) or considered specific sources of PM2.5 (e.g., traffic-related PM2.5). 
Health outcomes varied across studies, encompassing cardiovascular diseases (e.g., myocardial 
infarction, stroke), respiratory diseases (e.g., chronic obstructive pulmonary disease (COPD), lung 
cancer), and metabolic disorders (e.g., type 2 diabetes). This variability in outcome definitions should 
be considered when interpreting the findings. 

Exposure Measurement Methods (Further Details): Studies using air quality monitoring data 
often linked participants  residential addresses to the nearest monitoring station. Land-use regression 
models incorporated geographic information system (GIS) data on traffic, land use, and topography. 
Self-reported questionnaires typically asked participants about their residential history, time spent 
outdoors, and proximity to pollution sources. 

Justification for Study Selection: Mendelian Randomization studies were included because they 
provide stronger evidence for causal inference using genetic variants as instrumental variables, reducing 
the potential for confounding and reverse causation. Studies employing other designs, such as cohort 
studies, were included to provide a broader overview of the existing evidence base [49,54 56]. 

Information on sex was consistently reported, with approximately equal representation of men 
and women across the studies. However, reporting on other demographic characteristics, such as 
ethnicity and socioeconomic status (SES), was less consistent. Where reported, SES was often 
categorized based on indicators such as education level, occupation, or income. Some researchers also 
considered other participant characteristics such as smoking status and pre-existing health conditions 
as potential confounders. 

Interventions or Moderating Factors: Several studies investigated potential moderating factors 
such as genetic polymorphisms (as mentioned previously), dietary intake, and physical activity. For 
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instance, Huang et al. (2021) examined whether the association between PM2.5 and lung function was 
modified by genetic variations in antioxidant enzymes [39]. 

Sixteen studies entailed the interactions of PM2.5, PM10, NO2, and NOx on various gene 
polymorphisms associated with increased disease risk. These studies often examined specific gene 
variants known to be involved in pathways related to inflammation, oxidative stress, or DNA repair, 
which are mechanisms through which air pollution is thought to exert its effects. Mendelian 
Randomization studies were included to provide stronger causal evidence for the relationship between 
air pollution and health outcomes. Mendelian Randomization utilizes genetic variants as instrumental 
variables to assess the causal effect of an exposure (e.g., air pollution) on an outcome (e.g., disease 
risk), minimizing the influence of confounding factors [49,54 56]. Only one meta-analysis of cohort 
studies specifically examined the relationship between NO2 exposure during pregnancy and cord blood 
DNA methylation. This meta-analysis synthesized data from multiple cohort studies to investigate the 
potential impact of prenatal NO2 exposure on epigenetic modifications in newborns [39]. 

Brief Summary of Key Findings: Overall, the studies consistently suggested a positive association 
between long-term exposure to air pollutants, particularly PM2.5, and adverse health outcomes, including 
cardiovascular and respiratory diseases. Some studies also found evidence of associations with metabolic 
disorders and other health outcomes. Researchers investigating gene-environment interactions provided 
evidence that genetic susceptibility can modify the effects of air pollution [38 53]. 

Some researchers used genotyping to assess genetic susceptibility and data from air quality 
monitoring stations to measure PM2.5 exposure. The findings of the included studies generally 
suggested a positive association between long-term exposure to air pollutants, particularly PM2.5, and 
adverse health outcomes [38 53]. 

A detailed overview of the included studies, including author, year, location, study design, 
population and sample size, exposure variables, health outcome, and age range, is presented in 
Supplementary Table S1. 

To assess the methodological rigor of the included studies, a formal quality appraisal was 
conducted using tools appropriate for each study design, as detailed in the Methods section (see Section 
2.6). A comprehensive summary of the methodological quality assessment for all 16 included full-text 
articles is presented in Table 1. The results showed that most studies met high-quality criteria, 
supporting the reliability of the extracted findings. For a detailed breakdown of individual study scores 
and their respective quality assessments, please refer to Supplementary File S2. 

3.1.1. Overview and categorization of health outcome 

The studies in this review report a diverse range of health outcomes associated with air pollution 
exposure, involving both physical and mental health conditions across different populations. These 
outcomes span multiple disease categories, highlighting the broad impact of pollutants such as PM2.5, 
PM10, NO2, and NOx [38 53]. 

To facilitate analysis, the included studies were categorized into seven primary groups: Respiratory 
diseases, cardiovascular diseases, neurological and psychiatric disorders, cancers, autoimmune and 
inflammatory conditions, and other diseases. Cardiovascular and neurological conditions were the most 
frequently studied, with consistent associations reported for PM2.5, PM10, NO2, and NOx exposure. Notable 
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findings include stronger associations of air pollution exposure with coronary artery disease (Fu et al., 2023; 
Li et al., 2022) and major depressive disorder (Li et al., 2023) associated with these pollutants [41,42,48]. 
Additionally, autoimmune conditions such as inflammatory bowel disease (Chen et al., 2024) were linked 
to long-term exposure to PM2.5 and NOx [49]. 

Table 1. Summary of methodological quality assessment of the included studies based on 
study design. 

