

Jurnal

Lingkungan dan Pembangunan (Environment and Development)

ARTIKEL

ANALISIS MENGENAI DAMPAK LINGKUNGAN (AMDAL) LINTAS BATAS NEGARA DAN SUMBER
HUKUM INTERNASIONAL: SUATU DESKRIPSI SINGKAT DALAM PERSPEKTIF HUKUM
LINGKUNGAN INTERNASIONAL

INTEGRASI KEARIFAN LOKAL DALAM IMPLEMENTASI TEKNOLOGI DAN KEBIJAKAN SEBAGAI SALAH SATU UPAYA MITIGASI BENCANA DI INDONESIA: LOCAL PREPAREDNESS DI ACEH

KAJIAN TINGKAT KEBISINGAN DAN SPEKTRUM FREKWENSI KEBISINGAN PADA LALU LINTAS
KERETA API DI KOTA YOGYAKARTA

MAKROZOOBENTHOS SEBAGAI BIOINDIKATOR KUALITAS PERAIRAN DI SUNGAI CIAMBULAWUNG, LEBAK, BANTEN

MITIGASI BENCANA ALAMFF DI DAERAH PESISIR DENGAN MENGGUNAKAN GPS-TEC

PARTISIPASI MASYARAKAT NAGARI BATU BAJANJANG MENUJU NAGARI TANGGUH BENCANA

STATUS DAYA DUKUNG SUMBERDAYA AIR JABODETABEK

STRUKTUR KELIMPAHAN MAKROZOO BENTHOS SEBAGAI BIOINDIKATOR PENCEMARAN LINGKUNGAN DI SEKITAR KAWASAN PT. JABABEKA INFRASTRUKTUR CIKARANG JAWA BARAT

ISSN 0216 - 2717

Volume 01, No. 01, Tahun 2015

JURNAL PUSAT STUDI LINGKUNGAN PERGURUAN TINGGI SELURUH INDONESIA

Lingkungan & Pembangunan

ENVIRONMENT & DEVELOPMENT

JURNAL LINGKUNGAN DAN PEMBANGUNAN IOURNAL OF ENVIRONMENT AND DEVELOPMENT

Penanggung Jawab

Ketua Badan Kerjasama Pusat Studi Lingkungan (BKPSL)

Dewan Editor

Fisika dan Pendidikan Biologi

Prof. dr. Lambang Subagijo, MSi. Prof. Dr. Agoes Soegianto

Kesehatan dan Lingkungan Pertanian

Prof. dr. Haryoto Prof. Dr. Ir. Laode Asrul, MP

Kusnoputranto, SKM, Dr., PH

Teknik Kimia Sosial Ekonomi

Prof. Dr. Tjandra Setiadi Prof. Dr. Fachrurrozie Sjarkowi,

M.Sc.

Arsitektur Lingkungan

Prof. Ir. Agus Budi Purnomo, Dr. Dwi Sasongko

MSc. PhD

Teknik Lingkungan Prof. Dr. Ir. Nasfryzal Carlo, MSc

Editor Pelaksana

Dr.Ir. Hefni Effendi, MPhil. dan Dr. Melati Ferianita Fachrul, MSi.

Asisten Editor

Sri Muslimah, S.Si. Andreas Pramudianto, SH., MHum.

Alamat Redaksi

Jurnal Lingkungan dan Pembangunan
Sekreatariat Eksekutif Badan Kerjasama Pusat Studi Lingkungan (BKPSL)
Pusat Penelitian Sumberdaya Manusia dan Lingkungan
Gedung C Lantai V, Jl. Salemba Raya No. 4, Jakarta 10430
Telp.: 021-31930318; 021-31930309; Fax.: 021-31930266
Homepage: www.bkpsl.org/jurnal / email: jurnal-bkpsl@bkpsl.org

Pusat Penelitian Lingkungan Hidup (PPLH) Kampus IPB, Dramaga 16680 Telp. 0251-8621262, 8622085, Fax. 0251-8622134

DAFTAR ISI

Daftar Isi Dari Redaksi	iv v
ARTIKEL Analisis Mengenai Dampak Lingkungan (Amdal) Lintas Batas Negara dan Sumber Hukum Internasional: Suatu Deskripsi Singkat Dalam Perspektif Hukum Lingkungan Internasional Andreas Pramudianto	1
Integrasi Kearifan Lokal Dalam Implementasi Teknologi dan Kebijakan Sebagai Salah Satu Upaya Mitigasi Bencana di Indonesia: Local Preparedness Di Aceh Septaris Bernadetta Parhusip	16
Kajian Tingkat Kebisingan dan Spektrum Frekwensi Kebisingan Pada Lalu Lintas Kereta Api Di Kota Yogyakarta Septian Maulana, Wisnu Eka Yulyanto, Melati Ferianita Fachrul	30
Makrozoobenthos sebagai Bioindikator Kualitas Perairan di Sungai Ciambulawung, Lebak, Banten Hefni Effendi, Yusli Wardiatno, Yunita Magrima Anzani	45
Mitigasi Bencana Alam di Daerah Pesisir Dengan Menggunakan GPS-TEC Mokhamad Nur Cahyadi	60
Partisipasi Masyarakat Nagari Batu Bajanjang Menuju Nagari Tangguh Bencana Nasfryzal Carlo, Edi Septe, Yusrita Yanti	68
Status Daya Dukung Sumberdaya Air Jabodetabek Endrawati Fatimah, Anita Sitawati, Silia Yuslim	77
Struktur Kelimpahan Makrozoo Benthos Sebagai Bioindikator Pencemaran Lingkungan di Sekitar Kawasan PT. Jababeka Infrastruktur Cikarang Jawa Barat Rauf Achmad SuE, Okta Ria Yunita, Suyud Warno Utomo	92

DARI REDAKSI

Terbitan Jurnal Lingkungan & Pembangunan volume 1 No. 1 tahun 2015 ini memuat beberapa tulisan hasil penelitian dan tinjauan masalah lingkungan dari berbagai wilayah di negara kita.

