Civil and Environmental Engineering for Resilient, Smart and Sustainable Solutions

Edited by Tahar Ayadat

Civil and Environmental Engineering for Resilient, Smart and Sustainable Solutions

1st International Conference on Civil and Environmental Engineering for Resilient, Smart and Sustainable Solutions, Civil Engineering Department - College of Engineering, Prince Mohammad Bin Fahd University AL-Khobar - Saudi Arabia, 3-5 November 2024

> *Editor* **Tahar Ayadat**¹

¹ Civil Engineering Department - College of Engineering, Prince Mohammad Bin Fahd University, AL-Khobar - Saudi Arabia

Peer review statement

All papers published in this volume of "Materials Research Proceedings" have been peer reviewed. The process of peer review was initiated and overseen by the above proceedings editors. All reviews were conducted by expert referees in accordance to Materials Research Forum LLC high standards. Copyright © 2025 by authors

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under License by **Materials Research Forum LLC** Millersville, PA 17551, USA

Published as part of the proceedings series Materials Research Proceedings Volume 48 (2025)

ISSN 2474-3941 (Print) ISSN 2474-395X (Online)

ISBN 978-1-64490-341-4 (eBook)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Distributed worldwide by

Materials Research Forum LLC

105 Springdale Lane Millersville, PA 17551 USA https://mrforum.com

Manufactured in the United State of America 10 9 8 7 6 5 4 3 2 1

Table of Contents

Preface
Committees
Assessment of ready-mix concrete properties in various zones of concrete samples Nayeemuddin MOHAMMED, Mohammad Abdul MANNAN, Intan Nurhafizah Fazriana bt HAMZANIc, Fawzyah S ALKHAMMAS, Danish AHMED, Andi ASIZ, Mohammad Ali KHASAWNEH, Tahar AYADAT, Tasneem SULTANA
Analyzing the differences between the impacts of wind and earthquakes on base shear and
drift in diagrid structures Nayeemuddin MOHAMMED, Andi ASIZ,Shaik ABDULLA, Danish AHMED, Muhammad AJMAL, Tahar AYADAT, Tasneem SULTANA11
Structural damage localization and quantification in cantilever beam structure using modal strain parameters and artificial neural network Rachid AZZI Farid ASMA
Evaluation of concrete slab exposed to weather conditions resulting from global warming Emad ALSHAMMARI, Mang TIA, Ahmed ALSABBAGH, Othman ALANQURI, Abdullah ALBOGAMI
Shear capacity prediction of squat flanged walls using machine learning approach with CatBoost and CTGAN Khalid Sager ALOTAIBL
Comprehensive analysis of structural beams: Theoretical calculations and simulation
analysis using ANSYS N.J. JAIN, S. Sangita MISHRA
A modified design for improving pressure relief valve stability Abdullah Alhamdan, Omar D. Mohammed, Esam Jasim
Site amplification using 1D seismic site response analysis in Islamabad: An application of
building code of Pakistan 2021Muhammad Aaqib, Ali Hamaiz Khan, Muhammad Aaliyan Ashraf, Jahanzeb Gul Abbasi,Zia Ur Rehman
Critical building components analysis: An empirical study
Saidur Rahman Chowdhury, Shahidur Rahman Shihab, Shafinul Islam, Muhammad Saiful Islam77
Experimental study of BFRP-RC beams exposed to elevated temperatures Nour GHAZAL ASWAD, Mohammed AL DAWOOD, Farid ABED, Ahmed EL REFAI 86
An optimization approach process of a 4-story RC building structural plan through
generative design Ilda RUSL Albi ALLIAJ
Structural design analysis of hybrid multi-rise buildings, with CLT and LGS light weight
floor system, at Neom-The Line
Danah ALOTAIBI, Rehaf ALBOGAMI, Sara ALTHUWAIQEB, Fatima ALNASSIR,
Naveemuddin MOHAMMED, Hala ALMADI

Sustainability and cost of a multi-story edifice, with CLT and LGS light weight floor system, at Neom-The Line
Rehaf ALBOGAMI, Danah ALOTAIBI, Sara ALTHUWAIQEB, Fatima ALNASSIR, Haneen ALFAIHANI, Danish AHMED, Saidur Chowdhury, Tahar AYADAT, Mohammad Ali KHASAWNEH
Seismic assessment of reinforced concrete building strengthened with CFRP sheets using
non-linear static approach Muhammad AJMAL, Rashid ISMAEEL, Mona ISMAIL, Danish AHMED, Tahar AYADAT
Cyclic performance of partially grouted reinforced masonry shear walls with boundary elements
Abdulelah AL-AHDAL, Belal ABDELRAHMAN, Khaled GALAL131
A study case: Seismic evaluation of existing six-story office building with flat plate structural system
Jonathan ANDREW, Liana HERLINA, Sugeng WIJANTO, Usman WIJAYA
Experimental evaluation of the masonry infilled reinforced concrete frame under reverse cyclic loading Abbijeet A GALATAGE Satish B PATII
Comparative analysis of structural performance and cost efficiency of reinforced
concrete and steel for a three-story warehouse in high-risk seismic zones
Ilian DJEBBARI, Fahmy HERMAWAN, Usman WIJAYA, Easther Sistha Parameswari WIBISONO
Numerical investigation of the seismic bearing capacity of offshore skirted foundations installed in sand using finite element limit analysis
Alaoua BOUAICHA, Nour El Islam BOUMEKIK, Abdelhak MABROUKI
Fire behaviour of mass timber beam-to-column hybrid connections - A state-of-the-art
Osama (Sam) Salem
Thermal optimization of two-way joist slabs: A comparative study using finite element analysis
Galal AL-MEKHLAFI, Hussain ALSADIQ, Mohammed AL-HURI, Mohammed AL-OSTA, Omar AL-AMOUDI181
Seismic assessment of masonry infilled frame structures Galal AL-MEKHLAFI, Mohammed AL-OSTA, Hamdi AL-SAKKAF
Seismic performance of automatically generated ductile moment resisting frames Salim TAFRAOUT, Nouredine BOURAHLA
Applications of shape memory alloys in structural engineering Hossam EL-SOKKARY
Seismic response of setback building in hilly region with effect of lift well Pranab Kumar DAS, Mainak MALLIK
Refinement of tuned mass damper parameters on machine support structure using dynamic cuckoo search algorithm
Ahmad Muinuddin MAHMOOD, Zamri MOHAMED, Rosmazi ROSLI234

Nonlinear ground performance under a high shaking scenario similar to Boumerdes earthquake
Mohamed KHIATINE, Amal MEDJNOUN, Oubaida AICHE, Ramdane BAHAR
Improved machine learning modeling for predicting shear capacity of RC deep beams Muhammad ARIF, Muhammad LUQMAN, Usama Iftikhar KHAWAJA, Nasrumin ALLAH
An overview of the mechanical and characterization aspects of self-compacting concrete in
relation to the influence of catalyst Nayeemuddin MOHAMMED, Zainab A AL MSHAR, Andi ASIZ, Mohammad Ali KHASAWNEH, Danish AHMED, Tahar AYADAT, Tasneem SULTANA263
Advancements in green sustainable concrete technologies for sustainable development in
Saudi Arabia: A review in light of vision 2030 Nayeemuddin MOHAMMED, Dalya M ALSHALI, Andi ASIZ, Tahar AYADAT, Mohammad Ali KHASAWNEH, Danish AHMED, Tasneem SULTANA
Optimizing cover concrete durability in ready mixed concrete a critical review of curing
methods and their impact on performance Nayeemuddin MOHAMMED, Mohammad Abdul MANNAN, Hend Walid Alotaibi, Andi ASIZ, Tahar AYADAT, Mohammad Ali KHASAWNEH
Slope stability analysis: Case StudyatChwit City, Lebanon Layal JRADI, Bassel SEIF EL DINE, Tahar AYADAT, Andi ASIZ, Samar DERNAYKA 289
The influence of particle separation distance on the prediction of the suction stress curve
of the simple cubic form MESSAST Salah, BENCHEIKH Karim, AYADAT Tahar, MEBIROUK Nadjib, AMRANE Moussa, LAOUAR Med Salah
Review of stone columns, piled raft foundations, and combined stone columns and piles
under raft as a ground improvement techniques for soft clay soils
Muhammad AJMAL
Physical modeling in calibration chamber of the evolution of the soil stiffness around a
piezocone probe under cyclic axial loading in saturated clay
Mohammed KHOUAOUCI, Ali BOUAFIA
Variability of some geotechnical parameters in South Eastern Nigeria Site ONYEJEKWE, Chidi B. N. EDU, Jeremiah C. OBI
Effectiveness of marble powder to improve compaction of low-water content soil Oubaida AICHE, Mohamed KHIATINE, Amal MEDJNOUN, Ramdane BAHAR
Investigation of drying shrinkage, water absorption and strength properties of metakaolin
based geopolymer mortars Pim ALLAM Jamel KHATIR Mohamad EZZEDINE ELDANDACHY 342
Investigation of the density ultrasonic pulse velocity and strength properties of
metakaolin based geopolymer mortars
Layal HAWA, Jamal KHATIB, Mohamad Ezzedine EL DANDACHY
Influence of UV-treated polypropylene fibres on residual compressive strength of
cement paste Daha Shehu ALIYU, Colin T. DAVIE, Enrico MASOERO