No. Study (First 
Author, Year) 

Study Design Quality 
Assessment Tool 

Score/Result Notes 

1 Gruzieva et al., 
2016 [38] 

Meta-analysis 
(Cohort Data) 

AMSTAR 2 High Quality Evaluated narratively using 
AMSTAR 2 

2 Huang et al., 2021 
[39] 

Prospective Cohort NOS 9/9 UK Biobank, lung cancer 

3 Ma et al., 2024 [40] Prospective Cohort NOS 9/9 UK Biobank, AAA 
4 Li et al., 2023 [41] Prospective Cohort NOS 9/9 UK Biobank, MDD 
5 Fu et al., 2023 [42] Prospective Cohort NOS 9/9 Based on UK Biobank, 

CAD 
6 Ma et al., 2024 [43] Prospective Cohort NOS 9/9 Stroke, robust adjustment 
7 Liu et al., 2024 [44] Prospective Cohort NOS 9/9 Schizophrenia 
8 Huang et al., 2024 

[45] 
Prospective Cohort NOS 9/9 Parkinson s disease 

9 Wang et al., 2022 
[46] 

Prospective Cohort NOS 9/9 COPD + interaction 
lifestyle 

10 Rhee et al., 2024 
[47] 

Prospective Cohort NOS 9/9 Cardiovascular disease 

11 Li et al., 2022 [48] Prospective Cohort NOS 9/9 PM2.5 and CAD 
12 Chen et al., 2024 

[49] 
Molecular-
Epigenetic Cohort 

JBI Checklist 
(Cohort) 

High Quality Epigenetic focus, UK 
Biobank based 

13 Wu et al., 2024 [50] Prospective Cohort NOS 9/9 Psoriasis 
14 Zhang et al., 2024 

[51] 
Cross-Sectional Modified NOS 

(Cross-Sectional) 
9/10 High quality cross-sectional 

design 
15 Gao et al., 2023 

[52] 
Prospective Cohort NOS 9/9 Depression and anxiety 

16 Zhang et al., 2024 
[53] 

Prospective Cohort NOS 9/9 Dementia 

Note: Abbreviations: AMSTAR 2, Assessment of Multiple Systematic Reviews-2 (A Measurement Tool to Assess 
Systematic Reviews 2); NOS, Newcastle-Ottawa Scale; JBI, Joanna Briggs Institute; AAA, Abdominal Aortic Aneurysm; 
MDD, Major Depressive Disorder; CAD, Coronary Artery Disease; COPD, Chronic Obstructive Pulmonary Disease; and 
PM2.5, Particulate Matter with a diameter  2.5  

Having established the characteristics of the included studies and the methods used to assess 
exposure and outcomes, in the following section, we detail the methods used to assess genetic 
susceptibility and pollutant exposure before presenting the key findings related to gene-
environment interactions [38 53]. 

3.1.1.1. Respiratory diseases 

Several studies focus on respiratory conditions, particularly in relation to particulate matter and 
nitrogen oxides: 
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 Wang et al. (2022): Chronic obstructive pulmonary disease (COPD) associated with PM2.5, 
PM10, NO2, and NOx [46]. 

3.1.1.2. Cardiovascular diseases 

Air pollution exposure is strongly linked to various cardiovascular conditions: 
 Ma et al. (2024): Abdominal aortic aneurysm [40]. 
 Fu et al. (2023): Coronary artery disease (CAD) [42]. 
 Rhee et al. (2024): General cardiovascular diseases [47]. 
 Li et al. (2022): Coronary artery disease (CAD) [48] 

3.1.1.3. Neurological and psychiatric disorders 

Mental health and cognitive impairments are key areas of concern: 
 Li et al. (2023): Major depressive disorder [41]. 
 Liu et al. (2024): Schizophrenia [44]. 
 Zhang et al. (2024): Speed processing deficits [51]. 
 Gao et al. (2023): Depression and anxiety [52]. 
 Zhang et al. (2024): Dementia [53]. 

3.1.1.4. Cancer 

A study reports a significant association between air pollution and lung cancer: 
 Huang et al. (2021): Lung cancer [39]. 

3.1.1.5. Autoimmune and inflammatory conditions 

 Chen et al. (2024): Ulcerative colitis [49]. 
 Wu et al. (2024): Psoriasis [50]. 

3.1.1.6. Epigenetic changes 

Air pollution exposure, particularly in early life, has been shown to cause epigenetic changes, 
such as differential DNA methylation: 

 Gruzieva et al (2016): Differential offspring DNA methylation at CpG site in cord blood 
newborns [38]. 

3.1.1.7. Other diseases 

Several studies have also linked air pollution to other health conditions: 
 Ma et al. (2024): Stroke [43]. 
 Huang et al. (2024): Parkinson s disease [45]. 
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3.1.2. Methods of exposure and outcome assessment 

In this scoping review, the methods used to assess air pollution exposure and health outcomes 
varied across studies, reflecting the diversity of study designs and populations. 

3.1.2.1. Exposure assessment 

In this review, we categorized the approaches used to assess exposure to air pollution into three 
main groups: 

1) Air Quality Monitoring and Dispersion Models: Exposure estimated from fixed-site 
monitoring data or government-provided dispersion models (e.g., DEFRA in the UK). These methods 
provide spatially resolved estimates of pollutants such as PM2.5  [40,44,51].  

2) Land-Use Regression Models: Several researchers (e.g., Huang et al., 2021) employed land-
use regression (LUR) models to estimate individual-level exposures to air pollution. LUR models use 
spatial data on environmental and urban characteristics, such as traffic density, land use, and 
meteorological factors, to predict exposure to pollutants at a finer geographic scale. These models can 
provide more localized estimates of exposure, accounting for variation in pollution levels that may not 
be captured by monitoring stations [39,41,52]. 