Artikel pertama menjelaskan tentang Analisis Mengenai Lingkungan (AMDAL) lintas batas negara dan sumber hukum internasional: suatu deskripsi singkat dalam perspektif hukum lingkungan internasional. Integrasi kearifan lokal dalam implementasi teknologi dan kebijakan sebagai salah satu upaya mitigasi bencana di Indonesia: Local preparedness di Aceh dalam artikel kedua. Kajian tingkat kebisingan dan spektrum frekuensi kebisingan pada lalu lintas kereta api di kota Yogyakarta dalam artikel ketiga. Artikel keempat mengenai makrozoobenthos sebagai bioindikator kualitas perairan di sungai Ciambulawung, Lebak, Banten. Artikel kelima mengenai mitigasi bencana alam di daerah pesisir dengan menggunakan GPS-TEC. Partisipasi masyarakat Nagari Batu Bajanjang Menuju Nagari tangguh bencana dalam artikel keenam. Status daya dukung sumberdaya air Jabodetabek dalam artikel ketujuh. Pada artikel terakhir dalam terbitan kali ini menyajikan topik bahasan struktur kelimpahan makrozoobenthos sebagai bioindikator pencemaran lingkungan di sekitar kawasan PT. Jababeka Infrastruktur Cikarang, Jawa Barat.

Harapan redaksi, terbitan kali ini dapat memberikan informasi dan menambah wawasan yang berkaitan dengan perkembangan lingkungan hidup. Akhirul kata, redaksi senantiasa menerima kritik, masukan, dan saran yang membangun demi keberlanjutan penerbitan Jurnal Lingkungan & Pembangunan.

Lingkungan dan Pembangunan

STATUS DAYA DUKUNG SUMBERDAYA AIR JABODETABEK

Endrawati Fatimah¹⁾, Anita Sitawati²⁾, Silia Yuslim³⁾

- 1. dan 2. Jurusan Teknik Planologi, Fakultas Arsitektur Lansekap dan Teknologi Lingkungan, Universitas Trisakti, Jl. K. Tapa 1 Grogol, Jakarta,
- 3. Jurusan Arsitektur Lansekap, Fakultas Arsitektur Lansekap dan Teknologi Lingkungan, Universitas Trisakti, Jl. K. Tapa 1 Grogol, Jakarta, Email: indo_googolendra@yahoo.com

Abstrak

Kawasan Jabodetabek merupakan kawasan metropolitan terbesar di Indonesia dan menjadi pusat kegiatan ekonomi nasional. Ketersediaan air bersih sangat diperlukan untuk mendukung keberlangsungan aktifitas penduduk dan ekonominya. Tujuan dari penelitian ini adalah mengidentifikasi kondisi daya dukung sumberdaya air saat ini dan proyeksi untuk tahun 2025. Data yang digunakan untuk memproyeksikan kebutuhan dan ketersediaan air tahun 2025 adalah data seri dari tahun 2000 hingga tahun 2010. Metodologi yang digunakan untuk menganalisis daya dukung adalah metode matematik, metode analisis deskripsi dan metode analisis spasial. Hasil studi menunjukkan bahwa pada tahun 2010, apabila seluruh potensi ketersediaan air digunakan secara optimal, daya dukung sumberdaya air Jabodetabek secara kuatitatif belum terlampaui. Namun demikian, pada kenyataannya potensi air sungai yang ada hingga saat ini belum dimanfaatkan, sehingga penggunakan air tanah melebihi dari yang seharusnya boleh dimanfaatkan. Berdasarkan pada tren penggunaan air dan pada tahun 2025 daya dukung kuantitas ketersediaan air yang ada saat ini, sumberdaya air Jabodetabek diprediksi akan terlampaui. Sementara itu dalam kaitannya dengan kualitas sumberdaya air, kondisi daya dukung saat ini sudah terlampaui. Perlu dilakukan optimasi daya dukung sumberdaya air agar kondisi daya dukung dapat tetap pada kondisi tidak terlampaui yaitu dengan menerapkan sistem pengelolaan sumberdaya air terpadu yang mencakup perbaikan dan peningkatan kondisi lingkungan sosial, lingkungan alam dan lingkungan buatan.

Kata kunci: daya dukung, Jabodetabek, sumberdaya air

JABODETABEK WATER RESOURCE CARRYING CAPACITY

Abstract

Jabodetabek is the biggest metropolitan area in Indonesia as well as the main agglomeration of national economic activities. The availability of clean water needs to continuously be fulfilled in order to ensure the development growth. The objective of this study was to identify the recent carrying capacity of water resource in Jabodetabek and prediction for the year 2025. The data series from 2000 to 2010 were used to idenfy trend of supply and demand of water and to calculate the projection for the year 2025. The methods for water carrying capacity analysis were mathematical analysis, description analysis and spatial analysis. The result of the study shows that in 2010, the water carrying capacity Jabodetabek has quantitatively not yet exceeded if all the water potencies are optimally used. The existing surface water is not used optimally as water supply. The study also found that in the year 2025, the water carrying capacity will quantitatively be exceeded. It is suggested that the water carrying capacity should be optimized by using an integrated water resources management which covers improvements in the conditions of social, natural, and artificial environments.