Geotechnical enhancement of expansive soils through zeolitic tuff and cement treatments
Abdulla SHARO
Enhancing durability and sustainability in fly ash-slag concrete using advanced metaheuristic algorithms and explainable ML for compressive strength prediction Abba BASHIR, Daha S. ALIYU, Salim I. MALAMI, Abdulazeez ROTIMI, Shaban Ismael Albrka ALI, Sani. I ABBA
Enhancing the durability of fine-grained soils with stabilizers under freeze-thaw cycles Samer RABABAH, Mohammad Ali KHASAWNEH, Abdulla SHARO, Hussein ALDEEKY, Ahmad AL-SAWI
The effectiveness of bio-anchorage system in reinforcing tropical residual slope Kuraisha KAMBALI, Youventharan DURAISAMY, Rokiah OTHMAN, Mohd Arif SULAIMAN, Ramadhansyah PUTRA JAYA, Siti Noor Linda TAIB
Machine learning approach for predicting the compressive and flexural strengths of fiber-reinforced concrete mixtures Roz-Ud-Din NASSAR. Khaled ABDALGADER407
An insightful review on the utilizing crumb rubber as partial substitute to aggregates in concrete Musa ADAMU, Veerendrakumar C. KHED, Yasser E. IBRAHIM417
Mechanical characterization of lightweight expanded clay particles Ben Jamaa Haithem, Elghezal Latifa, Jamei Mehrez428
Development of a SPT&DCPT correlation for coarse-grained soils: A case study Tahir YILDIZ, Yusuf BATUGE, Burak TURAL, Jad ALKHALIFA438
Parametric study of footing on sandy slope soil Danish AHMED, Muhammad AJMAL, Tahar AYADAT, Andi ASIZ
Influence of Omani Sarooj on plasticity and california bearing ratio of expansive soil Abideen GANIYU, Al-Muhanna AL-KHAROUSI, Ahmed AL-SAIDI, Hilal AL-ALAWI456
Performance of sustainable mortars containing marble waste as alternative for natural sand
Ola adel QASIM, Nahla HILAL, Mohammad I. ALBIAJAWI, Nadhim Hamah SOR464
Study of the global factor of safety for mechanically stabilized earth wall (MSE) using numerical modelling
Manmoud S. HAMMAD, Manmoud A. HASSAN, Ayman L. FAYED
Correlation of soft clay and shear strength in West Jakarta Zaki, M., Ngom, M.B., Misshuari, I.W., Sejati, W., Zayadi, R
Machine learning approaches for predicting ultimate tensile strength in 9% Cr steels Seza DINIBUTUN, Yousef ALSHAMMARI, Jafarali PAROL, Leandro BOLZONI501
The relationship between the plasticity index, the friction angle and the cohesion of the soils in Jakarta during El Niño and La Niña cycles Ngom Maïssa, B., Zaki Al Attas M., Imas Windah, Nugroho Muhammad Sapto

Enhancing metro accessibility in Riyadh: Reviewing neighborhood planning to integrate walkable, pedestrian-friendly urban environment design	
Aïssa REZZOUG, Muhammed IMRAN, Omar ALMUTAIRI5	19
Concrete incorporating plastic waste: Challenges and possible solutions Almotaseembillah AHMED, Abubakr F. S. MUSA, Hammad R. KHALID	
Subhan AHMAD	30
Failure analysis of corroded underground pipeline Fatemah AL-ABKAL, Adel HUSAIN5	39
Effect of waste-based geopolymers on mechanical and geotechnical properties of expansive soil	
Rasil KODAH, Samer RABABAH, Mohammad Ali KHASAWNEH, Hussein ALDEEKY, Dima MALKAWI	49
Enhancing the performance of masonry structures using fiber-reinforced polymer technologies under in-plane Loading: A comprehensive review	-
Houria HERNOUNE, Ouided HERIHIRI	59
Polyurethane grout as repair material for concrete structures: Performance evaluation Sadi Ibrahim HARUNA, Yasser E. IBRAHIM, Abdurra'uf M. GORA, M.N. IBRAHIM5	69
Soil stabilization by using brick waste powder Avinash A RAKH, Anandrao A JADHAV, Achyut A DESHMUKH5	77
The influence of fly ash characteristics as a supplementary cementitious material (SCM) on concrete's mechanical properties	
Y. SUNARNO	87
Durability properties of self-compacting concrete developed using rice husk ash and sawdust ash as substitutes for cement and used engine oil as a chemical admixture Abdurra'uf M. GORA, Taibat Onize Yakubu, Sadi Ibrahim HARUNA,	07
Yasser E. IBRAHIM	97
Effect of ground motion frequency content on nuclear power plants including soil- structure interaction Mahamad EL SUADAWY	07
Forly age properties of silicomongeness fume and metaboolin based coment morter	07
Lariy-age properties of sincomanganese tume and metakaoiin-based cement mortar designed using RSM	
Muhammad NASIR, Ahmed Adil ALAMMARI, Abdulrahman Khalid ALKULAIBI.	
Mohammed Abdulghani BUSALEH, Mohammed IBRAHIM, A. B. M. Saiful ISLAM,	
Khalid Saqer ALOTAIBI, Fahad ANWAR6	17
Melted plastics as the exclusive binder for masonry units: A sustainable solution for	
the construction industry	
Paul O. AWOYERA, Peter NWOKOLO6	26
Air pollution from vehicles in Makkah, Saudi Arabia: Challenges and sustainable solutions	
Saidur Rahman CHOWDHURY, Fawzyah ALKHAMMAS, Zainab ALMSHAR, Hala ALMADI	34
A review on sources of water contamination in the Eastern Province, Kingdom of Saudi Arabia	
Salma Ali ALYAHYA, Feroz SHAIK6	43

Renewable energy for green environment in the Eastern Province in KSA: Opportunities and sustainability	
Samar DERNAYKA, Saidur R. CHOWDHURY, Mohammad Ali KHASAWNEH, Layal JRADI, Tahar AYADAT653	
Anaerobic co-digestion of chicken manure and perennial ryegrass: Methane yield and	
Tariq ALKHRISSAT	
Flood Simulation using rainfall-runoff-inundation (RRI) model, over Tripoli City,	
Lebanon Fouadi ALZAATITI, Jalal HALWANI, Najib NICOLAS GERGES, Mohamed SOLIMAN 670	
Bed roughness effects on residence time distribution (RTD) parameters of vortex-type	
stormwater retention ponds	
S. Mahdi YAMINI, Hamid SHAMLOO, Fatemeh ARJOMANDI678	
Sustainable solid municipal waste management in Saudi Arabia: Challenges	
M. Amin Mir. Kim Andrews, Sved M. Hasnain	
Response surface methodology (RSM) for predicting and optimizing the pressure drop in	
submerged multi-jet electrolyte flow system	
Yara Sami H ALGHANNAM, Lujain Abdullah A ALTEWAIRQI, Feroz SHAIK,	
Faizan AHMED, Nayeemuddin MOHAMMED, Ratna Sunil BURADAGUNTA	
Effect of root water uptake on road movement across seasonal changes	
Yuliana YULIANA, Arwan APRIYONO, Anthony Kwan LEUNG, Suraparb KEAWSAWASYONG, Viroon KAMCHOOM	
Low-cost in-situ groundwater monitoring methodology for data-scarce regions	
Abba IBRAHIM, Aimrun WAYAYOK, Helmi Zulhaidi Mohd SHAFRI.	
Noorellimia Mat TORIDI, Wada Idris MUHAMMAD	
Effect of chloride concentration on carbon steel corrosion of boilers supplied with feed	
Water in refineries Abeer ALEARHAN Abdulmubsen AKBAR 729	
In-vessel aerobic composting with leachate recirculation and biochar for enhanced	
compost quality	
Amit Dharnaik, Satish Patil736	
Development model of small orifice flow using simple linear and multilinear regression	
Dina P.A HIDAYAT, Sih ANDAJANI, Muhammad A.G IMANULLAH	_
Preliminary study of water quality in the Jragung river	
A. Primahessa, N. Hazel, E. Mulia, Samuel	
Use of electrocoagulation for treatment of wastewater	-
Bhagyashri PATIL, Satish PATIL, Kishore RAVANDE	
Water use efficiency strategy for the Universitas Trisakti FTSP building	
Shara Putri Dayantika, Bambang Endro Yuwono774	
Simultaneous brine and CO2 utilization in construction material production:	
A IIIE CYCLE ASSESSMENT Aiste ZUKAITYTE Ropeta CHALIUII INA Jose Luis CALVEZ MARTOS	
Answ ZOTATT I TE, KORCH CHALIOLIAN, JOSC-LUIS OAL VEZ-WARTOS,	

Ammar ELHOWERIS, Yousef ALHORR	784
Impact of COVID-19 lockdowns and seasonal variations on PM2.5 in Dhaka City Fazlul Hoque TUSHAR, Rokshana PERVIN, Md Nazrul ISLAM, Mahmudul Hoque TUH Ummay Hani UMMI, Md. Amzad HOSSAIN, Tahia RABBEE	IN, 793
Effect of spent coffee grounds addition on biogas and methaneyield from anaerobic	
digestion of tannery solid waste Solomon Kabada ASEEA, Vankata Pamayya ANCHA, Nigus Gabbiya HABTU	
Mohammad AL-ADDOUS, Tarekegn Limore BINCHEBO	805
Reservoir storage simulation of Sepaku Semoi Dam Penajam Paser Utara Regancy R.W. SAYYID KAMIL, WAHYU SEJATI	815
Development of floating concrete for use as solar photovoltaic systems using expanded	ł
polystyrene and plastic fiber over the water bodies in Bangladesh	
Arnob SARKER, Kazi Abu MANJUR, Md Shakib HOSSEN, Azharul HAQ, Abdullah Al BASED, Abul Kashem Mohammad XAHIA	873
Rainfall-discharge modeling in Juana Watershed	023
K.D. Komara, E. Kurniyaningrum, A. Rinanti, D. Pontan, R. Abdilla, H. Sattar	833
Role of energy services companies in promoting energy and environmental sustainabi	lity
in the GCC Region	U
Syed ILYAS, Muhammad ASIF	843
Municipal solid waste generation, composition and public awareness in Riyadh, Saudi Arabia	
Raouf HASSAN	852
A green-magnetic approach to textile wastewater decolorization using nickel ferrite- enhanced activated carbon from pistachio shells	050
Raout HASSAN, Reda. S. SALAMA, Bushra ISMAIL, Ahmad K. BADAWI	859
Chemically modified rice husk as a green filtration media for chemical oxygen deman removal from pulp and paper effluents	d
Ahmad K. BADAWI, Randa M. OSMAN, Raouf HASSAN	869
Efficacy of built environment on perceived competence, autonomy, regulation, and physical activity engagement: A quantitative sustainability perspective	971
Application of artificial neurol networks (ANN) to evaluate contributed	0/4
numn characteristics	
Nayeemuddin MOHAMMED, Danish AHMED, Tahar Ayadat, Faizan AHMED, Deepanraj Balakrishnan, Hiren MEWADA, Muhammad AJMAL, Tasneem SULTANA	883
Leveraging AI for Environmental Solutions addressing Climate Change, Pollution	
Monitoring and Sustainable Resource Management Noreen Sher AKBAR, Ghanwa BATOOL, Shahan SIDDIQUI, Muhammad Bilal HABIB.	892
The nexus between environmental degradation and social inequality: Intersecting crist Laura M. STRACHAN, Gaydaa AL ZOHBI	ses 903
An inquiry into Amman bus rapid transit elements Rana Ibrahim ABID	910