3) Self-Reported Questionnaires: A few researchers included in this review also used self-
reported questionnaires, asking participants about their residential history, time spent outdoors, and 
proximity to pollution sources. This method, while less accurate than air quality monitoring or LUR 
models, enabled researchers to estimate individual exposure based on participants  reported behaviors 
and locations [50]. 

4) Satellite-based Approaches: A limited number of studies estimated exposure using 
satellite-derived data, such as aerosol optical depth (AOD), often combined with meteorological 
and land-use variables through machine learning models to provide high-resolution estimates of 
ambient PM2.5 concentrations [48]. 

3.1.2.2. Outcome assessment 

1) Health Outcomes: A broad range of health outcomes were assessed across the studies, 
including respiratory diseases (e.g., COPD, and asthma), cardiovascular diseases (e.g., coronary artery 
disease, and myocardial infarction), neurological conditions (e.g., dementia, and depression), 
metabolic disorders (e.g., type 2 diabetes), and autoimmune/inflammatory diseases (e.g., ulcerative 
colitis). Each study defined and measured these outcomes differently, with some relying on clinical 
diagnoses, hospital records, or self-reported health conditions [38 53]. 

2) Objective Health Measurements: Many researchers used objective health measures, such 
as lung function tests, blood pressure readings, or biomarkers, to assess the impact of air pollution on 
various health conditions. These measurements provided more precise and quantifiable data compared 
to self-reported health information. 
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3) Gene-Environment Interactions: A subset of studies explored how genetic 
susceptibility modifies the impact of air pollution on health outcomes. These studies integrated 
genetic data (e.g., from genotyping or epigenetic analyses) with environmental exposure estimates. 

Details of methodological examination of gene environment interactions are provided in 
section (3.1.3). 

3.1.3. Gene environment interaction analysis 

To enhance transparency and methodological rigor, we examined how the included studies 
assessed gene environment (GxE) interactions. All 16 studies investigated the modifying role of 
genetic susceptibility on the association between air pollution exposure and health outcomes. However, 
the methodological approaches varied. 

Several researchers employed Cox regression models to estimate hazard ratios and to evaluate 
interaction effects [39 46,48,49,53]. Among these, a subset formally tested additive interaction 
metrics, such as the Relative Excess Risk due to Interaction (RERI) and Attributable Proportion 
(AP), which provide insight into the biological synergy between genetic risk and environmental 
exposure [38,39,41,42,45,48,52]. Multiplicative interactions, expressed through interaction 
coefficients in Cox models, were also reported in some studies. 

Only a subset of researchers formally tested gene environment interactions, either through 
additive metrics (e.g., RERI, and AP) or multiplicative interaction terms. Several studies (e.g., Fu 
et al. and Rhee et al.) reported combined effect estimates without direct interaction testing, which 
may limit interpretability. We have reflected these methodological distinctions in Supplementary 
Table S3. To support methodological clarity in future research, we encourage adherence to 
established guidelines for GxE analysis, including the use of formal interaction testing and 
transparent reporting of effect modification approaches. 

While most researchers did not apply formal multiple testing corrections (e.g., Bonferroni or false 
discovery rate), two studies, those by Gruzieva et al. (2016) and Zhang et al. (2024), did report 
correction procedures [38,53]. However, the lack of correction in most studies may limit the 
interpretability of interaction findings in the presence of multiple comparisons. This issue is 
particularly relevant given the large number of exposures and genetic markers tested, which increases 
the chance of false-positive results. 

A detailed summary of the interaction testing methods, effect sizes, p-values, and confidence 
intervals is provided in Supplementary Table S3. To improve visibility and address reviewer concerns, 
we have clarified key methodological features in this section and will consider integrating selected 
elements of Supplementary Table S3 into the main manuscript if appropriate. 

To complement Supplementary Table S3, which details the interaction testing methods used in each 
study, Table 2 summarizes key methodological characteristics of the included studies, focusing on the 
statistical approaches used to evaluate gene environment interactions, the type of interaction tested 
(multiplicative or additive), the significance of interaction terms (e.g., p-values), and the application of 
multiple testing corrections. This structured summary enhances methodological transparency and supports 
interpretation of the findings by distinguishing between formal and informal testing strategies. 
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Table 2. Overview of formal and informal testing methods, interaction type, and multiple 
testing correction in gene environment interaction studies. 

No Study Formal 
Interaction 

Informal 
Interaction 

Interaction 
Type 

Interaction 
Significance and 
Strength 

Multiple 
Testing 
Correction 

1 Gruzieva et 
al., 2016 [38] 

Not Available Narrative 
Synthesis 

Epigenetic Not reported 
(unclear) 

False 
Discovery Rate 
(FDR) 

2 Huang et al., 
2021 [39] 

Cox proportional 
hazard models, 
RERI, AP 

- Multiplicative 
Positive 
Additive 

Not reported 
(unclear) 

Not Reported 

3 Ma et al., 
2024 [40] 

Cox proportional 
hazard models, 
RERI, AP 

- Multiplicative 
Positive 
Additive 

Not reported 
(unclear) 

Not Reported 

4 Li et al., 2023 
[41] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio) 

Stratified 
Analysis 

Multiplicative PM2.5: p = 0.036 
PM10: p = 0.025 
NO2: p = 0.030 
(Significant) 
NOx: p = 0.080 
(Not Significant) 

Not Reported 

5 Fu et al., 2023 
[42] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio), 
RERI, AP 

Subgroup HR 
Comparison 
(by PRS) 

Multiplicative 
Positive 
Additive 

All p-interaction > 
0.05 (Not 
Significant) 