Key words: carrying capacity, Jabodetabek, water resources

1. PENDAHULUAN

Peranan kawasan perkotaan Jabodetabek bagi pembangunan ekonomi Indonesia saat ini sangat penting. Berdasarkan, Peraturan Pemerintah No. 26 Tahun 2008 tentang Rencana Tata Ruang Wilayah Nasional (RTRWN) yang menetapkan Kawasan Perkotaan Jabodetabek sebagai Kawasan Strategis Nasional atau KSN yang memiliki pengaruh strategis ditinjau dari kepentingan ekonomi nasional. Sementara itu, dokumen MP3EI, 2011 menyebutkan bahwa kawasan perkotaan Jabodetabek Area yang mencakup 3 provinsi (yaitu DKI Jakarta, Banten, dan Jawa Barat) dan 12 kabupaten/kota mengendalikan sekitar 60% aktivitas eksporimpor nasional serta lebih dari 85% pengambilan keputusan yang terkait dengan 85% atau lebih masalah-masalah keuangan nasional. Jumlah populasi yang berada di Jabodetabek ini sekitar 28 juta jiwa (2010) atau lebih dari 12 persen penduduk nasional. Selain itu, kawasan Jabodetabek merupakan wilayah perkotaan terbesar di wilayah Asia Tenggara.

Berbagai masalah lingkungan terkait dengan sumberdaya air seperti banjir, pencemaran dan kekeringan seringkali terjadi di wilayah Jabodetabek. Munculnya berbagai permasalahan lingkungan yang terjadi tersebut merupakan indikasi telah terlampauinya daya dukung lingkungannya. Seperti dikatakan oleh Rees (1990) kerusakan lingkungan terjadi jika beban pada lingkungan karena manusia dan aktivitasnya melebihi daya dukung lingkungannya. Dilatar-belakangi permasalahan tersebut, maka penelitian ini bertujuan untuk mengidentifikasi status daya dukung sumberdaya air Jabodetabek saat ini dan memperkirakan proyeksi daya dukung sampai dengan tahun 2025. Aspek daya dukung sumberdaya air yang dibahas dalam penelitian ini mencakup aspek sumberdaya air secara kuantitas dan sumberdaya air secara kualitas.

2. METODOLOGI

Lokasi penelitian ini adalah kawasan metropolitan Jabodetabek yang mencakup wilayah administrasi:

- 1. Provinsi DKI Jakarta.
- 2. Kota Tangerang, Kota Tangerang Selatan dan Kabupaten Tangerang di Provinsi Banten.
- 3. Kota Bogor, Kota Depok, Kota Bekasi, Kabupaten Bogor dan Kabupaten Bekasi di Provinsi Jawa Barat.

Data yang digunakan dalam penelitian ini meliputi data statistik mencakup aspek fisik, kependudukan, sosial ekonomi masyarakat, kinerja ekonomi pemerintahan daerah, PODES dan RTRW kota/Kabupaten, serta data spasial (peta) penggunaan lahan tahun 2000, 2005, dan 2010. Sumber data tersebut adalah data sekunder yang diperoleh dari berbagai instansi maupun hasil penelitian sebelumnya.

Secara umum, metode analisis data yang dilakukan adalah metode analisis Matematis, metode analisis deskriptif dan metode analisis spasial. Metode analisis matematis digunakan untuk penghitungan ketersediaan dan kebutuhan air serta untuk mengidentifikasi status daya dukung. Rumus yang digunakan adalah rumus model daya dukung lingkungan diambil dari Fatimah (2009). Metode analisis deskriptif dilakukan untuk mengekplorasi fenomena permasalahan terkait dengan pengelolaan sumberdaya air. Landasan dari proses analisis ini adalah kajian teoritis dan *lesson learned* yang bersumber dari pustaka, hasil studi/penelitian terdahulu serta standar kriteria teknis yang ada. Sementara metode analisis spasial dengan metode *super-imposed* dilakukan untuk pola perubahan lahan dan potensi resapan air.

3. HASIL DAN PEMBAHASAN

3.1. Status Daya Dukung Sumberdaya Air Tahun 2010

Ketersediaan sumberdaya air mencakup potensi air tanah atau potensi resapan air dan potensi air permukaan atau yang bersumber dari air sungai dan air pasokan dari luar wilayah. Air yang bersumber dari air tanah yang dihitung adalah air tanah dangkal yaitu jumlah potensi air resapan air yang bergantung pada kondisi tutupan lahan. Air tanah dalam tidak diperhitungkan karena dikategorikan sebagai sumberdaya yang tidak dapat diperbaharui. Ketersediaan sumberdaya air adalah:

Ketersediaan Sumberdaya Air = Jumlah resapan air + debit andalan sungai + pasokan dari luar wilayah

Sementara itu, kebutuhan air terdiri dari kebutuhan air domestic yang bergantung pada jumlah dan pola konsumsi penduduk serta kebutuhan air non domestik yang bergantung pada aktivitas ekonomi wilayah.