Investigating the impact of pavement surface features on skid resistance: A review on
machine learning approach Mohammad Ali KHASAWNEH Naveemuddin MOHAMMED
Ahmad Ali KHASAWNEH, Tamer ALNAZER
Assessment of COVID-19 pandemic impact on daily trips in Salah al Din
Governorate in Iraq
Aslam A. AL-OMARI, Bara W. AL-MISTAREHI, Roaa J. ALAWADI, Taleb M. AL ROUSAN, Shareef S. SHAREEF931
Moisture-induced damage in asphalt concrete pavement: A review paper to uncover
the stripping phenomenon Mohammad Ali KHASAWNEH, Ansam SAWALHA, Mohammad Ahmad ALSHEYAB, Ahmad Ali KHASAWNEH, Amani SAWALHA941
A comprehensive review of intelligent transportation systems toward alleviating traffic congestion
Ansam SAWALHA, Amani SAWALHA, Mohammad Ali KHASAWNEH951
Numerical analysis of pavement structure on expansive subgrade stabilized with surcharge pressure
Adel Djellali, Rachida Malaoui, Zied Benghazi, Debojit Sarker, Behrooz Saghafi
Incorporating 3D printing and machine learning to revolutionize transportation infrastructure: Building tomorrow
Mohammad A. ALKHAWALDEH, Mohammad Ali KHASAWNEH
Evaluation of asphalt pavement maintenance practices in Kuwait Fatemah Al-Owmi, Nayef Al-Othman, Haya Almutairi, Suad Al-Bahar
Roads failure and sustainability challenges of Zambian roads:
A review of current practice
Nathan Ntanda CHILUKWA, Mohamed Mostafa Hassan MOSTAFA, Christopher NGWIRA
Sustainable stabilization of expansive soils using burned olive waste ash (BOWA) and lime
for pavement construction
Ibrahim FAWAIER, Samer RABABAH, Mohammad Ali KHASAWNEH, Hussein ALDEEKV, Madhar TAAMNEH, Tareg ABU AGOLAH
Impact of crushed cond and lime on clovey soil for payement sub-grade
Rajshekhar G. RATHOD, Kishore RAVANDE, Nayeemuddin MOHAMMED, Tahar AYADAT, Lingala Syam SUNDAR
Performance evaluation of asphalt binder modified with olive mill
wastewater ash (OMWA)
Madhar M. TAAMNEH, Aiman Q. JARADAT, Musab ABUADDOUS, Samer R. RABAB'AH, Jawad TAAMNEH1020
An experimental investigation on dense bituminous macadam (IRC- grading 2) mixes
WITH COAL ASH Sagar Kailas SONAWANE Arun Kumar DWIVEDI Dramanand I. NAKTODE 1020
Analyzing locations prone to causing road crash injuries and fatalities in Saudi Arabia
Omar ALMUTAIRI

Incorporating date seed powder (DSP) into asphalt binder: A feasibility study on sustainable and economical practices in Saudi Arabia
Rana Aldawood, Dalya Alshali, Zainab Almshar, Maryam Alkhuraim, Fawzyah Alkhammas, Mohammad Ali Khasawneh
Investigating the rheological properties of rubberized-bitumen blends modified with warm
MIX Additives Hava AI MUTAIRI Zainah AWADH 1061
Investigation on moisture suscentibility of asphalt mixtures containing ground tire rubber
and de-vulcanized rubber
Fatemah Alasfour, Hayaa Almutairi, Suad Al-Bahar1068
Evaluation of interlayer bond strength for C55 emulsion prime bituminous
binders with aggregates
Samuel ABEJIDE, Reatile PITSO 10/5
Investigating top-down cracking of pavement in recycled waste plastic asphalt Samuel ABEJIDE, Jacob ADEDEJI, Mohamed Mostafa Hassan Mostafa
Trends and challenges in traffic safety: An analysis of road accidents and fatalities in Lebanon (2011-2024)
Layal JRADI, Raef HAJ DIAB, Bassel SEIF EL DINE1099
A Study of workflow with synchronization of design process on autodesk construction cloud
Nattasit Chaisaard, Thanom Seehatrai, Grit Ngowtanasuwan, Jinthisa Suraprasert1109
A DEMATEL-based method for developing and assessing key performance indicators for construction projects
ALAA SALMAN, SAMER AL-IMAMY 1121
Cost estimation model for residential buildings: A fuzzy expert system Saidur Rahman Chowdhury, Muhammad Saiful Islam, Md. Mahfuzun Nobi Mahim, Adri Das
Sustainability challenges and opportunities in UAE construction industry: An analytical
Yousef ALQARYOUTI, Mariam AL SUWAIDI, Raed Mohmood ALKHUWAILDI, Hind KOLTHOUM, Issa YOUSSEF, Mohammed AL IMAM
Street, road, and boulevard: Permeable, smart, and creative systems
transforming Riyadh Massimiliano GOTTI PORCINARI1149
Solutions for maintenance delays in Saudi oil and gas: Integrating interpretive structure modeling and relative importance index
Adel ALSHIBANI
Evaluating virtual reality implementation for risk register identification: A case study of architectural project works
Ryan Faza PRASETYO, Bambang Endro YUWONO, Darmawan PONTAN, RAFLIS, Feby Kartika SARI
Building information modelling (BIM)-based solar path and shadow analysis for energy- efficient building design
Fazlul Hoque TUSHAR, Tahia RABBEE, Md Shakib HOSSEN, Md Feroz MIAH,

Siam Ul BADHON, Akram ULLAH1179	
Characteristics of compressed stabilized earth blocks for construction in Sudan Omer AHMED, Abdelrahman A. AWAD, Mohamedelmustafa AHMED, Yousif Hummaida AHMED, Mahmoud AHMED, Abubakr E.S. MUSA,	
Abbas Abdulalim ABBARA	
A Comprehensive bibliometric review of circular economy in the building sector: Integrating sustainable practices Zebug MOUSTAEA, Muhammad ASIE, Ibachim WUNU	
Zanwa MOUSTAFA, Munaniniau ASIF, Ioranini w UNI	
Pradesh - Krishna River Delta	
P. Sundara Kumar, I.L.J. Baktha Singh, P. Ranga Babu, K. Naga Raju, P. Andrew Blaze 1207	
Sustainable public space design: Integrating ecological, economic, and social frameworks	
in urban environments	
Chuloh JUNG, Jamal F. NAYFEH, Nadine FAYAD, Layal Seif EL DINE,	
Masnael S. AL-AHMADI	
Smart parks in the post-COVID era: Integrating technology for urban resilience and sustainability in Riyadh, Saudi Arabia	
Chuloh JUNG, Jamal F. NAYFEH, Gaydaa AL ZOHBI, Wijdan M.N. ALDOWSARY, Mashael S. AL-AHMADI	
Leveraging Japan's smart city innovations for sustainable urban development in Riyadh, Saudi Arabia	
Chuloh JUNG, Jamal F. NAYFEH, Shams M. ALSHAMASI, Heba K. BADER, Mashael S. AL-AHMADI	
Embodied energy minimisation techniques towards sustainable construction: A case study of Nigerian construction industry	
Kabiru Rogo USMAN, Abdulrahman HARUNA, Shamsuddeen USMAN, Ibrahim SHU'AIBU, Abbas USMAN1244	

Keyword Index

Preface

On behalf of the conference committee, I would like to thank all the contributors and participants in the 1st International Conference on Civil and Environmental Engineering for Resilient, Smart and Sustainable Solutions (CEES2024) which had been held at Prince Mohammad Bin Fahd University (PMU) Khobar, Kingdom of Saudi Arabia on 3-5 November, 2024. I was honored to serve as Chairman of this important event. Firstly, I would like to thank the organizing committee for their unrelenting efforts to organize this congress. In the world community, we were all aware of how important research has been in contributing to the body of knowledge and the development of prospects. The conference aims to exchange scientific information and knowledge in the development of recent and future infrastructures that are resilient, smart, and sustainable. The conference provides an excellent environment for government policy makers, practicing professional engineers, researchers, university professors, students, and general public to extend their interests and expertise in addressing and solving the infrastructure issues faced by societies. The success of CEES2024 reflects a collective commitment to advancing civil and environmental engineering practices. As participants departed Al-Khobar, they carried with them not just new knowledge but also a renewed sense of purpose in shaping a sustainable future. Finally, I thank the keynote speakers, presenters and authors for their contributions.

Dr. Faisal Yousif Al Anezi Conference Chair

Committees

Honorary Chair

Dr. Issa H. Alansari

Conference Chair

Dr. Faisal Yousif Al Anezi

Technical Program Committee

Dr. Erasmo Carrera, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Jamal F. Nayfeh, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Adel M. Hanna, University of Concordia, Canada Dr. Mita Ray, CBE - Western University, Canada Dr. Chandra Sekhar Matli, National Institute of Technology, India Dr. Jamal Khatib, University of Wolverhampton, UK Dr. Iman Hajirousouliha, Sheffield University, UK Dr. Muhammad Imran Khan, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Mushtaq Khan, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Hassaine Daouadji Tahar, Tiaret University, Algeria Dr. Mohamed ElGawady, Missouri University of Science and Technology, USA Dr. Ömer AĞA, Associate Dean, Imam Abdulrahman Bin Faisal University Dr. Ramli Bin Nazir, Universiti Teknologi Malaysia, Malaysia Dr. Maria Elektorowicz, University of Concordia, Canada Dr. Nadeem Shbeeb, Fahad bin Sultan University Dr. Aslam Al-Omari, Jordan University of Science and Technology Dr. Abdullah Ahmad Sharo, Sharo Al Ain University Dr. Larbi Belagraa, University of M'Sila, Algeria Dr. Samer Rababaah, Jordan University of Science and Technology Dr. MiswarTumpu, University of Hasanuddin, Indonesia Dr. Riyadh Al-Raoush, Qatar University, Qatar Dr. Riyadh Alameri, Deakin University, Australia Dr. Khaled E. Galal, University of Concordia, Canada Dr. Takuro Mori, Hiroshima University, Japan Dr. Michela Basili, Universitas Mercatorum, Italy Dr. Mahendra Kumar Shrimali, MNIT Jaipur, India Dr. Syed Masiur Rahman, Applied Reseach Center for Env. & Marine Studies, KFUPM Dr. Sainath Vaidya, KNNU university, India Dr. Yasmina Kellouche, Djilali Bounaama University, Algeria Dr. Farah Hafeez, University of Concordia, Canada Dr. Randa Oqab Mohammad Mujalli, Hashemite University Dr. Ala Abbas, The University of Akron Dr. Siti Noor Linda bt Taib, Universiti Malaysia Sarawak, Malaysia Dr. Malek Brahimi, New York City College of Technology, USA Dr. Faramarz Djavanroodi, PMU University, Saudi Arabia Dr. Lina Zhou, University of Victoria, Canada Dr. Basma El Zein, University of Business & Technology, Jeddah Dr. Muhammad Nurunnabi Siddiquee, Chemical Engineering Dept. KFUPM