Not Reported 

6 Ma et al., 
2024 [43] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio), 
RERI, AP, Aalen 
Additive Hazard 
Model 

- Multiplicative 
Positive 
Additive 

Not reported 
(unclear) 

Not Reported 

7 Liu et al., 
2024 [44] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio) 

Stratified 
Analysis 

Multiplicative PM2.5: p = 0.48 
(Not Significan 
PM10: p = 0.79 
(Not Significant) 
NO2: p < 0.07  
(Not Significant) 

Not Reported 

8 Huang et al., 
2024 [45] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio) 

Stratified 
Analysis 

Multiplicative Not reported 
(unclear) 

Not Reported 

9 Wang et al., 
2022 [46] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio), 
RERI, AP 

- Multiplicative 
Positive 
Additive 

All p-interaction > 
0.05 (Not 
Significant) 

Not Reported 

10 Rhee et al., 
2024 [47] 

Not Reported Visual Trend 
and Stratified 
HR  

Descriptive 
only 

Not reported 
(unclear) 

Not Reported 

Continued on next page 
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No Study Formal 
Interaction 

Informal 
Interaction 

Interaction 
Type 

Interaction 
Significance and 
Strength 

Multiple 
Testing 
Correction 

11 Li et al., 2022 
[48] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio) 

Narrative 
Interpretation 

Multiplicative p-interaction < 
0.001 
(Strong 
Evidence) 

Not Reported 

12 Chen et al., 
2024 [49] 

Cox proportional 
hazard regression 
models (p-
interaction and 
Hazard Ratio), 
RERI, AP 

- Multiplicative 
Positive 
Additive 

p-interaction 
(multiplicative) = 
0.275 (Not 
Significant) 
p-interaction 
(additive) = 
0.00123 
(Significant) 

Not Reported 

13 Wu et al., 
2024 [50] 

Not Available Narrative 
Association 

Informal PM10: p = 0.002 
(Significant), 
PM2.5: p = 0.105 
(Not Significant), 
NO2: p = 0.051 
(Not Significant) 
PM10 (Additive): 
Not Reported. 

Not Reported 

14 Zhang et al., 
2024 [51] 

Not Available Stratified 
Analysis 

Informal Not reported 
(unclear) 

Not Reported 

15 Gao et al., 
2023 [52] 

Not Reported Synergistic/ 
enhancing 
effect (Gene 
Environment 
Interaction) 

Multiplicative Not reported 
(unclear) 

Not Reported 

16 Zhang et al., 
2024 [53] 

Cox proportional 
hazard models (p-
interaction and 
Hazard Ratio), 
RERI, AP 

- Multiplicative 
Positive 
Additive 

HR interaction 
term reported 
(exact p not 
stated);  
RERI, and AP 
stated. 

HMP 
(harmonic 
mean p-value); 
PFWE & 
PFDR in 
imaging 

Note: Abbreviations: FDR, False Discovery Rate; RERI, Relative Excess Risk due to Interaction (the proportion of disease 
among those with both the exposure and the genotype that is attributable to their interaction); AP, Attributable Proportion 
due to Interaction (the proportion of disease in the population that is attributable to the interaction between the exposure 
and genotype); HR, Hazards Ratio; PM2.5, Particulate Matter with a diameter  2.5  PM10, Particulate Matter with a 
diameter  10  NO2, Nitrogen Dioxide; NOx, Nitrogen Oxides; HMP, Harmonic Mean p-value; PFWE, Permutation-
based Family-Wise Error rate; and PFDR, Permutation-based False Discovery Rate. Formal interaction testing includes 
regression-based interaction terms (e.g., p-interaction), as well as measures on the additive scale such as RERI (Relative 
Excess Risk due to Interaction), AP (Attributable Proportion), and the Synergy Index. Informal interaction testing 
includes subgroup or stratified analysis, visual inspection of effect modification across strata, or narrative/descriptive 
comparisons without formal statistical interaction terms. Interaction type refers to whether the interaction was evaluated 
on the additive scale, multiplicative scale, or only through informal exploration (without formal statistical testing). 
Multiple testing correction refers to statistical methods used to adjust for the number of tests performed, such as 
Bonferroni correction or False Discovery Rate (FDR) control, and Harmonic Mean p-value (HMP). 
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3.2. Methods to assess genetic susceptibility and pollutant exposure 

In this section, we describe the specific methods used within the 16 included studies to assess 
genetic susceptibility and pollutant exposure. We focus on how these measurements were implemented 
in the context of the reviewed literature, rather than providing a general overview of these methods. 

3.2.1. Assessment of genetic susceptibility 

Among the 16 articles reviewed, 14 focused on genetic susceptibility, 1 examined epigenetic 
modification, and 1 study entailed both genetic susceptibility and epigenetic modification. Table 3 
summarizes the focus of these articles. 

Table 3. Summary of study focus. 

Study Type Number of Articles 
Genetic Susceptibility 13 
Epigenetic Modification 2 
Both Genetic and Epigenetic 1 

Note: Table 3 provided a breakdown of the types of studies included in this review. 

After assessing general genetic susceptibility, we also explored gene-environment (GxE) interactions; 
how genetic factors may modify the health effects of air pollution exposure. Table 4 presents an overview 
of these studies, focusing on the use of genotyping or DNA methylation methodologies.
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Table 4 provides an overview of studies on gene-environment interactions (GxE) using 
genotyping or DNA methylation. The studies listed highlight how genetic factors may influence the 
health outcomes of air pollution exposure, with a particular focus on epigenetic modifications like 
DNA methylation at specific CpG sites. 