Kebutuhan sumberdaya air = kebutuhan air domestik + kebutuhan air non domestik

Status daya dukung sumberdaya air secara kuantitas dapat diketahui dengan memperbandingkan kuantitas ketersediaan dengan kebutuhan air. Dengan menggunakan data tahun 2010 dan dengan asumsi bahwa nilai C untuk kawasan terbangun adalah 0,90 karena intensitas bangunannya tinggi, dan nilai C untuk kawasan tidak terbangun adalah 0,50 karena sebagian besar berupa lahan pertanian dan tegalan serta curah hujan rata-rata tahunan = 2.000 mm/tahun maka laju resapan air tanah (potensi air tanah) disajikan pada **Tabel 1.**

Tabel 1. Perhitungan potensi resapan air tanah berdasarkan batas administrasi wilayah Jabodetabek 2010.

No	Kategori	Penggunaan Lahan 2010 (ha)	Koefisien Resapan Air Tanah Nilai	Laju resapan Air Tanah (m³/detik)
1	Daerah Terbangun	241.783,06	0,1	15,33
2	Daerah Tidak Terbangun	413.642,36	0,5	131,17
	Total			146,50

Sumber: Hasil Perhitungan

Di wilayah Jabodetabek sebenarnya terdapat sumber air baku yaitu air permukaan antara lain bersumber dari air sungai. Berdasarkan data dari BPLHD Jawa Barat, debit andalan Sungai Ciliwung adalah sebesar 20 m³/detik dan Sungai Cisadane adalah sebesar 50 m³/detik. Sementara, debit andalan Sungai Bekasi adalah sebesar 44,62 m³/detik (Nurhayati, 2009).

Penghitungan kebutuhan air domestik dilakukan dengan menggunakan Petunjuk Teknis Penyediaan Sistem Air Bersih Perkotaan 2003, kebutuhan air domestik untuk kota metropolitan adalah sebesar 190 liter/orang/hari, sementara kebutuhan air domestik untuk kawasan desa-kota yang saat ini sebagian masih ada di wilayah ini adalah sebesar 60 liter/orang/hari. Hasil penghitungan kebutuhan air domestik Jabodetabek tahun 2010 berdasarkan batas administrasi (**Tabel 2**).

Tabel 2. Perhitungan kebutuhan air domestik Jabodetabek.

	Penduduk tahun 2010 (Jiwa)		Kebutuhan Air Domestik tahun 2010 (liter/detik)			
Wilayah	Penduduk Perkotaan	Penduduk Perdesaan		Perdesaan	Total	
Jakarta Pusat	902,973	-	1,985.70	-	1,985.70	
Jakarta Timur	2,693,896	-	5,924.08	-	5,924.08	
Jakarta Barat	2,281,945	1	5,018.17	-	5,018.17	
Jakarta Selatan	2,062,232	-	4,535.00	-	4,535.00	
Jakarta Utara	1,645,659	-	3,618.93	-	3,618.93	
Kep Seribu	21,082	1	46.36	-	46.36	
Kota Bogor	950,334	-	2,089.85	-	2,089.85	
Kota Bekasi	2,334,871	ı	5,134.55	-	5,134.55	
Kota Depok	1,738,570	ı	3,823.24	ı	3,823.24	
Kabupaten Bekasi	2,108,130	522,271	4,635.93	604.48	5,240.41	
Kabupaten Bogor	3,770,213	1,001,719	8,290.98	1159.40	9,450.38	
Kabupaten Tangerang	2,324,209	247,725	5,111.11	286.72	5,397.83	
Kota Tangerang	1,798,601	-	3,955.26	-	3,955.26	
Kota Tangerang Selatan	1,290,322	-	2,837.51		2,837.51	
Total Jabodetabek	25,923,037	1,771,715	57,006.68	2,050.60	59,057.27	

Sumber: Hasil Perhitungan, 2012

Sementara itu penghitungan kebutuhan air non domestik wilayah Jabodetabek tahun 2010 disajikan pada **Tabel 3.**

Tabel 3. Kebutuhan air non domestik wilayah Jabodetabek.

Peruntukan	Penggunaan lahan tahun 2010	Standar Kebutuhan air	Kebutuhan Air Non domestik (liter/detik)	
Industri dan Pergudangan	23.592.4	0.4 liter/detik/ha	9436.96	
Komersil dan Jasa	9.124.59	0.4 liter/detik/ha	3649.84	
Pendidikan & Fasilitas Publik	5.369.23			
Fasilitas Pemerintah	2.468.46	30% domestik	17717.18	
Fasilitas Transportasi	1.536.16	50% domestik		
Fasilitas Rekreasi	3.577.95			
Taman dan Pemakaman	2.193.16	3% domestik	1771.72	
Pertanian dan Tegalan	324.967.82	0,01 liter/detik/ha	3249.68	
Pemeliharaan Sungai		0.004 liter/detik/kapita	110779.01	
Pemadam Kebakaran		14% domestik	8268.02	
Kehilangan Air		28% domestik	16536.03	
Jumlah Penduduk	27.694.752	TOTAL		
Kebutuhan Air Domestik (lt/dt)	59,057.27	KEBUTUHAN AIR NON DOMESTIK	171408.40	

Sumber: Hasil Perhitungan, 2012

Berdasarkan hasil perhitungan ketersediaan dan kebutuhan air wilayah Jabodetabek tahun 2010 maka status daya dukung kuantitas sumberdaya air tahun 2010 adalah:

a. Pendekatan Self Sustained

Pendekatan self sustained dapat diartikan bahwa penyediaan air hanya bersumber dari wilayah tersebut. Oleh sebab itu, ketersediaan air yang dihitung adalah yang bersumber dari potensi air sungai dan potensi resapan air.