Dr. GirmaBitsuamlak, Western University, Canada Dr. Nayef Alslaihi, Eastern Province Traffic Safety Council Dr. Essam Jassim, PMU University, Saudi Arabia Dr. Muhammad Asad, PMU University, Saudi Arabia Dr. Mabrouk Touahmia, University of Hail, Saudi Arabia Dr. Muhammad Kalimur Rahman, KFUPM University, Saudi Arabia Dr. Alaa Salman Alobaidi, Imam Abdulrahman Bin Faisal University, Saudi Arabia Dr. Mohamed Baheddi, Batna University, Algeria Dr. M.M. Rahman, Professor, King Faisal University Dr. Mohamed Abdullah Almamun, Sultan Qaboos University, Oman Dr. Aly Mousaad Aly, Louisiana State University, USA Dr. Ghazi Alkhateeb, University of Sharjah Dr. Mohammad Irshidat, Center for Advanced Materials (CAM) Qatar University Dr. Jamal Nusairat, E.L. Robinson Engineering Dr. Januarti Java Ekaputri, Sepuluh November Institute of Technology, Indonesia Dr. Mustafa Aytekin, University of Bahrain, Bahrain Dr. Mohammed Mustapha Bessaim, Mascara University, Algeria Dr. Mohamed Khemissa, M'Sila University, Algeria Dr. Mohammad Reza Nikoo, Sultan Qaboos University, Oman Dr. Feroz Shaik, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Wasim Barham, Jordan University of Science and Technology Dr. Adel Benchabane, Biskra University, Algeria Dr. Mohamed Ajmal, University of Bahrain, Bahrain Dr. Baraa Wasfi Mistarihi, Jordan University of Science and Technology Dr. Omar Amoudi, Oxford Brookes University, England Dr. Ikrema Hassan, UNB, Canada Dr. Shaik Abdullah, Khaja Banda Nawaz University, India Dr. AlirezaBagheriSabbagh, University of Aberdeen, UK Dr. Mousa Bani Baker, Al-Zaytoonah University of Jordan Dr. Alsidqi Hasan, Universiti Malaysia Sarawak, Malaysia Dr. Mahdi Abdeddaim, Biskra University, Algeria Dr. Khalid Ahmad Mohammad Ghuzlan, Ajman University Dr. Hasim Altan, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Md. Shah Alam, University of Bahrain, Bahrain Dr. Salah Messast, Skikda University, Algeria Dr. Ahmad Al-Omari, Yarmouk University Dr. Massimiliano Gotti Porcinari, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. MadharTaamneh, Yarmouk University Dr. Ali Bouafia, University of Blida, Algeria Dr. Hassan El-Chabib, Western University, Canada Dr. Shaikh Abdur Razzak, Professor, KFUPM Dr. Shiv Dayal Bharti, MNIT Jaipur, India Dr. Rajesh Rupakhety, University of Iceland, Iceland Dr. Amr Ba Rahim, C.I.R.A.M.M., Canada Dr. Mozahar Hossain, Professor, KFUPM, Saudi Arabia Dr. Meng Gong, University of New Brunswick, Canada Dr. Zainah Binti Ibrahim, University of Malaya, Malaysia

Dr. Sunil B. Ratna, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Mohammad Abdu Mannan, Unimas University, Malaysia Dr Mohammed Seddik Meddah, Sultan Qaboos University, Oman Dr. Mohammed Azhar, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Usama Ali Ebead, Qatar University, Qatar Dr. Shantamallappa Kadaganchi, INDUS University, India Dr. Vishwanath Karad, MIT World Peace University, India Dr. P. Sundara Kumar, Bapatla Engineering College, India Dr. Sunil Kumar Tengali, Reva University, India Dr. Mohamed Bencheikh, M'Sila University, Algeria Dr. Farid Asma, University of Tizi-Ouzou, Algeria Dr. Khalid Saqer Alotaibi, Dammam University, Saudi Arabia Dr. Ugurcan Ozdemir, Jacob Engineering Group, Boston Dr. Hassan A. Abbas, Prince Mugrin University, Saudi Arabia Dr. Abdelkader Tahakourt, University of Bejaia, Algeria Dr. Nadeem Pasha, Khaja Bandanawaz University, India Dr. Talal Etri, Sultan Qaboos University, Oman Dr. Rabah Soltani, USTOran, Algeria Dr. Bani Feriel BRAHMI, University Constantine3, Algeria Dr. Praveen Kannam, REVA University, India Dr. Kishore Ravande, MIT-ADT University Pune, India Dr. Bouchaib Zazoum, Southern Arkansas University, USA Dr. Uneb Gazder, University of Bahrain, Bahrain Dr. Bilal Abu Alfoul, Hashemite University, Jordan Dr. Sharifan Hamidreza, The University of Texas at El Paso, USA Dr. Ben Ammar Ben Khadda, Biskra University, Algeria Dr. Satish Baliram Patil, MIT Art, Design and Technology University, India Dr. Zeinab Yavari, Qaboos University, Oman Dr. Shadi Mohmmad Ahmad Hanandeh, Al-Balqa applied university, Jordan Dr. Furqan Ahmad, KAUST, Saudi Arabia Dr. Mahmoud Enieb Osman Enieb, Assiut University, Egypt Dr. Muhammad Imran, Sir Syed University of Engineering & Technology (SSUET), Pakistan Dr. Irfan Khan, CECOS University, Peshawar, Pakistan Dr. Hocine Hammoum, University of Tizi-Ouzou, Algeria Dr. Farhad Reza, Minnesota State University, Mankato, USA Dr. Mohammad Ahmad Alsheyab, Iowa State University, USA Dr. Ansam Sawalha, American University of Madaba, Jordan Dr. Anas Abualia, Louisiana State University, USA Dr. Manjunath D C, KBNU University, India Dr. Omar Albatayneh, German Jordan University, Jordan Dr. Ahmad Ali Khasawneh, The Ohio State University, USA Dr. Muhammad Farooq, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Abdul Shakoor, University of Engineering and Technology, Peshawar, Pakistan Dr. Mohammad A. Hassanain, KFUPM, Saudi Arabia Dr. T. Yasmeen, KFUPM, Saudi Arabia Dr. Muhammad Nasir, Imam Abdulrahman Bin Faisal University, KSA Dr. Nawras Shatnawi, Al-Balga applied university, Jordan

Dr. Muhammad Ijaz Khan, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Rajshekhar Gopal Rathod, MIT Art, Design and Technolgy University, India Dr. Dania Al-Oqaily, University of Notre Dame, USA Dr. Riaz Muhammad, University of Bahrain, Bahrain Dr. Nael Alsaleh, American International University, Kuwait Dr. Noreen Sher Akbar, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Arshad Khan, Hamad Bin Khalifa University, Qatar Dr. Nor Zurairahetty Bin Mohd Yunus, Universiti Teknologi Malaysia, Malaysia Dr. Firas Al Mahmoud, Lorraine University, France Dr. Sumant Kulkarni, REVA University, India Dr. Seelam Srikanth Reddy, REVA University, India Dr. Niaz Bahadur, University of Bahrain, Bahrain Dr. S M Zakir Hossain, University of Bahrain, Bahrain Dr. Sudarshan Sampatrao Bobad, University of PCCOER Ravet Maharashtra, India Dr. Ibtissem Allali, M'Sila University, Algeria Dr. Deepanraj Balakrishnan, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Nassima Bakir, M'Sila University, Algeria Dr. Faisal Asfand, University of Huddersfield, UK Dr. Mazouri Belhadri, University of Science and Technoloy of Oran, Algeria Dr. Hiren K. Mewada, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Gazi Iftekhar Mahmood, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Mohammad Arif Kamal, Aligarh Muslim University, India Dr. Muhammad Aaqib, National University of Technology (NUTECH), Pakistan Dr. Seifeddine Tabchouche, University of Setif, Algeria Dr. Mohamed Khouaouci, USTHB, Algeria Dr. Abubakr Elfatih S. Musa, KFUPM, Sausi Arabia Dr. Mohd Amin Mir, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Imran Hanif, CECOS University, Peshawar, Pakistan Dr. Hazrat Bilal, Hamad Bin Khalifa University, Qatar Dr. Sardar Muhammad Bilal, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Apostolos Pesyridis, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Kabiru Usman Rogo, Nuhu Bamalli Polytechnic Zaria, Nigeria Dr. Khairunisa Muthusamy, Universiti Malaysia Pahang Al-Sultan Abdullah, Malaysia Dr. M. l. Vara Prasad, National Institute of Technology, India Dr. Gaydaa Al Zohbi, Prince Mohammad Bin Fahd University, Saudi Arabia Dr. Bashir A. K. Saleh, Libyan Academy, Libya Ms. Nahla Nimr Makki, Ministry of Oil, Petroleum and Research Development Center, Iraq Ms. Shimol Philip, National Institute of Technology Puducherry, India Mr. Muhammad Sani Bello, Southeast University at Nanjing, China Mr. Lawrence Z. Tuleun, University of Ilorin, Nigeria

Organizing Committee

Dr. Andi Asiz Dr. Tahar Ayadat Dr. Mohammad Ali Khasawneh Dr. Saidur Chowdhury Dr. Layal Jradi Dr. Muhammad Azhar Khan Mr. Rusty Dela Cruz De Leon Mr. Stephen John Limbos Mr. Wael Yousif Mohamed Suliman Dr. Faramarz Djavanroodi Dr. Esam Jassim Dr. Muhammad Asad Dr. Muhammad Asad Dr. Muhammad Imran Khan Dr. Mushtaq Khan Eng. Danish Ahmed Eng. Mohn Nayeemuddin Eng. Samar Dernayka Mr. Antonio Rialo Ifurong

https://doi.org/10.21741/9781644903414-82

Preliminary study of water quality in the Jragung river

L. Toffin^{1,a}, S. Thieble^{1,b}, E. Kurniyaningrum^{2,c*}, H. Boileau^{1,d}, A. Rinanti^{2,e}, M.A. Kurniawan^{3,f}, A. Primahessa^{4,g}, N. Hazel^{2,h}, E. Mulia^{2,i}, Samuel^{2,j}

¹Polytech Annecy-Chambéry, Université Savoie Mont Blanc, France

²Jurusan Teknik Sipil, Universitas Trisakti, Indonesia

³Bidang Operasi dan Pemeliharaan, BBWS Pemali Juana- Directorate General of Water Resources (DGWR), Ministry of Public Works and Housing (MPWH), Indonesia