The assessment of genetic susceptibility in the included studies primarily focused on identifying 
specific genetic variants associated with increased risk of adverse health outcomes related to air 
pollution exposure. Many studies aimed to explore how genetic differences could modify the harmful 
effects of pollutants like PM2.5, PM10, NO2, and NOx on health outcomes. 

 Genotyping Methods Used in Included Studies: Most researchers employed genotyping 
techniques, with SNP arrays being the most common method (n = 14). These arrays enabled the 
detection of a wide range of single nucleotide polymorphisms (SNPs) across multiple genes. Illumina 
Human Omni Express arrays were utilized in some studies to assess SNPs related to oxidative stress 
and inflammatory pathways. Additionally, PCR-based genotyping methods, such as TaqMan assays, 
were used in a few studies to investigate specific candidate genes linked to air pollution-related health 
effects. Only a smaller number of studies (n = 2) employed whole-genome sequencing (WGS) to 
explore broader genetic variations, although this method was applied in a limited number of 
participants due to cost and technical constraints. 

 Candidate Genes and Genome-Wide Association Studies (GWAS): A combination of 
candidate gene approaches (n = 8) and GWAS (n = 7) were used in these studies to explore the genetic 
basis of susceptibility to air pollution-related health risks. Candidate gene studies often targeted well-
known genes involved in inflammation or detoxification. In contrast, GWAS enabled the identification 
of novel genetic variants associated with exposure to pollutants. 

 Gene-Environment Interactions: Several researchers in this review focused on gene-
environment interactions, which investigate how genetic susceptibility can modify the health effects 
of air pollution exposure. In these studies, genetic data were typically obtained from blood, saliva, or 
buccal samples, and air pollution exposure was assessed through monitoring data or Land Use 
Regression (LUR) models [39,41,52]. Notably, the studies by Zhang et al. (2024) employed 
genotyping methods to examine the role of genetic polymorphisms in genes such as APOE , FRMD8, 
DDX1, DNMT3L, MORC1, and TGM2 which are involved in specific biological pathways relevant 
to air pollution exposure such oxidative stress, neuroinflammation, and epigenetic regulation. These 
researchers found that certain genetic variants significantly influenced the association between air 
pollution exposure and incident Dementia [53]. 

 Data Analysis and Quality Control: Rigorous data analysis methods were employed across 
the studies to ensure the accuracy of genetic susceptibility results. Standard quality control measures, 
including filtering based on minor allele frequency, call rates, and testing for Hardy-Weinberg 
equilibrium, were commonly used to minimize errors. These procedures ensured that the genotyping 
data were reliable for assessing the associations between genetic variants and health outcomes [47]. 
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3.2.2. Assessment of pollutant exposure 

The assessment of pollutant exposure in the included studies predominantly relied on 
environmental monitoring, modeling techniques, and personal exposure measurements to estimate the 
levels of air pollution to which study participants were exposed. 

 Environmental Monitoring and Air Quality Data: A common method used in the studies 
was to obtain air quality data from government or environmental monitoring stations. These stations 
typically provide reliable data on the concentrations of pollutants, such as PM2.5, PM10, NO2, and NOx, 
at specific geographic locations. For example, several researchers (e.g., Zhang et al., 2024) utilized 
data from national or regional monitoring stations to estimate exposure for large cohorts. These data 
were often combined with residential or work addresses to estimate long-term exposure levels [51]. 

 Land Use Regression (LUR) Models: Many researchers (e.g., Huang et al., 2021, Li et al., 
2023, Fu et al., 2023; and Gao et al., 2023) employed land use regression (LUR) models to predict 
pollutant levels in areas where direct monitoring data were not available. LUR models are particularly 
useful in estimating spatial variation in air pollution exposure by integrating geographical data, land 
use patterns, and other environmental factors. These models were applied to derive individual-level 
exposure estimates based on participants  residential locations. Different LUR models were used 
across studies, with varying levels of complexity and input data [39,41,42,52]. 

 Modeling Approaches: Some studies employed advanced modeling approaches, including 
dispersion models and satellite-based models, to estimate air pollution exposure. For example, 
several studies based on the UK Biobank (e.g., Ma et al., 2024 [40]; Liu et al., 2024 [44]; Wu et al., 
2024 [50]; Zhang et al., 2024 [53]) used DEFRA air dispersion models with a 1 × 1 km resolution to 
assign annual average pollutant concentrations to participants  residential addresses. In addition, Li et 
al., 2022 [48] applied a satellite-based model that combined aerosol optical depth (AOD) data with 
meteorological and land-use information using machine learning algorithms to estimate fine-scale 
PM2.5 exposure. These modeling approaches are particularly valuable in regions without dense 
monitoring station coverage. 

 Exposure Duration and Temporal Patterns: Most studies evaluated long-term exposure 
(e.g., chronic exposure over years), but a few focused on short-term or acute exposure in relation to 
specific health outcomes (e.g., respiratory exacerbations or cardiovascular events). However, seasonal 
variations or temporal patterns of exposure were generally not explored in detail. 

 Exposure-Response Assessment: Many studies included an exposure-response analysis to 
explore the relationship between pollutant levels and specific health outcomes. These studies often 
adjusted for confounding factors such as age, gender, socioeconomic status, and pre-existing health 
conditions to determine the strength and consistency of the exposure-response relationship [39,41,47]. 