Ketersediaan air *self sustained* tahun 2010 = = Potensi Air Sungai + Potensi air resapan

= $114,62 \text{ m}^3/\text{dt} + 146,50 \text{ m}^3/\text{dt} = 261,12 \text{ m}^3/\text{dt}$.

Kebutuhan air tahun 2010 = Kebutuhan air domestik + kebutuhan air non domestik = $59,06 \text{ m}^3/\text{dt} + 171,41 \text{ m}^3/\text{dt} = 230.47 \text{ m}^3/\text{dt}$.

b. Adanya asokan dari Waduk Jatiluhur

Pada tahun 2010, wilayah Jabodetabek mendapat pasokan sebesar 44,26 m³/dt., sehingga total potensi ketersediaan air adalah:

Total ketersediaan air =

- = Potensi Air Sungai+Potensi Air Resapan+ Pasokan
- = $114,62 \text{ m}^3/\text{dt} + 146,50 \text{ m}^3/\text{dt} + 44,26 \text{ m}^3/\text{dt} = 305,38 \text{ m}^3/\text{dt}$.

Daya dukung sumberdaya air secara kuantitas tahun 2010 di wilayah Jabodetabek belum terlampaui karena Ketersediaan>Kebutuhan, bahkan dengan pendekatan *self sustained*. Namun demikian, pada kenyataannya, potensi sumber air permukaan (air sungai) saat ini belum dimanfaatkan, sehingga kebutuhan air 230,47 m³/detik hanya disupply dari pasokan 44,26 m³/detik dan sisanya mengambil air tanah, yaitu 186.21 m³/detik. Sementara itu potensi air tanah hanya 146,50 m³/detik atau telah terjadi kelebihan pengambilan air tanah yang diperkirakan mencapai 39,71 m³/detik. Kondisi ini menunjukkan bahwa pada saat ini kekurangan pemenuhan kebutuhan air diperkirakan dilakukan dengan mengeksploitasi sumber air tanah dalam.

Sementara itu, daya dukung kualitas sumberdaya air di semua DAS sudah terlampaui. Simpulan ini didasarkan pada kenyataan bahwa seluruh DAS terutama di bagian hilirnya sudah dalam kondisi tercemar baik ringan maupun berat. Sementara di bagian hulu untuk Sungai Ciliwung, Cisadane dan Bekasi, kualitas air sungai masih terkategori tercemar ringan sehingga masih berpotensi dimanfaatkan sebagai sumber air baku air minum. Kondisi ini dapat diartikan bahwa apabila ketiga sungai ini akan dimanfaatkan sebagai sumber air baku air minum, lokasi pengambilan airnya harus terletak di bagian hulu sungai.

3.2. Perkiraan Status Daya Dukung Sumberdaya Air Tahun 2025

Dalam penelitian ini, proyeksi ketersediaan dan kebutuhan air dihitung sampai dengan tahun 2025 berdasarkan tren penggunaan dan ketersediaan 2000 – 2010. Tahun 2025 digunakan sebagai tahun proyeksi dikarenakan keseluruhan penelitian ini disusun dalam kaitannya dengan pelaksanaan MP3EI yang memiliki periode rencana 2010 -2025.

Potensi air permukaan 2025 juga diasumsikan sama dengan 2010 yaitu debit andalan Sungai Ciliwung adalah 20 m³/detik, debit andalan Sungai

Cisadane adalah 50 m³/detik dan, debit andalan Sungai Bekasi adalah 44,62 m³/detik. Sedangkan pasokan dari luar wilayah (Waduk Jatiluhur) adalah rencana Kementerian Pekerjaan Umum yaitu sebanyak 15 m³/detik (kota Bekasi), 41,6 m³/detik (DKI Jakarta), 5,2 m³/detik (kota Depok) dan 8 m³/detik (kota Bogor) atau total 69,8 m³/detik. Dengan asumsi dan metode yang sama dengan penghitungan 2010, perkiraan laju resapan air tanah 2025 disajikan pada **Tabel 4**.

Tabel 4. Perkiraan laju resapan air tanah tahun 2025.

Kategori	Luas tahun 2000 (ha)	Luas Tahun 2010 (ha)	Perubahan selama 10 tahun (ha)	Perubahan / tahun (ha/thn)	Proyeksi tahun 2025 (ha)	Perkiraan Laju resapan Air Tanah tahun 2025(m³/detik)
Daerah Terbangun	219.028,01	241.783,06	22.755,05	2.275,505	275.915,6	17,50
Daerah Tidak Terbangun	436.397,05	413.642,36	- 22.755,05	-2.275,505	379.509,8	120,34
					Total	137,84

Sumber: Hasil Perhitungan, 2012

Penghitungan kebutuhan air domestik 2025 menggunakan hasil proyeksi penduduk 2025 berdasarkan tren pertumbuhan 2000 – 2025 disajikan pada **Tabel 5.** Berdasarkan tren perubahan tata guna lahan, perkiraan kebutuhan air Jabodetabek 2025 disajikan pada **Tabel 6.**

Tabel 5. Proyeksi kebutuhan air domestik tahun 2025.