⁴Centre of Ground Water & Raw Water, Directorate General of Water Resources (DGWR), Ministry of Public Works and Housing (MPWH), Indonesia

^alouisweitoffin@gmail.com, ^bsimonthieble@gmail.com, ^ckurnianingrum@trisakti.ac.id, ^dherve.boileau@univ-savoie.fr, ^eastririnanti@trisakti.ac.id, ^fmochamad.kurniawan@pu.go.id, ^gangga.primahessa@pu.go.id, ^hnyimas051002000057@std.trisakti.ac.id, ⁱedwin051002000009@std.trisakti.ac.id, ^jsamuel051002000044@std.trisakti.ac.id

Keywords: Pollution Index, Pollution Load Capacity, Water Quality, Jragung River

Abstract. The concentration of pollutants in the Jragung River differs in the dry season and the rainy season. The purpose of this study was to analyze the effect of the dry season on the water quality of the Jragung River in the Upper Zone. The method used was grab sample with reference to SNI 698957:2008. Meanwhile, water quality data analysis was carried out using quantitative data analysis. Testing was carried out at the Environmental Engineering Laboratory of Trisakti University. The concentration of pollutants in the Jragung River differs in the dry season and the rainy season. The purpose of this study was to analyze the water quality of the Jragung River in the Upper Zone. The method used was grab sample with reference to SNI 698957:2008. Meanwhile, water quality data analysis was carried out using quantitative data analysis. Testing was carried out at the Environmental Engineering Laboratory of Trisakti University. The results showed that the concentration of detergent in the Jragung River at station 1 was 0.07 mg/L and 0.1 mg/L at station 2, both below the quality standard of 0.2 mg/L set by Government Regulation Number 82 of 2001. The Pollution Index (IP) of 7.77 indicates moderate pollution. The pH of the water ranges from 8.4 to 8.7, still suitable for aquatic life. However, several parameters, including COD, DO, Phenol, Phosphate, Oil and Fat, Sulfide, Lead, Total Coliform, and Fecal Coli, exceed the river water quality standard limits so that the use of water from the Jragung River requires a treatment process to meet the class 1 raw water quality standard.

1. Introduction

Climate variability is the change in temperature, rainfall patterns, and precipitation that impacts the social and natural environment [1,2]. Various human activities have caused the average temperature on the earth's surface to increase over the last century [3]. The increase in surface temperature causes increased evaporation from the oceans and land which causes changes in the global average rainfall [4]. Population growth and anthropogenic activities greatly affect water resources as well as water needs which affect the quality of water resources [5]. In the IPCC scenario, the global average air temperature increases between 1.8 and 4.0 °C, causing a tendency for drought in summer, especially in subtropical, low and middle latitudes, and an increase in extreme events in general, conditions that directly affect water quality. dilution or concentration of solutes [6]. Increased temperature in water resources increases the concentration of solutes in

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials Research Forum LLC.

water and causes a decrease in dissolved oxygen concentration [7,8]. Extreme rainfall events result in changes in hydrological conditions including runoff and transport of solid materials. Drought events that cause waterlogging can affect water quality because they increase decomposition and release of organic matter into runoff and increased solar radiation can also change water quality [9,10].

In Indonesia, water quality is affected by climate change through fluctuations in temperature and rainfall. Research shows that maximum temperatures increase significantly in the premonsoon season every year and a significant increase is seen in August [11, 17]. Current water resource conditions indicate that climate change poses a greater danger than previously thought, namely affecting the water cycle and having serious impacts on life and sustainable development [12]. Increasing water pollution reflects future trends and predicts potential variations in water quality amidst the ongoing threat of climate change. This shows that high local temperatures and frequent/intensive rainfall against climate change will increase the discharge of suspended solids and the addition of nutrients to water bodies [13].

The quality of water sources needs to be maintained from pollutants that can interfere with living things. In each of its uses, water has its own quality standards for each different activity or according to its intended use. The use of water must pay attention to quality standards because water quality will affect human health [14]. Water that has poor quality will contain pollutants, which can be bacteria, viruses and/or parasites [15]. The classification of water quality is determined by: into four classes, namely Class 1, water that can be used as raw drinking water, and other uses that require the same water quality as its use; Class 2: water that is used for water tourism infrastructure and facilities, freshwater fish farming, etc. and livestock, plant irrigation, and/or other uses that require the same water quality as its use; Class 3: water that can be used for freshwater fish farming, livestock, water for plant irrigation, and/or other uses that require the same water quality as its use; requires the same water quality as its use and Class 4: water that can be used to irrigate plants, and/or other uses that require the same water quality as its use [16]. To determine the level of pollution of a body of water, it is necessary to conduct a study of the level of pollution of the water. river flow, you can use water quality checks in terms of chemistry, physics and biology. River quality monitoring must be carried out within a certain period of time. By calculating the Pollution Index (IP) (Decree of the Minister of State for the Environment No. 15 of 2003) the level of pollution relative to water quality standards can be known.

This study discusses the condition of surface water quality in the Jragung River, which will be used for raw water needs, irrigation and hydropower

2. Method

2.1 Sampling Procedures

The methodology of sampling water quality in this activity is based on the procedure of the Indonesian National Standard (SNI) 6989.57:2008 about Water and Wastewater section 57: Surface Water Sampling Method. The location of river water sample collection is determined based on the following river water discharge:

- a. River with discharge of less than 5 m^3 /second, samples are taken at one point in the middle of the river at a depth of 0.5 times the depth of the surface or taken with an integrated sampler so that samples of water from the surface to the bottom evenly mixed.
- b. River with a discharge between 5 m³/second 150 m³/second, samples are taken at two points each a distance of 1/3 and 2/3 of the width of the river at a depth of 0.5 times the depth of the surface or taken with an integrated sampler so that samples of water from the surface to the bottom are evenly mixed and then mixed.
- c. Rivers with a discharge of more that 150 m³/second, samples are taken at a minimum of six points at a distance of $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ of the width of the river at a depth of 0.2 and 0.8 times the

depth of the surface or taken with an integrated sampler so that samples of the water from the surface to the bottom are evenly mixed.

Sampling time can be done in dry season and wet season with the regulations, mentioned in SNI 6989.57:2008 about The Surface Water Sampling Method [18]. The sample parameters used refer to Government Regulation of the Republic of Indonesia No. 22 Year 2021 [19], about the Implementation of Environmental Protection and Management for Raw Water Needs (Table 1). *Table 1. Classification of surface water area functions based on Government Regulation of the*

Classification standard value items	Unit	Class I	Class II	Class III	Class IV
PHYSICAL ANALYSIS					
Total Dissolved Solid (TDS)	mg/L	1000	1000	1000	1000
Total Suspended Solid (TSS)	mg/L	40	50	100	400
Temperature	°C	6-9	6-9	6-9	6-9
CHEMICAL ANALYSIS					
Ammonia (NH3-N)	mg/L	0.1	0.2	0.5	-
Iron (Fe)	mg/L	0.3	-	-	-
COD	mg/L	10	25	40	80
Detergent (MBAS)	mg/L	0.2	0.2	0.2	-
DO	mg/L	6	4	3	1
Phenol	mg/L	0.002	0.005	0.01	0.02
Phosphate (PO4)	mg/L	0.2	0.2	1.0	-
Cadmium (Cd)	mg/L	0.01	0.01	.0.01	0.01
Chloride (CL-)	mg/L	300	300	300	600
Chromium Val. 6 (Cr6+)	mg/L	0.05	0.05	0.05	1
Manganese (Mn)	mg/L	0.1	-	-	-
Oil and Grease	mg/L	1	1	1	10
Nitrate as N (NO3-N)	mg/L	10	10	20	20
Nitrite as N (NO2-N)	mg/L	0.06	0.06	0.06	-
pH	-	6-9	6-9	6-9	6-9
Zinc (Zn)	mg/L	0.05	0.05	0.05	2
Sulfate (SO4)	mg/L	300	300	300	400
Sulfide	mg/L	0.002	0.002	0.002	-
Copper (Cu)	mg/L	0.02	0.02	0.02	0.2
Lead (Pb)	mg/L	0.03	0.03	0.03	0.5
MICROBIOLOGICAL ANALYSIS					
Total Coliform	MPN/ 100 ml	1000	5000	10000	10000
Total Fecal Coli	MPN/ 100 ml	100	1000	2000	2000

Republic of Indonesia No. 22 Year 2021

2.2 Pollution Index (PI)

Pollution Index is used to determine the level of pollution relative to the parameters of water quality allowed [20]. The Pollution Index (PI) is designated for an allotment, then it can be developed for some designation for all parts of a body water or part of a river. The Pollution Index includes a wide range of independent and meaningful quality parameter groups.

The water quality index is important for resolving multi-parameter water analysis into single digit scores. One of the methods to determine the water quality index is river water pollution indices method (Pij) according to Law of Ministry of Environmental No. 115 year 2003.

Water pollution index is utilized to evaluate water body quality and compare it with the river quality standard. Water quality can be decreasing caused by contaminant substances in the water body. In order to monitor the amount of contaminant substances, water pollution index can be applied.

Each Ci/Lij value indicates the relative contamination caused by the air quality parameter. This ratio has no units. The Ci/Lij value = 1.0 is a critical value because this value is expected to be met for a water quality standard. If Ci/Lij > 1.0 for a parameter, then the concentration of this parameter must be reduced or set aside if the water body is used for the designation (j). If this parameter is a meaningful parameter for the designation, then absolute treatment must be carried out for that air. In the IP model, various air quality parameters are used, so in its use, the average value of all Ci/Lij values is needed as a measure of pollution, but this value will not be meaningful if one of the Ci/Lij values is greater than 1. So this index must include the maximum Ci/Lij value.

Figure 1. Index Statement for a Designation (j) [20]

If (Ci/Lij)R is the coordinate and (Ci/Lij)M is the abscissa, then PIj is the intersection point of (Ci/Lij)R and (Ci/Lij)M in the plane bounded by the two axes. The waters will be increasingly polluted for a designation (j) if the value of (Ci/Lij)R and or (Ci/Lij)M is greater than 1.0. If the maximum value of Ci/Lij and/or the average value of Ci/Lij are greater, then the level of pollution in an air body will also be greater. So the length of the line from the origin to the point Pij is proposed as a meaningful factor to express the level of pollution.