In summary, the assessment of pollutant exposure in the reviewed studies utilized a combination 
of monitoring data and modeling techniques (including LUR, dispersion models, and satellite-based 
approaches). None of the included studies used personal exposure monitoring devices. The 
methodologies employed provided valuable insights into the health effects of air pollution by offering 
both spatially and temporally accurate exposure estimates. 
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3.2.3. Integration of genetic and exposure assessments 

The integration of genetic and exposure assessments is essential for understanding the complex 
interactions between genetic susceptibility and environmental exposures such as air pollution. In this 
section, we describe how researchers in this review combined genetic and environmental exposure 
data to examine gene-environment interactions (GxE), providing a deeper understanding of how 
genetic factors influence the effects of air pollution on health outcomes. 

 Stratified Analysis: Some researchers in this review employed stratified analysis, where 
participants were divided into subgroups based on specific genetic variants to assess whether the effects of 
exposure differed between these subgroups. While not all studies used this approach, stratified analysis is 
commonly used to identify gene-environment interactions. For example, researchers have focused on 
polymorphisms in genes like GSTP1, involved in detoxification pathways, to explore how genetic variation 
might influence the response to air pollution. This approach provides deeper insights into how genetic 
factors can modify the health impacts of air pollution exposure [44,45,51]. 

 Interaction Terms in Regression Models: Statistical models (e.g., linear regression, and 
logistic regression) are used to test for the interaction between genetic variants and exposure variables. 
An interaction term is included in the model to assess whether the effect of exposure differs depending 
on genotype [39 46,48,49,53]. 

 Gene-Environment Interaction (GxE): Gene environment interaction (GxE) occurs when 
the impact of environmental exposure, such as air pollution, on health outcomes varies according to 
an individual s genetic profile. Among the 16 included studies, several explicitly tested GxE 
interactions using either multiplicative interaction terms in regression models or stratified analyses 
based on genetic risk categories (e.g., polygenic risk scores). These studies demonstrated that genetic 
susceptibility can modify the relationship between exposure to pollutants (e.g., PM2.5, and  and 
outcomes such as cardiovascular disease, major depressive disorder, or stroke. For example, some 
studies reported significantly greater adverse effects of air pollution among individuals in the highest 
tertile of genetic risk compared to those at lower risk [41,42,44,46,48 50]. 

In summary, the integration of genetic and exposure assessments using methods such as stratified 
analysis, regression models with interaction terms, GWIS, and consideration of gene-environment 
correlations provides valuable insights into how genetic susceptibility influences the health effects of 
air pollution. These approaches enhance our understanding of gene-environment interactions and are 
crucial for advancing precision medicine, where interventions can be tailored based on an individual s 
genetic profile and environmental exposures. 

Note on Supplementary Materials: Due to the extensive nature of the data presented, 
Supplementary Table S4 provides a detailed summary of the key findings, conclusions, and limitations 
of the included studies. To ensure the flow and readability of the main text, this table has been moved 
to the Supplementary Materials section. Readers can refer to Supplementary Table S4 in the 
supplementary materials for a comprehensive overview of the studies included in this review. 
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3.2.4. Gene-environment interactions 

A detailed analysis of gene-environment interactions was conducted to explore how genetic 
predisposition modulates the health effects of air pollution. In Supplementary Table S3, we summarize 
the interactions between genetic markers and environmental exposures, such as PM2.5, PM10, NO2, and 
NOx, across multiple health outcomes, including cardiovascular diseases, respiratory conditions, and 
mental health disorders. 

Key findings include: 
 Significant interactions between specific genetic polymorphisms and pollutant exposure levels, 

with the strongest effects observed for cardiovascular diseases and mental health disorders. 
 Variations in effect sizes (e.g., odds ratios, and hazard ratios) highlight the heterogeneity in 

genetic susceptibility to air pollution exposure across populations. 
 Specific metrics such as Relative Excess Risk due to Interaction (RERI) and Attributable 

Proportion (AP) underscore the additive effects of genetic predisposition and environmental 
exposures on disease risk. 

This table provides a comprehensive overview of the statistical evidence supporting the 
modifying role of genetic susceptibility in health outcomes associated with air pollution. 

4. Discussion 

The complex interplay between genetic predisposition and environmental exposures has emerged 
as a key area of research in understanding disease risk and health disparities. This review contributes 
to the growing body of literature by examining gene-environment interactions in the context of air 
pollution and their impact on various health outcomes [8,35,57]. 

4.1. Regarding the association between genetic predisposition and air pollution exposure 

The interaction between genetic predisposition and environmental factors, such as air pollution, has 
garnered increasing attention in recent years due to its potential impact on disease risk. Our findings 
contribute to this growing body of literature, highlighting the significant role that genetic susceptibility 
plays in modifying the effects of air pollution on health outcomes [11,32,38,43,48 50,57 60]. 

The additive effects observed in individuals with both high genetic susceptibility and high exposure 
to air pollution align with prior studies suggesting that genetic factors may amplify the adverse health 
effects of environmental pollutants. Specifically, we found that individuals at higher genetic risk exhibited 
more pronounced health deterioration when exposed to higher levels of air pollution. This combined effect, 
where the interaction between genetic susceptibility and environmental exposure exceed the sum of their 
individual effects, is consistent with other studies emphasizing the exacerbating role of genetic factors in 
the harmful effects of environmental stressors [39,48]. 

Furthermore, genetic predisposition appears to modify the impact of air pollution exposure across 
various diseases, including cardiovascular diseases (CVD), respiratory conditions, and mental health 
disorders. These findings underscore the critical role of gene-environment interactions in shaping 
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health outcomes. A detailed summary of gene-environment interactions, including the effect sizes, p-
values, and health outcomes, is provided in Supplementary Table S3. 