WILAYAH	Laju Pertumbuhan/ tahun (%)	Jumlah Penduduk 2010 (jiwa)	Proyeksi Penduduk Jabodetabek 2025 (Jiwa)	Proyeksi Kebutuhan Air Domestik 2025 (liter/detik)
Jakarta Pusat	0,11	902.973	917.796	2,018.30
Jakarta Timur	1,45	2.693.896	3.279.277	7,211.37
Jakarta Barat	1,94	2.281.945	2.947.503	6,481.78
Jakarta Selatan	1,53	2.062.232	2.534.664	5,573.91
Jakarta Utara	1,40	1.645.659	1.990.338	4,376.90
Kep Seribu	1,78	21.082	26.700	58.72
Kota Bogor	2,66	950.334	1.329.132	2,922.86
Kota Bekasi	4,03	2.334.871	3.747.473	8,240.97
Kota Depok	5,19	1.737.272	3.090.748	6,796.78

WILAYAH	Laju Pertumbuhan/ tahun (%)	Jumlah Penduduk 2010 (jiwa)	Proyeksi Penduduk Jabodetabek 2025 (Jiwa)	Proyeksi Kebutuhan Air Domestik 2025 (liter/detik)
Kabupaten Bekasi	5,77	2.630.401	4.905.088	10,786.65
Kabupaten Bogor	3.6	4.771.932	7.348.630	16,160.18
Kabupaten Tangerang	5,46	2.834.376	5.154.260	11,334.60
Kota Tangerang	3,71	1.798.601	2.799.928	6,157.25
Kota Tangerang Selatan	3,69	1.290.322	2.005.457	4,410.15
			Total	92,530.43

Sumber: Hasil perhitungan, 2012

Tabel 6. Kebutuhan air non domestik tahun 2025.

Peruntukan	Proyeksi Penggunaan lahan tahun 2025 (Ha)	Standar Kebutuhan air	Kebutuhan Air Non domestik Tahun 2025 (liter/detik)
Industri dan Pergudangan	33304	0.4 liter/detik/ha	13322
Komersil dan Jasa	14874	0.4 liter/detik/ha	5950
Pendidikan & Fasilitas Publik	9244		27759
Fasilitas Pemerintah	5017	30% domestik	
Fasilitas Transportasi	1597	50% domestik	
Fasilitas Rekreasi	4941		
Taman dan Pemakaman	4041	3% domestik	2776
Pertanian dan Tegalan	292145	0,01 liter/detik/ha	2921
Pemeliharaan Sungai		0.004 liter/detik/kapita	168308
Pemadam Kebakaran		14% domestic	12954
Kehilangan Air		28% domestic	25909
Jumlah Penduduk	42,076,994	TOTAL KEBUTUHAN AIR	259898
Kebutuhan Air Domestik	92,530.43	NON DOMESTIK	259898

Sumber: Hasil perhitungan, 2012

Berdasarkan hasil perhitungan proyeksi ketersediaan dan kebutuhan air wilayah Jabodetabek tahun 2025 maka status daya dukung kuantitas sumberdaya air tahun 2025 adalah sebagai berikut:

a. Pendekatan Self Sustained

Perkiraan ketersediaan dan kebutuhan air tahun 2025 adalah:

Ketersediaan air self sustained tahun 2025 =

= Potensi Air Sungai + Potensi air resapan

= $114,62 \text{ m}^3/\text{dt} + 137,84 \text{ m}^3/\text{dt} = 252,46 \text{ m}^3/\text{dt}$.

Kebutuhan air tahun 2025 = Kebutuhan air domestik + kebutuhan air non domestik

= $92,53 \text{ m}^3/\text{dt} + 259,90 \text{ m}^3/\text{dt} = 352,43 \text{ m}^3/\text{dt}$.

b. Adanya pasokan dari Waduk Jatiluhur

Pada tahun 2025, wilayah Jabodetabek direncanakan akan mendapat pasokan 69,8 m³/dt, sehingga total potensi ketersediaan air adalah: Total ketersediaan air =Potensi Air Sungai+Potensi Air Resapan+Pasokan

 $= 114,62 \text{ m}^3/\text{dt} + 137,84 \text{ m}^3/\text{dt} + 69,8 \text{ m}^3/\text{dt} = 322,26 \text{ m}^3/\text{dt}.$

Kondisi daya dukung sumberdaya air secara kuantitas tahun 2025 di wilayah Jabodetabek akan terlampaui karena Ketersediaan< Kebutuhan, bahkan dengan semua pemanfaatan potensi sumberdaya air yang ada termasuk rencana penambahan pasokan dari Waduk Jatiluhur. Diperkirakan pengambilan air tanah akan makin merambah pada sumber air tanah dalam yang termasuk sumberdaya tidak terbarukan.

3.3. Daya Dukung Kualitas Sumberdaya Air Secara kualitas

Daya dukung kualitas sumberdaya air di semua DAS dapat dikatakan sudah terlampaui. Simpulan ini didasarkan pada kenyataan bahwa seluruh DAS terutama di bagian hilirnya sudah dalam kondisi tercemar baik ringan maupun berat. Sementara di bagian hulu untuk Sungai Ciliwung, Cisadane dan Bekasi, dimana beban limbah cair yang terbuang masih dalam ambang batas kemampuan asimilasi air sungai, kondisi nya masih belum terlampaui. Kondisi ini dapat diartikan bahwa apabila ketiga sungai ini akan dimanfaatkan sebagai sumber air baku air bersih, lokasi pengambilan airnya harus terletak di bagian hulu sungai.