If Lij states the concentration of water quality parameters listed in the Quality Standards for a Water Allocation (j) and Ci states the concentration of water quality parameters (i) obtained from the results of water sample analysis at a sample collection location from a river channel, then PIj is the Pollution Index for the allocation (j), which is a function of Ci/Lij. The value of Pij can be determined by:

$$PIj = \frac{\sqrt{\left(\frac{Ci}{Lij}\right)_{M}^{2} + \left(\frac{Ci}{Lij}\right)_{R}^{2}}}{2}$$

Where:

PIj	: pollution index
Lij	: Concentration of water quality standard j, for parameter i
Cij	: Concentration of parameter i
(Ci/Lij)R	: value, Ci/Lij average
(Ci/Lij)M	: value, Ci/Lij maximum

Table 2. Standard of surface water quality classification (The Ministry of Environment No.	115
of 2003)	

Pollution Index (PI)	Water quality level
$0 \le PI \le 1.0$	Meet water quality standards
$1.0 \le \mathrm{PI} \le 5.0$	Lightly polluted
$5.0 \le PI \le 10.0$	Moderately polluted
PI > 10	Heavily polluted

3. Case Study

3.1 Study Area

This research was carried out in the Jragung Watershed, which is one of the largest rivers in Demak Regency, Central Java Province, located in the middle part of the Jragung Watershed. The Jragung River is a river that has the function of controlling floods, meeting irrigation water needs, raw water supplies, and so on. The Jragung River is located + 20 km east of Semarang City, Karangawen District, Demak Regency, Central Java Province, with an area of 135.22 km. Meanwhile, the main river in the Jragung watershed is Kali Jragung, which has a river length of 72.44 km.

Geographical Location The Jragung watershed is located in the northern part of Central Java which crosses 4 (four) districts, namely Demak district (65,145.98 ha), Semarang (25,932.55 ha), Grobogan (25,654.64 ha) and Semarang City (1,304.48 ha). And the coordinate position of the study is between 7°09'26.0"S -110°31'01.0"E and 7°11'21.3"S 110°29'49.3"E. The location map showing the Jragung Watershed and monitoring sites (sections) is described in Figure 2.

Figure 2. Study area

The Jragung watershed has a morphological structure consisting of low hills with high folding and fault intensity in the west which gradually weakens to the east. The geological formation mainly consists of mudstone, marl and sandstone with a thickness of more than 2000 meters. This plain has a slope of 0°-2° at an elevation of 50 meters, composed of carbonate sandstone and marl. This area, including Borangan and Kedungklapa, is used for settlements and plantations. These hills are oriented west-east with a slope of 30°-60° at an elevation of 97-160 meters, consisting of carbonaceous sandstone and marl, and influenced by folds and faults. This area is used for settlements, plantations and rice fields.

Based on the results of field observations, the geological survey area is divided into 4 rock units, sorted from oldest to youngest, namely the interbedded carbonate sandstone unit and the Banyak Napal, Kalibeng marl unit. Based on comparisons with regional stratigraphy, the relationship between the two units is menjari. The naming of these rock units is based on megascopic observations, namely based on their characteristics or physical characteristics such as rock structure, rock texture and composition. The geological structures that develop, namely folds and faults, the process of forming these geological structures are the result of plate tectonics at work.

Figure 3. Conditions of the study location

Classification standard value items	Unit	Upstream	Middle stream	Class I
PHYSICAL ANALYSIS		-		
Total Dissolved Solid (TDS)	mg/L	293	293	1000
Total Suspended Solid (TSS)	mg/L	13	13	40
Temperature	°C	34	32	6-9
CHEMICAL ANALYSIS				
Ammonia (NH3-N)	mg/L	0.07	0.07	0.1
Iron (Fe)	mg/L	0.16	0.16	0.3
COD	mg/L	12.7	12.7	10
Detergent (MBAS)	mg/L	0.07	0.07	0.2
DO	mg/L	6.6	6.6	6
Phenol	mg/L	0.1	0.1	0.002
Phosphate (PO4)	mg/L	0.34	0.34	0.2
Cadmium (Cd)	mg/L	0.008	0.008	0.01
Chloride (CL-)	mg/L	41	41	300
Chromium Val. 6 (Cr6+)	mg/L	0.03	0.03	0.05
Manganese (Mn)	mg/L	0.04	0.04	0.1
Oil and Grease	mg/L	1.03	1.03	1
Nitrate as N (NO3-N)	mg/L	1	1	10
Nitrite as N (NO2-N)	mg/L	0.04	0.04	0.06
pH	-	8.7	8.4	6-9
Zinc (Zn)	mg/L	0.005	0.03	0.05
Sulfate (SO4)	mg/L	33.5	33.5	300
Sulfide	mg/L	0.04	0.04	0.002
Copper (Cu)	mg/L	0.01	0.01	0.02
Lead (Pb)	mg/L	0.083	0.083	0.03
MICROBIOLOGICAL ANALYSIS				
Total Coliform	MPN/ 100 ml	9200	9200	1000
Total Fecal Coli	MPN/ 100 ml	9200	9200	100

Tabel 3. Jragung water quality testing result

Based on the results of the raw water quality, it reveals that the parameters like COD, DO, Phenol, Phosphate (PO4), Oil and Grease, Sulfide, Plumb (Pb), Total Coliform and Total Fecal Coli are exceeding the permissible limit of the applicable national regulation Class-I.

Uncontrolled, unplanned, rapid and extensive growth of urbanisation and industrial activities generate large amounts of solid and liquid waste. Disposal of untreated solid waste, stormwater and agricultural waste along with municipal and industrial wastewater, into the river is the main cause of physical, chemicals and microbial contamination of river water. Sources of these wastes include industrial production, sewage, domestic waste, municipal waste, shopping markets, restaurants, agricultural waste, etc. In most developing countries, about half of total human waste is discharged into the rivers and other water bodies without proper treatment.

3.2 Water Quality

The calculation of the surface water pollution index in this study used data from laboratory results, where the samples used were 2 sampling points. Laboratory data can be seen in Table 3, and then the average was carried out on the lab data to produce the Ci value. Li in this analysis is the value of the quality standard for each parameter so that the concentration value for each parameter is calculated as Ci/Li.

The pollution index is obtained from the average value of the number of tested parameter concentrations and the maximum value from the division of the concentration value by the quality standard, so that the calculation can be seen in the table below (table 4).

Classification standard	Ci	Lix	Ci/Lix	(Ci/Lix)New	(Ci/Lix)M	(Ci/Lix)R	Pij	Result
value items								
PHYSICAL ANALYSIS								
Total Dissolved Solid	293	1000	0.29	0.29	-			
(TDS)					_			
Total Suspended Solid	13	40	0.33	0.325				
(TSS)					-			
Temperature	34	24-30	-2.33	-2.33	_			
CHEMICAL ANALYSIS					_			
Ammonia (NH3-N)	0.07	0.1	0.7	0.7	_			
Iron (Fe)	0.16	0.3	0.53	0.53	_			
COD	12.7	10	1.27	1.52	_			
Detergent (MBAS)	0.07	0.2	0.35	0.35	_			
DO	6.6	6	1.10	1.21	_			
Phenol	0.1	0.002	50	9.49	_			
Phosphate (PO4)	0.34	0.2	1.7	2.15	_			
Cadmium (Cd)	0.008	0.01	0.8	0.8	_			
Chloride (CL-)	41	300	0.14	0.137	- 10.819	1 88	7 77	Moderately
Chromium Val. 6 (Cr6+)	0.03	0.05	0.6	0.6	-	1.00	1.11	polluted
Manganese (Mn)	0.04	0.1	0.4	0.4	_			
Oil and Grease	1.03	1	1.03	1.064	-			
Nitrate as N (NO3-N)	1	10	0.1	0.1	_			
Nitrite as N (NO2-N)	0.04	0.06	0.60	0.660	-			
pH	8.7	6.0-	-0.80	-0.80				
		9.0			_			
Zinc (Zn)	0.005	0.05	0.1	0.1	_			
Sulfate (SO4)	33.5	300	0.112	0.112	_			
Sulfide	0.04	0.002	20	7.505	_			
Copper (Cu)	0.01	0.02	0.5	0.5	_			
Lead (Pb)	0.083	0.03	2.767	3.210	_			
MICROBIOLOGICAL								
ANALYSIS					-			
Total Coliform	9200	1000	9.20	5.819	-			
Total Fecal Coli	9200	100	92	10.819				

Table 4. Pollution Index Result

Based on the analysis results presented in Table 4 above, the water quality level with a value of 5.0 - 10.0 is included in the waters that are experiencing moderate pollution. The IP value in this

study is 7.77. Therefore, it can be said that the waters of the Jragung River are experiencing moderate pollution based on the Pollution Index value.

3.3 Detergent Analysis-MBAS

Detergent analysis is used to determine the detergent content in the waters; this is because the Jragung River is used by local residents to support their activities. Based on the laboratory results, the detergent parameters for both points are 0.07 mg/L located in the upstream and 0.1 mg/L in the middle of the river. The concentration in the middle of the river is greater because it is right near the drainage channel, which contains some plastic waste. The results of the study showed that the concentration of detergent in the upstream part of the Jragung River, according to Government Regulation Number 82 of 2001 concerning Water Quality Management and Water Pollution Control, the detergent quality standard in the waters is 200 ug/L, or equivalent to 0.2 mg/L. It can be said that the detergent content value in the Jragung River waters is still very low.Evaluation of Water Quality with Trends Considered

Conclusions

The concentration of detergent in the Jragung River Waters at station 1 is 0.07 mg/L, and at station 2 it is 0.1 mg/L. Based on Government Regulation Number 82 of 2001 concerning Water Quality Management and Water Pollution Control, the detergent quality standard in waters is 200 ug/L or equivalent to 0.2 mg/L, so it can be said that the detergent content value in the Jragung River waters is still very low. The Pollution Index (IP) value in the Jragung River Waters ranges from 7.77, which is included in moderate pollution.

Water quality based on water parameters such as pH, which ranges from 8.4 to 8.7, is still in the good range for aquatic biota. The parameters that have values exceeding the quality standard limits for raw water in rivers include COD, DO, Phenol, Phosphate, Oil and Grease, Sulfide, Lead, Total Coliform, and Total Fecal Coli.