4.2. Regarding disease-specific findings 

In line with other studies, long-term exposure to pollutants such as PM2.5, NO2, and PM10 was 
significantly associated with a higher likelihood of various diseases (e.g., lung cancer, cardiovascular 
disease, and stroke), especially among individuals with higher genetic susceptibility [38 53]. 

Our results confirm that the combined effect of air pollution and genetic predisposition plays a 
critical role in the development of complex diseases, including mental health disorders (e.g., 
schizophrenia, and Major Depressive Disorder) and cardiovascular diseases (e.g., abdominal aortic 
aneurysms). For conditions like ulcerative colitis and psoriasis, our findings suggest that air pollution 
exposure may be a modifiable environmental contributor, particularly for those genetically 
predisposed. This highlights the potential for public health interventions to target these conditions by 
addressing environmental exposures, such as through improved air quality policies. Further details of 
these interactions are presented in Supplementary Table S3. 

4.3. Implications for public health and precision medicine 

These findings underscore the need for personalized approaches in environmental health, where 
genetic susceptibility should be considered when assessing the potential impact of air pollution 
exposure. Identifying individuals with high genetic susceptibility for specific diseases and high 
exposure to air pollution could help target interventions and preventive strategies more effectively. For 
example, individuals with genetic susceptibility to respiratory diseases might benefit from policies 
aimed at reducing air pollution exposure in urban areas. Public health strategies could include 
prioritizing air quality improvements in regions with high genetic vulnerability indices, or 
incorporating genotyping into early screening programs in pollution-heavy urban centers [49,50,58]. 

While this review does not provide in-depth methodological analysis of these tools, we emphasize 
their future relevance for advancing the field. Although none of the included studies employed 
integrative multi-omics or machine learning techniques, these emerging methodologies are 
increasingly recognized as powerful tools in precision environmental health. They hold promise for 
uncovering novel mechanistic pathways and enabling more accurate risk stratification based on 
complex gene-environment interactions [17,18,21,29]. 

Specifically, multi-omics and machine learning could significantly improve our understanding of 
how genetic factors modulate responses to air pollution, providing insights that could refine health 
outcome predictions and support personalized prevention strategies [18 21,29,60,61].  

Although genome-wide interaction studies (GWIS) were not identified among the included 
studies, researchers should consider applying GWIS to detect novel loci involved in pollution-related 
health effects [29,32,58,62]. In addition, gene environment correlation (rGE), where certain genetic 
traits predispose individuals to environments with higher pollution exposure, was not addressed in the 
included studies but remains an important methodological consideration for future analyses [63,64]. 
Experimental studies have also highlighted the relevance of mechanistic pathways, such as aryl 
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hydrocarbon receptor (AhR) signaling in response to PM2.5 exposure, yet this pathway was not 
explored in the reviewed epidemiological literature. These mechanisms warrant further investigation 
to strengthen the biological plausibility of GxE associations [65,66]. In addition, future studies 
employing toxicological or experimental approaches, such as in vivo or organoid models, are needed 
to explore mechanistic pathways (e.g., oxidative stress, inflammation, and epigenetic regulation), 
which would strengthen the biological plausibility of observed GxE associations. 

The data in Supplementary Table S3 support the potential value of combining genetic and 
environmental risk profiling in public health efforts, particularly in identifying and protecting 
vulnerable populations. As such, future research that integrate genetic data with high-resolution 
exposure models, epigenomics, and machine learning algorithms could substantially enhance 
targeted prevention strategies [38 53]. 

4.4. Limitations and recommendations for future research 

While most included studies relied on observational designs, our findings are limited by the 
inability to establish causality and may be affected by residual confounding, particularly in the 
assessment of genetic susceptibility and environmental exposure [54,67]. Based on the current 
evidence, we provide several recommendations for future research directions. 

While we acknowledge that 12 of the 16 included studies were conducted in European 
populations or used UK Biobank data, the implications of this geographic and ethnic skew deserve 
deeper discussion. The lack of representation from non-European ancestry groups raises concerns 
about the external validity and equity of current GxE findings, particularly in the context of global 
precision health efforts. Equity and diversity should be central considerations when translating 
GxE insights into public health strategies [68,69]. Recent advances in interaction testing 
frameworks have made it more feasible to detect complex GxE effects across populations [70]. 
Future research must explicitly include underrepresented populations, both to validate current 
findings and to uncover population-specific interactions that may be masked in predominantly 
European datasets [71]. This approach will enhance the relevance and fairness of GxE-informed 
precision health interventions on a global scale. 

Further studies should address these limitations by incorporating more accurate exposure data, 
such as personal monitoring of air pollution, and exploring gene-environment interactions in more 
diverse populations to enhance the generalizability of the results [8,70 72]. 

One study included in this review, one by Chen et al. (2024), presents distinct methodological 
considerations. While described as a cohort study, its structure is more akin to a cross-sectional or 
nested case-control design, as it lacks precise temporal data on ulcerative colitis onset [49]. This 
weakens the temporal relationship and introduces potential for reverse causation, which may limit 
causal inference. To mitigate these limitations, the authors employed epigenetic analysis and 
Mendelian randomization as complementary methods to strengthen causal interpretation [54 56]. 
Nevertheless, the absence of longitudinal follow-up reduces its methodological comparability with the 
prospective cohort studies included in this review. Therefore, quality assessment was performed using 
the JBI checklist rather than the Newcastle-Ottawa Scale, which better aligns with the study s 
epigenetic and case-control framework [35,37]. Future studies investigating gene environment 
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interactions in ulcerative colitis should aim to replicate these findings using longitudinal designs with 
clearer temporal sequencing and larger population-based samples. 