3.4. Alternatif Optimasi Daya Dukung Sumber Daya Air

Pengeloalaan sumberdaya air di Jabodetabek menjadi isu penting untuk diantisipasi. Oleh sebab itu, perlu dilakukan upaya untuk memperbaiki pengelolaan sumberdaya air guna menangani permasalahan sumberdaya air di wilayah Jabodetabek. Konsep pembangunan berkelanjutan digunakan sebagai pendekatan untuk memberikan usulan alternatif dalam mengoptimasikan daya dukung sumberdaya air.

Konsep pembangunan berkelanjutan ada 2 (dua) yaitu konsep kebutuhan (concept of needs) dan konsep keterbatasan (concept of limitations). Konsep pemenuhan kebutuhan difokuskan untuk meningkatkan kualitas hidup manusia, sementara konsep keterbatasan adalah ketersediaan dan kapasitas yang dimiliki lingkungan untuk memenuhi kebutuhan tersebut. Pembangunan dapat berkelanjutan

apabila terjadi keseimbangan antara kebutuhan dan keterbatasan. Upaya keseimbangan itu dapat dilakukan dua arah yaitu dengan mengendalikan kebutuhan dengan mengubah perilaku konsumsi dan sebaliknya meningkatkan kemampuan untuk meminimalkan keterbatasan melalui pengembangan teknologi, finansial, dan institusi (Hart, 2006).

Pendekatan sinergitas/keterpaduan sistem pengelolaan sumberdaya air di Jabodetabek diartikan sebagai cara pandang untuk melihat wilayah Jabodetabek sebagai suatu sistem yang dipengaruhi oleh sub-sub sistem lingkungan alam, lingkungan buatan dan lingkungan manusia dan sosial. Berdasarkan pada sub sistem lingkungan alam, wilayah Jabodetabek mencakup beberapa DAS yang menyediakan sumberdaya air bagi kehidupan sosial ekonomi penduduknya. Sementara pendekatan keberlanjutan dalam sistem pengelolaan sumber aya air di Jabodetabek dapat diartikan bahwa pemanfataan jasa atau fungsi ekologis dari sumberdaya dapat dijamin tidak melebihi kemampuan air mendukungnya atau daya dukungnya.

Dalam kaitannya dengan konsep pembangunan berkelanjutan, dengan memandang Jabodetabek sebagai suatu sistem, maka perlu dilakukan upaya sinergitas antar sub sistem agar saling mendukung.

Daya dukung sumberdaya air dapat diartikan sebagai suatu kondisi yang menunjukkan perbandingan antara ketersediaan (Supply) sumber daya air dan kebutuhan (Demand) sumber daya air. Daya dukung dapat dikatakan terlampaui apabila Demand lebih besar dari Supply sumberdaya air, demikian sebaliknya. Pendekatan daya dukung lingkungan ini akan menjadi dasar dalam merumuskan konsep model sistem pengelolaan penyediaan air bersih di Jabodetabek. Selain itu dalam menentukan status daya dukung lingkungan, penghitungan ketersediaan dan kebutuhan sumberdaya air kawasan perkotaan harus ditinjau dari aspek kuantitas dan aspek kualitasnya agar hasil penghitungan jumlah ketersediaan sumberdaya air yang diperoleh adalah sesuai dengan persyaratan kualitas sumberdaya yang dibutuhkan.

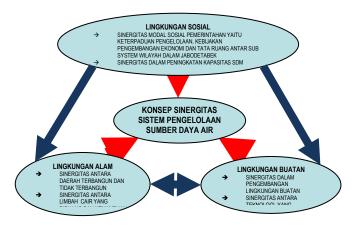
Kebutuhan sumberdaya air di dalam suatu sistem kewilayahan dipengaruhi oleh kondisi sub sistem manusia dan sosial. Sub sistem tersebut mencakup unsur modal manusia, modal sosial sipil dan modal

sosial pemerintahan. Modal sosial sipil berwujud interaksi tingkat mikro rumah tangga/perusahaan yang dipengaruhi nilai kepercayaan, sikap dan norma kelakuan. Modal sosial pemerintahan berupa interaksi tingkat makro berkaitan dengan hukum, aturan, prosedur, good governance cerminan kredibilitas pemerintah (Salim, 2006). Modal manusia dan modal sosial akan mempengaruhi besarnya kebutuhan sumberdaya, karena modal manusia dan sosial mempengaruhi perilaku serta pola konsumsi sumberdaya alam. Tingkat sosial ekonomi masvarakat yang merupakan dari modal bagian mempengaruhi pola konsumsi sumber daya. Masyarakat di perkotaan membutuhkan air lebih banyak dan juga menghasilkan limbah cair yang lebih banyak dan kompleks dibandingkan masyarakat perdesaan. Modal sosial pemerintahan juga akan berpengaruh pada pola kebutuhan, karena arah kebijakan pengembangan ekonomi dan pemanfaatan sumberdaya suatu wilayah ditentukan oleh pemerintah. Kegiatan ekonomi wilayah ini juga akan mempengaruhi tipe dan jumlah limbah cair yang di buang ke sungai. Kebijakan pemerintah sebagai salah satu modal sosial pemerintahan berkaitan dengan pembuangan limbah cair juga mempengaruhi beban limbah yang terbuang ke sungai.

Penetapan dan pengembangan Jabodetabek yang berfungsi sebagai kawasan perkotaan skala Nasional membawa konsekuensi pada:

- a. Terkonsentrasinya jumlah penduduk dalam jumlah besar.
- b. Pertumbuhan penduduk relatif tinggi.
- c. Kebutuhan air per kapita tinggi karena termasuk kategori perkotaan metropolitan/besar.
- d. Kebutuhan air non domestik cukup besar untuk kegiatan industri dan komersial dan kegiatan perkotaan lainnya.