Acknowledgments

The authors would also like to thank to Balai Besar Wilayah Sungai Pemali-Juana for providing all the necessary data for this study and encouragement to conduct such studies for the benefit of science and society

References

[1] Ahmed, A.U.; Alam, M. Development of climate change scenarios with general circulation models. In Vulnerability and Adaptation to Climate Change for Bangladesh; Huq, S., Karim, Z., Asaduzzaman, M., Mahtab, F., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 13-20. https://doi.org/10.1007/978-94-015-9325-0_2

[2] Adnan,S.;Ullah,K.;Gao,S.;Khosa,A.H.;Wang,Z. Shifting of agro-climatic zones,their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529-543. https://doi.org/10.1002/joc.5019

[3] Cissé, G. Food-borne and water-borne diseases under climate change in low-and middleincome countries: Further efforts needed for reducing environmental health exposure risks. Acta Trop. 2019, 194, 181-188. https://doi.org/10.1016/j.actatropica.2019.03.012

[4] Gadiwala, M.S.; Burke, F. Climate change and precipitation in Pakistan-a meteorological Prospect. Int. J. Econ. Environ. Geol. 2013, 4, 10-15.

[5] Sharma, S.; Nagpal, A.K.; Kaur, I. Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs. Chemosphere 2019, 227, 179-190. https://doi.org/10.1016/j.chemosphere.2019.04.009

[6] Intergovernmental Panel on Climate Change (IPCC). Summary for the Policy makers. In Climate Change. Mitigation of Climate Change. Contribution of working Group III to the Fifth

Assessment Report of IPCC; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; p. 31.

[7] Prathumratana L, Sthiannopkao S, Kim KW. The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environ Int 2008;34:860-6. https://doi.org/10.1016/j.envint.2007.10.011

[8] Van Vliet MTH, Zwolsman JJG. Impact of summer droughts on the water quality of the Meuse river. J Hydrol 2008;353:1-17. https://doi.org/10.1016/j.jhydrol.2008.01.001

[9] Evans CD, Monteith DT, Cooper DM. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Env Poll 2005;137:55-71. https://doi.org/10.1016/j.envpol.2004.12.031

[10] Soh YC, Roddick F, van Leeuwen J. The future of water in Australia: the potential effects of climate change and ozone depletion on Australian water quality, quantity and treatability. Environmentalist 2008;28:158-65. https://doi.org/10.1007/s10669-007-9123-7

[11] Kurniyaningrum, E., Kurniawan, M.A. Climate Change Effect on Water Balance For Water Critically in Upper Bogowonto Watershed, Indonesia. IOP Conf. Series: Earth and Environtmental Science, 2022, pp. 1-10. https://doi.org/10.1088/1755-1315/1195/1/012053

[12] Zhang Z., Song C., Zhang J., Chen Z., Liu M., Aziz F., Kurniawan T. A. & Yap P. 2024 Digitalization and innovation in green ports: A review of current issues, contributions and the way forward in promoting sustainable ports and maritime logistics. Sci. Total Environ. 912, 169075. https://doi.org/10.1016/j.scitotenv.2023.169075.

https://doi.org/10.1016/j.scitotenv.2023.169075

[13] Rachmadi A. T., Kitajima M., Kato T., Kato H., Okabe S. & Sano D. 2020 Required chlorination doses to fulfill the credit value for disinfection of Enteric viruses in water: A critical review. Environ. Sci. Technol. 54, 2068-2077. doi:10.1021/acs.est.9b01685. https://doi.org/10.1021/acs.est.9b01685

[14] Sulistyorini, I. S., Edwin, M., & Arung, A. S. 2017. Analisis Kualitas Air pada Sumber Mata Air di Kecamatan Karangan dan Kaliorang Kabupaten Kutai Timur. Jurnal hutan tropis, 4(1), 64-76. http://dx.doi.org/10.20527/jht.v4i1.2883 https://doi.org/10.20527/jht.v4i1.2883

[15] Wiryono, W. 2013. Pengantar Ilmu Lingkungan. Bengkulu: Portelon Media (Badan Penerbitan Fakultas Pertanian Universitas Bengkulu), 100.

[16] Pemerintah Republik Indonesia. 2001. Peraturan Pemerintah Nomor : 82 Tahun 2001 (PP 82/2001) Tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air, Jakarta.

[17] Kurniyaningrum, E., Faluty, M.D., Mulya, H.D., Andayani, S., Hidayat, DPA., Sejati, W., Sattar, H. 2024. Factor For Correcting The Rainfall Of Chirps Satellite Data Against Observation Data On The Ciliwung Watershed (Case Study Of Kemayoran Meteorologiy Station). International Journal on Livable Space, 9(2), 75-84. https://doi.org/10.25105/livas.v9i2.19919

[18] Indonesian National Standards 6989.57:2008, The Surface Water Sampling Method (2008)

[19] Government Regulation of The Republic Indonesia No.22, the Implementation of Environmental Protection and Management (2021)

[20] The Minister of Environment No. 115, Concerning Guidelines for Determining Water Quality Status (2003).

Keyword Index

3D Building	123	BF
3D Printing	968	Bib
C C		BII
Abou Ali River	670	BII
Accessibility	519	Bir
Activated Carbon	859	Bio
Additive Manufacturing	968	Bio
Adhesion	1075	Bio
Admixture	263	Bio
Aggregates	1075	Bio
Air Quality	793	Bit
Air	634	Bit
Algorithms	923	BC
Alkaline Activation	549	Bo
Alkaline Activator	350	Bo
Amman	910	Bo
Anaerobic Digestion	805	Bo
Analysis	289	Bri
Angle of Internal Friction	448	Bri
ANNOVA	697	Bu
ArcGIS	1207	Bu
Arid Area	336	-
Artificial Intelligence 252, 8	83, 892	Bu
Artificial Neural Network	20, 378	Bu
ASCE 41-17	135	Bu
Asphalt Binder 102	0, 1050	Bu
Asphalt Concrete Pavement	941	Bu
Asphalt	978	Bu
Atterberg's Limit	577	Bu
Autodesk Construction Cloud	1109	Bu
Automation and Optimization of F	RC	0-
Structural Design	200	Ca
		Ca
Base Shear	11	
BCP 2021	69	Ca
Beam-To-Column Connections	171	Ca

161, 448
678
86
1197
1109
200
1075
397
736
805
653
805
1030, 1061
1030
764
729
569
1030
131
577
784
77
g
1179
153
1197
1130
874
736
823
999
910
359
316
577
784
729

Carbon Emission	113	Convolutions Networks	892
Case Study	289	Correlation Analysis	501
Catalyst	263	Correlation	510
CatBoost Machine Learning	40	Corrosion	539, 729
CBR Tesi	336	Cost Efficiency	153
Cement Content	1187	Cost of Construction	577
Cement Paste	359	Cost	1130
Cement Stabilization	187, 368	Countermeasures	1040
Centrifugal Pump	883	Cover Concrete	279
CFRP Retrofitting	123	COVID-19 Pandemic	793, 931, 1099
Chicken Manure	663	Crack	77, 1086
Chicken Swarm Optimization	378	Cross-Laminated Timber	(CLT) 103, 113
Chloride Concentration	729	Crumb Rubber	417, 1061
Chromium Steels	501	Crushed Sand	1010
Chwit	289	CS Algorithm	234
Circular Economy	1197	CTGAN	40
Clay	181	Curing	1, 279
Clean Water and Sanitation	643	Curve Number	833
Climate Change	30	Cyclic Axial Loading	316
Climate Forecasting	892	Cyclic Loading	131, 143
Coal Ash	1030		
COD Removal	869	Daily Trips	931
COD	764	Damage	77
Coefficient of Variation	325	Data Fusion	892
Color Removal	859	Date Seeds Powder	1050
Combined Foundation System	306	DCPT	438
Community Engagement	717	DEEPSOIL Software	242
Composting	736	Defects	77
Compressed Stabilized Earth E	Blocks	Deformation Control	153
(CSEB)	1187	Delay	1159
Compressive Strength 1, 342, 617, 1187	407, 587,	DEM and Micro-Watersh	ed Basins 1207 1121
Concrete 181, 263, 271, 279, 569, 823	407, 464,	Dense Bituminous Mixes	1030
Construction and Demolition W	/aste 577	Density	448
Construction Projects	1121	Density-Based Clustering	g 1040
Construction	271	Depth of Slope (H)	448
Containment Buildings	607	Desalination	784
Contamination	643	Design Spectrum	69

Design Working Procedures	1109	Environmental Solutions	892
Diagrid	11	Equivalent Linear Approach	242
Direct Shear Test	397	ESCOs in GCC Region	843
Disenfranchised	903	E-Shopping	931
Domestic Water Demand	815	ETABS	103
Drift	11	Expanded Clay	428
Drop-Weight Impact Test	569	Expanded Polystyrene (EPS)	823
Drying Shrinkage	342	Expansive Soil 187, 368, 456	3, 999
Ductility	123	Expansive Subgrades	961
Dumper	60	Experts	1159
Durability 342, 597	7, 988	Externally Bonded FRP	559
Dynamic Performance	60		
		Failure	539
Earth Quake Load	11	FEACONS IV	30
Earthquake Frequency Content	607	Ferrite	486
Earthquake-Resistant Design	143	Fiber	823
Eastern Provinces	643	Fine Aggregate 417	7 , 464
Ecological Sustainability	1215	Finite Element Analysis 50, 181	l, 191
Economic Challenges	1138	Finite Element Method	961
Economic Crisis	1099	Finite Element Modelling	475
Economic Impact	1197	Fire Endurance Testing	171
Efficiency	883	Fire Protection	171
El Niño	510	Fire	86
E-Learning	931	FLAC2D Software	242
Electrocoagulation (EC)	764	Flat Plate	135
Electrodes	764	Flexible Pavements	961
Elevated Temperatures	86	Flexural Strength	407
Embodied Energy	1244	Flexure	86
Emulsion Prime	1075	Floating Concrete	823
Energy Dissipation	143	Flood Modeling	670
Energy Efficiency Building	1179	Flood Routing	815
Energy Efficiency 843, 892,	1235	Flood	833
Energy Minimisation	1244	Floor Slabs	530
Energy	653	Flow	617
Environment	688	FLOW-3D	678
Environmental and Social Justice	903	Fly Ash 587,	1030
Environmental Degradation	903	Fly Ash-Slag Concrete	378
Environmental Impact	1197	Footings	448

Foundation	306
Free Swell	368
Freeze-Thaw Cycles	187
Frequency	143
Fresh Concrete	263
Friction	923
FRP	559
Fully Grouted	131
Fundamental Period and Mode	Shape
	225
Fuzzy Expert System	1130
Geogrids	475
Geopolymer Mortar	350
Geopolymer	342, 549
Geospatial Analysis	717
Geotechnics	510
Geothermal	653
Global Warming	30
Granular Materials	428
Green Buildings	774
Green Concrete	271
Green Filters	869
Green Magnetic Adsorbent	859
Greenhouse Gases	843
Ground Response Analysis	242
Ground Water	643
Groundwater Depth	717
Groundwater Level	717
Groundwater Measurements	717
Hadejia-Jama'are River Basin	717
Heat	486
High-Temperature	359
Hinges	123
HPDE	626
Human Scale	1149
Hybrid Building	113