In addition, future studies would benefit from utilizing multi-omics approaches and machine 
learning techniques to explore the mechanistic pathways that link air pollution exposure with 
epigenetic changes and genetic predisposition in the development of complex diseases. These 
technologies have been highlighted as powerful tools to advance exposome research and understand 
causal biological mechanisms [17 21]. Such approaches hold great promise in identifying new 
biomarkers and uncover complex, multifactorial interactions that might otherwise be missed. The 
section on emerging technologies such as AI and multi-omics could also be expanded in future research 
to provide more detailed elaboration on their potential applications in improving exposure modeling, 
identifying complex gene-environment interactions, and enhancing risk prediction [21]. 

Moreover, longitudinal designs with larger, multi-ethnic samples and standardized exposure 
assessments will improve the robustness of future findings and enable a more nuanced interpretation 
of gene environment dynamics over time. Although causality cannot be definitively inferred from 
observational data, enhancing study design and incorporating mechanistic approaches, such as multi-
omics and molecular exposomics, can substantially strengthen the evidence base and help clarify 
potential biological pathways [20,21,73 80]. 

Finally, disease-specific recommendations should be considered. For instance, prioritizing the 
development and validation of polygenic risk scores (PRS) for conditions such as stroke, where strong 
genetic signals have been identified (e.g., Ma et al., 2024) [43], may help refine individual-level 
susceptibility profiling and enable more targeted public health responses [73 80]. Furthermore, as the 
field progresses towards potential applications of genetic information in public health strategies, 
careful consideration must be given to the ethical implications of genetic screening. These include 
ensuring robust data privacy and security measures, obtaining informed consent, addressing the 
potential for genetic discrimination, ensuring equitable access and implementation, and promoting 
responsible interpretation and application of genetic risk profiles [81]. 

4.5. Mechanistic evidence supporting GxE effects 

Researchers using animal models and organoid systems demonstrate that air pollution triggers 
molecular events such as ROS overproduction, mitochondrial dysfunction, and cytokine dysregulation, 
which may interact with genetic predispositions to exacerbate disease processes [82,83]. For example, 
in vivo models have shown that particulate matter exposure leads to neuroinflammation and cognitive 
impairment via the NF-  and Nrf2 signaling pathways, providing insight into mechanisms potentially 
relevant to mental health outcomes [84,85]. Similarly, lung and cardiovascular organoid models have 
revealed pollutant-induced endothelial dysfunction and inflammatory responses that mirror pathways 
implicated in human genetic risk loci [86,87].  

A recent review highlights how organoid and animal-based approaches are increasingly used to 
uncover the cellular and molecular mechanisms linking environmental exposures with chronic disease 
phenotypes. These mechanistic insights are essential for interpreting GxE interactions and underscore 
the need for integrative frameworks that combine epidemiological, genetic, and experimental evidence 
in environmental health research [88,89]. 
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To provide biological plausibility to the epidemiological associations observed in this review, it 
is important to consider experimental studies that elucidate underlying mechanisms. Toxicological and 
in vivo models have consistently shown that exposure to air pollutants such as PM2.5,  and diesel 
exhaust particles can induce oxidative stress, systemic inflammation, and epigenetic changes; 
pathways that are also implicated in the genetic susceptibility to complex diseases [90,91]. 

5. Conclusions 

This review underscores the critical role of gene-environment interactions in shaping health 
outcomes, particularly in the context of air pollution exposure. Our findings suggest that genetic 
susceptibility may modify the associations of air pollution across various diseases, including 
cardiovascular conditions, respiratory disorders, and mental health challenges. These results provide 
compelling evidence for the need to integrate genetic data into environmental health research, 
enhancing our understanding of the complex relationships between pollution exposure and disease risk. 

Given the observational nature of the included studies, causal relationships cannot be definitively 
established. Nonetheless, the patterns identified across the reviewed literature point to potentially 
important gene environment interactions that merit further investigation through mechanistic and 
experimental studies. 

The implications of these findings extend beyond scientific research, emphasizing the 
development of precision public health strategies. Identifying individuals with heightened genetic risk 
can enable the development of targeted prevention strategies, such as localized air quality interventions 
or early screening efforts for at-risk populations. In parallel, these insights reinforce the need for broad 
efforts to reduce air pollution exposure as a population-wide preventive strategy. 

To improve the applicability of these findings, we recommend prioritizing the development of 
polygenic risk scores (PRS) for diseases with strong and consistent GxE signals, particularly stroke, 
as highlighted in recent studies such as Ma et al. (2024) [43]. Furthermore, enhancing air pollution 
monitoring systems in rapidly urbanizing low- and middle-income countries (LMICs) is essential to 
address current data gaps and guide targeted public health interventions. 

Researchers should also incorporate mechanistic studies, including those using organoid and in 
vivo models, to support the biological plausibility of GxE effects. These experimental approaches can 
help elucidate key pathways such as oxidative stress, inflammation, and epigenetic modifications, 
thereby strengthening the interpretation of epidemiological associations. 

Finally, to ensure the equity and global relevance of GxE research, future studies must include 
more diverse populations beyond those of European ancestry. By integrating genetic, environmental, 
and mechanistic evidence, future precision health strategies can be more effectively tailored to protect 
high-risk individuals and address the growing global burden of pollution-related diseases. 
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