Kebutuhan akan sumberdaya air dipengaruhi oleh modal sosial pemerintahan sebagai pembuat kebijakan pengembangan wilayah dan modal manusia secara individual sebagai pengguna sumberdaya air. Masyarakat yang sadar akan pentingnya penghematan air menjadi suatu keharusan untuk menjamin keberlanjutan sumberdaya air.


Ketersediaan sumberdaya air dalam suatu sistem kewilayahan dipengaruhi oleh kondisi sub sistem lingkungan alam, kondisi sub sistem lingkungan buatan dan kondisi sub sistem sosial. Sub sistem lingkungan alam berkaitan erat dengan pola penggunaan lahan. Makin intensif pemanfaatan lahan untuk perkotaan, makin kecil daya resap air, dan makin sedikit jumlah ketersediaan air. Oleh karena penggunaan

lahan berkaitan erat dengan kebijakan pengembangan wilayah yang kemudian dituangkan dalam rencana tata ruang yang kesemuanya disusun oleh pembuat kebijakan, makin konsistensi pembuat kebijakan (dalam hal ini pemerintah) dalam mengkonservasi daerah resapan air, akan makin terjamin ketersediaan air yang ada. Dengan kata lain kondisi sub sistem lingkungan alam bergantung dan sangat dipengaruhi oleh sub sistem sosial terutama modal sosial pemerintahan.

Keterbatasan lingkungan alam dalam mendistribusikan ketersediaan air sesuai jumlah dan lokasi kebutuhan, dipenuhi oleh keberadaan lingkungan buatan seperti bendungan, embung, drainase, dll. Ketepatan penyediaan lingkungan buatan akan membantu mengoptimalkan pemanfaatan sumberdaya air dan meminimalkan daya rusak air. Kondisi lingkungan buatan ini, pada dasarnya juga sangat bergantung pada modal yang dimiliki oleh lingkungan sosial terutama modal sosial pemerintahan, antara lain kemampuan teknologi, kemampuan finansial, ketersediaan perangkat hukum, kebijakan, dan sebagainya.

4. KESIMPULAN

- 4.1. Status daya dukung sumberdaya air Jabodetabek (2010) adalah:
 - 4.1.1. Secara kuantitas, status daya dukung sumberdaya air Jabodetabek (2010) belum terlampaui, bahkan hanya dengan memanfaatkan potensi air resapan dan air permukaan.

Gambar 1. Alternatif Konsep Pengelolaan Sumberdaya Air Terpadu di Jabodetabek (Sumber: Hasil Analisis, 2013)

- 4.1.2. Dengan tidak dimanfaatkannya air permukaan, status daya dukung sumber daya air (2010) sudah terlampaui yaitu terjadi kelebihan pengambilan air tanah yang diperkirakan mencapai 39,71 m3/detik.
- 4.1.3. Secara kualitas, daya dukung sumberdaya air di semua DAS dapat dikatakan sudah terlampaui.
- 4.1.4. Potensi sumber air permukaan yaitu Sungai Ciliwung, Cisadane dan Bekasi dapat dimanfaatkan sebagai sumber air baku hanya jika lokasi pengambilan airnya terletak di bagian hulu sungai.
- 4.2. Pada tahun 2025, status daya dukung sumberdaya air diperkirakan sudah terlampaui bahkan dengan memanfaatkan semua potensi sumberdaya air yang mencakup potensi air permukaan, potensi air resapan dan rencana penambahan pasokan dari luar wilayah.
- 4.3. Untuk mengoptimasikan kondisi daya dukung sumberdaya air diperlukan pengembangan sistem pengelolaan sumberdaya Air Jabodetabek yang sinergis dengan mengoptimasikan kualitas lingkungan alam, kondisi lingkungan buatan dan kondisi lingkungan sosial (masyarakat dan kelembagaan).

5. DAFTAR PUSTAKA

- Fatimah, E. 2009. Pengembangan Model Daya Dukung Lingkungan Untuk Keberlanjutan Kota (Kajian Daya Dukung Sumberdaya Air dan Lahan di kota Bekasi, Jawa Barat), Disertasi Program Pascasarjana, Program Studi Ilmu Lingkungan, Universitas Indonesia.
- Hart, M. 2006. Indicator of Sustainability: Characteristics of Effective Indicators. www.sustainable measures.com/indicators/characteristics.html. 25 Maret 2008. pk 11.04 WIB.
- Nurhayati, M. 2008. Strategi Optimasi Daya Dukung Sumberdaya Air di Kota Bekasi. Tesis Program Studi Ilmu Lingkungan, Program Pascasarjana, Universitas Indonesia. Jakarta.
- Peraturan Pemerintah No. 26 tahun 2008 tentang Rencana Tata Ruang Wilayah Nasional.

- Rees, E.W. 1990. Sustainable development and the biosphere. Teilhard *Studies*. No. 23. American Tellhard Association for the Study of Man.
- Salim, E. 2006. Mengarustengahkan sustainabilitas dalam kebijakan Pembangunan, Program Studi Ilmu Lingkungan, Program Pasca Sarjana, Universitas Indonesia. Jakarta. *Jurnal Lingkungan*. Vol 1/2006.
- Undang-undang Republik Indonesia Nomor 26 tahun 2007 tentang Penataan Ruang.