Hypoplastic Model	707
ICT Integration	1235
Impact	634
Indian Roads Congress	1030
Industrial Waste Ash	549
Industrial Wastewater Treatm	ent 869
Infilled RC Frames	191
Infrastructure and Operationa	l
Elements	910
Infrastructure	1099
Intelligent Transportation Syst	tem 951
Interference	539
Interlayer Bond	1075
Inundation	670
ISM	1159
Iso Electric Point	1075
ITS	910
Japanese Smart City Develop	oment 1235
Jragung River	755
Juana Watershed	833
Kinetic Analysis	663
Kingdom of Saudi Arabia	643
KPI	1121
Kuwait	978
La Niña	510
Laboratory	746
Land Use	833
Landfill	688, 852
Large Number of Cycles	316
Lateral Stiffness	191
LDPE	626
Leachate	736
Lebanon	289, 1099
Lessons-Learned	1121

Life Cycle Assessment	784
Lift Adjusting	60
Light Gauge Steel (LGS)	103, 113
Lime stabilization	187
Lime	1010
Limit Analysis	161
Linear Regression	501, 746
Linear Shrinkage	368, 1187
Lockdown Impact	793
Locked Wheel	923
Longitudinal Joints	978
Long-Term Deflection	530
Low Water Content	336
Low-Carbon Footprint	549
Machine Learning Model	407
Machine Learning 252, 968	, 501, 746, 923,
Magnesium Carbonates	784
Maintenance	978, 1159
Makkah	634
Management	852
Marble Powder	336
Marble Waste	464
Marshall Stability Test	1030
Masonry Structures	131
Masonry Unit	626
Masonry	559
Mass Timber Buildings	171
Material Design	617
MATLAB	1130
Mechanical Properties 587, 626	350, 464, 486,
Mechanically Stabilized E	arth Wall 475
Melted Plastics	626
Membership Function	1130
Metakaolin	342, 350
Meteorological Factors	793
Methane Production	663

Microstructure	486
Mineralization	784
Model	746
Modelling	617
Moderate-to-Vigorous Physical A	Activity
(MVPA)	874
Modified Proctor Test	577
Mohr-Coulomb Criterion	242
Moisture Sensitivity	1068
Moisture-Induced Damage	941
Moment-Resisting Frames (MRF	s) 200
Moth Flame Optimization	378
MSE	475
Multi Jet Electrolyte Flow	697
Multilevel Modeling	1040
Multi-Rise Buildings	103
Municipal Solid Waste	852
Municipal Waste	688
NASA	892
Near-Surface Mounted	559
Neom-The Line	113
Nesquehonite	784
Neural Networks	883
New Construction	210
Nickel Ferrites	859
Nigerian Construction Industry	1244
Nonlinear Analysis	242
Nonlinear Model	242
Nonlinear Response Spectrum	242
Nuclear Structures	607
Numerical Analysis	448
Numerical Modelling	475
Numerical Simulation 2	297, 678
Oil and Gas	1159
Olive Mill Wastewater Ash	1020
Oman	456

One-Dimensional Nonline	ear Site	
Response Analysis	69	
Open Shallow Wells	717	
Optimization	697	
Organic Manure	688	
Orifice Flow	746	
Oxidation	764	
Parametric Design	93	
Parametric Study	448	
Partially Grouted	131	
Particle Crushing	428	
Particulate Matter (PM10	, PM2.5) 634	
Pavement Design	988, 999	
Pavement Surface	923	
Pavement	30, 941, 1068	
Pearlite	486	
Pedestrian Comfort	519	
Pedestrian Infrastructure	519	
Penetration	1020	
Perceived Autonomy	874	
Perceived Competence	874	
Perennial Ryegrass	663	
Performance Levels	135	
Performance	306, 678	
Performance-based Asse	essment 123	
Performance-based Seise	mic Design	
Piles	306	
Plastic Waste Concrete	530	
Plastic Waste Recycling	626	
Plaxis 3D	448	
PM2.5 Levels	793	
Pollution Detection	892	
Pollution Index	755	
Pollution Load Capacity	755	
Pollution	634	
Polypropylene Fibres	359	
Polyurethane Grout	569	

Pore Water Pressure	707
Post-COVID Era	1225
Potholes	1086
Power	883
Pozzolan	456
Premature Failure	988
Pressure Drop	697
Pressure Relief Valves	60
Pressurized System	60
Prime Coats	1075
Prisms	86
Probability Density Function	325
Professional Challenges	1138
Project Performance Analyzer (I	PA)
	1121
Project Performance	1121
Project	1130
Pseudo-Static Approach	161
Public Transportation	910
Pushover Analysis	123
Push-Over Analysis	200
Pushover	135
Rainfall	833
Ramberg-Osgood Model	242
Random Forest	501
RC Infilled Frame	143
RCDBs	252
Ready Mix Concrete	1, 279
Recycled Aggregate	271
Recycled Waste Plastic	1086
Recycling	530
Regression	494
Reinforced Concrete (RC)	103
Relationships Digraph	1121
Relative Density	438
Renewable Energy	843
Renewable Raw Materials	859

Renewable	653	Seismic	210
Repair	569	Self-Compacting Concrete	263, 597
Reservoir Storage Simulatio	n 815	Sensor Networks	892
Residence Time Distribution	678	Setback Distance	448
Residual Compressive Stren	ngth 359	Setback Structure	225
Response Surface Methodol	logy 697	Settlement	77, 707
Retaining Wall	475	Shade Trees and Urban Gre	ening 519
Retrofit	210	Shadow Simulation	1179
Rice Husk Ash	597	Shape Memory Alloys	210
Risk Identification	1171	Shear Mechanism	252
Risk Register	1171	Shear Strength and Physics	Informed
Riyadh Metro	519	Neural Networks (PINNs	;) 252
Riyadh Urban Strategy	1235	Shear Strength	40, 510
Riyadh	852, 1149	Shear Walls	131, 123
Road Safety	1099	Sidewalk and Pavement De	sign 519
Root Cause Analysis	539	Sieve Analysis	577
Root Tensile	397	Simulated Annealing	93
Root Water Uptake	707	Simulation Analysis	50
RRI Model	670	Simulation	1171
Rubber	1068	Site Characterization	438
		Site Factors	69
SAI	587	Site Investigation	438
Sand, Skirted Footing	161	Slope Stability	289, 397
Sandy Slope Soil	448	Smart City Design	1225
SAP2000	103	Smart Parks	1225
Sarooj	456	Smart Sustainable City	1149
Saturated Clay	316	Social Impact	1197
Saudi Vision 2030	1225	Social Inequality	903
Sawdust Ash	597	Social Sustainability	1215
SCM	587	Societal Challenges	1138
Scrap Tire	417	Soft Soil	494
Seasonal Condition	707	Softening Point	1020
Seismic Analysis	607	Soil Characterization	1187
Seismic Behaviour	143, 225	Soil Compaction	336
Seismic Design	153	Soil Erosion	1207
Seismic Evaluation	135, 191	Soil Investigation	494
Seismic Response	93	Soil Properties	510
Seismic Simulation	242	Soil Stabilization	549

Soil Stabilization	577, 961, 999
Soil Stiffness	316
Soil Structure Interaction	607
Soil Variability	325
Soil	297, 1010
Soil-Structure Interaction	448
Solar Panel	823
Solar	653
South Eastern Nigeria	325
Spatial Implementation	1215
Spatial Interpolation	717
Spent Coffee Grounds	805
Sponge City	1149
Spring Tension	60
SPT	438
Squat Flanged Reinforced	Concrete
Wall	40
Stabilization	1010
State-Of-The-Art Review	210
Statistical Analysis	617
Steel Rebar	486
Stiffness	143
Stone Columns	306
Stormwater Retention Pon	d 678
Strain Modal Analysis	20
Strategy	774
Stray Current	539
Strengthening	171, 559
Strengths	464
Stripping	941
Strong Column-Weak Bea	m 123
Structural Beam	50
Structural Concrete	279
Structural Damage Identifi	cation 20
Structural Design	103
Structural Efficiency	103
Subgrade	1010
Suction Stress	297

Suction	297
Sun Path Analysis	1179
Supplementary Cementitious	
Materials	378, 617
Surcharge Pressure	961
Surface Water	643
Survey	852
Sustainability 456, 519, 688, 988, 999, 103, 1068, 1197	843, 869,
Sustainable Buildings	113
Sustainable Construction 1138, 1244	626, 784,
Sustainable Material	1050
Sustainable Physical Activity	874
Sustainable Public Space Desi	gn 1215
Sustainable Urban Planning	1235
Sustainable	271
Synchronization	1109
Tannery Solid Waste	805
Technological Challenges	1138
Temperature	729
Tensile Strength	501, 1068
The Line (Neom)	103
Thermal Expansion of Concret	e 30
Thermal Optimization	181
Toolbox	1130
Top-Down Cracking	1086
Torsional Control	153
Traditional Analysis	50
Traffic Accidents	1099
Traffic Congestion	951
Traffic Fatalities	1099
Traffic Management	951
Traffic Safety	1040
Transportation Infrastructure 1050	951, 968,
Trip Mode	931
Trip Purpose	931

Tropical Residual Soil	397
Tuned Mass Damper	234
Two-Way Joist Slab	181
Ultraviolet Treatment	359
Unconfined Compressive Str	ength 187
Unconfined Compressive Str	ength 368
Uniaxial Compression Test	428
Unsaturated Soil	297
Urban Competitiveness	1215
Urban Planning	519
Urban Spaces	1149
Urban Sustainability	1225
Used Engine Oil	597
USLE	1207
Vehicle	634
Vertically Irregularity	225
Vibration Mitigation	234
Vibration	60
Virtual Reality	1171
Viscosity	1020, 1061
Visual Programming	93
Vulnerable Communities	903
Wadi	1149
Warm Additives	1061
Waste Management	736
Wastewater Treatment	764, 859
Water Absorption	1, 342
Water Efficiency	774
Water Quality	755
Water Resources	643
West Jakarta	494, 510
Whale Optimization	378
Wind Load	11
Wind	653
Workability	587
Workflow	1109

7	XGBoost	407
4		
1	Zambia	988
9	Zeolitic Tuff	187, 368
7	Zeolitic Tuff	368
8	Zeta Potential	1075
Q		

j