

Archive

- [All Issues](#)
- [Year 2026 \(Volume 34\)](#)
 - [Issue-1](#)
- [Year 2025 \(Volume 33\)](#)
- [Year 2024 \(Volume 32\)](#)
- [Year 2023 \(Volume 31\)](#)
- [Year 2022 \(Volume 30\)](#)
- [Year 2021 \(Volume 29\)](#)
- [Year 2020 \(Volume 28\)](#)
- [Year 2019 \(Volume 27\)](#)
- [Year 2018 \(Volume 26\)](#)
- [Year 2017 \(Volume 25\)](#)
- [Year 2016 \(Volume 24\)](#)
- [Year 2015 \(Volume 23\)](#)
- [Year 2014 \(Volume 22\)](#)
- [Year 2013 \(Volume 21\)](#)
- [Year 2012 \(Volume 20\)](#)
- [Year 2011 \(Volume 19\)](#)
- [Year 2010 \(Volume 18\)](#)
- [Year 2009 \(Volume 17\)](#)
- [Year 2008 \(Volume 16\)](#)
- [Year 2007 \(Volume 15\)](#)
- [Year 2006 \(Volume 14\)](#)
- [Year 2005 \(Volume 13\)](#)

Journal Information

Publisher (from 2025-Onwards)
Perinatal Medicine Society Pakistan
Online ISSN
1305-3124
DOI
10.57239/prn
Established
2005

Perinatal Journal

Volume 34, Issue-1, 2026

Pages: 1-1149

Perinatal Journal is an international, online open access, peer-reviewed scientific journal (e-ISSN: 1305-3124). It is published three times a year in April, August and December. The publication language of the journal is English.

Table of Contents

[Multidisciplinary early care in a newborn with palatolabioschisis: Emphasizing feeding intervention and surgical planning](#) 1-7
Ririn Wahyuningtyas, Martono Tri Utomo, Risa Etika, Dina Angelika, Kartika Darma Handayani, Wury Ayuningtyas
↓ PDF DOI: 10.57239/prn.26.0341001

[Comparative awareness of the learning crisis among ESL and STEM trainee teachers in Malaysia](#) 8-11
Ravindaran Maraya, Sillalee S. Kandasamy, Sheiladevi, Bharathi Mutty, Parvathi Wajindram
↓ PDF DOI: 10.57239/prn.26.0341002

[A case report of critical limb ischemia in diabetes mellitus patient aggravated by COVID-19](#) 12-16
Fachriza Haqi Ramadhan, Hermawan Susanto
↓ PDF DOI: 10.57239/prn.26.0341003

[Evaluation the efficiency ginger plant extracts and their compatible with some bacterial species for controlling eggplant root rot disease caused by rhizoctonia solani](#) 17-22
Hala Ali Turky
↓ PDF DOI: 10.57239/prn.26.0341004

[Impact of preconception counseling on maternal and fetal outcomes: A clinical study from a private primary care setting in Baghdad](#) 23-36
Maha Abd Al-Jalil Alnaseri, Ahmed Arnaoty
↓ PDF DOI: 10.57239/prn.26.0341005

[The relationship between nutritional status and exploratory laparotomy under general anesthesia postoperative treatment length in pediatric patients](#) 37-48
Alegria Masharto, Kohar Hari Santoso, Nancy Margarita Rehatta, Arie Utariani, Bambang Pujo Semedi
↓ PDF DOI: 10.57239/prn.26.0341006

[The role of IL-17f rs763780 polymorphism in asthma susceptibility among Iraqi patients](#) 49-55
Rafal Yahya Atta, Prof. Dr. Zafir Hassan Ghali
↓ PDF DOI: 10.57239/prn.26.0341007

[Serum IL-21, SFAS, and SFASL as Diagnostic and Prognostic Biomarkers of Psoriasis Severity](#) 56-61
Zaid Mohammed Joodi Al-Janabi, Aesah A. Ahmed, Mays Talib Abdallah, Mustafa H. Hussien
↓ PDF DOI: 10.57239/prn.26.0341008

[Synthesis, characterization, molecular docking and biological activity: Novel Nano graft copolymer-paracetamol drug composite as a potential treatment of breast cancer cell line \(MCF-7\)](#) 62-73
Hussein H. M. Al-Masoudi, Mohammad N. AL-Baiati, Karim Akbari Dilmaghani
↓ PDF DOI: 10.57239/prn.26.0341009

[How can toxoplasmosis effect in systemic lupus erythematosus women? An immunological insight](#) 74-80
Zahraa A. Rzaij, Nuha Jabbar Alrikaby
↓ PDF DOI: 10.57239/prn.26.0341010

[Immunohistochemical expression of CD68 for Hofbauer cells in different size human placentae](#) 81-87
Murtadha Mezher Zidane, Haider Abdulrasool Jaafar
↓ PDF DOI: 10.57239/prn.26.0341011

[Amino acid variation in glycoproteins B \(gB\), H \(gH\) and L \(gL\) of herpes simplex virus 1\(HSV-1\) isolated from](#) 88-95

child with gingivostomatitis in Basrah city/Iraq 96-102
Waffa B. Abdullah, Hayder Abdulhussein Al-Hmudi, Sadeq K. Al-Salait
[Download PDF](#) DOI: 10.57239/prn.26.03410012

Identification of virulence factors genes (eaeA) and (bpfA) of Enteropathogenic Escherichia coli strains isolated from children with diarrhea in Kerbala city 103-116
Widad Sameer Jaaz, Elham Jawad Kadham
[Download PDF](#) DOI: 10.57239/prn.26.03410013

Exploring the impact of skooly technology on the academic performance of Second-Year students at the University of Calabar, cross river state, Nigeria 117-125
Dr. Jacob Kieran James, Dr. Effiong Abigail Aniefiok, Dr. Gladys D. Ukume, Dr. Grace O. Edu, Ekpo Ekpo Eloma, EYAM, Nkang Enighe (PhD), Dr. Egbai, Peace Oja, Wisdom, Inibehe Jude, PhD, Dr. Francis Akpo Akpo, Ayah, Grace Bassey, Joe Edidiong Friday, Dr. Ebeten Bassey Otu, Dr. Otu Michael Obuop
[Download PDF](#) DOI: 10.57239/prn.26.03410014

Effectiveness of implementing sociology learning modules based on Sasak local wisdom through a culturally responsive teaching approach to improve students' social skills 126-136
Huldiya Syamsiar, I Gede Astra Wesnawa, I Wayan Mudana, Luh Indarayani
[Download PDF](#) DOI: 10.57239/prn.26.03410015

Ethical and regulatory governance of digital communication for maternal and perinatal medical products: A systematic review 137-147
Suwicha Witayakom, Narut Chuenrattanatrakul
[Download PDF](#) DOI: 10.57239/prn.26.03410016

Positive developments of Saudi Arabia in healthcare spending and economic growth: An academic report 148-154
Rasha M. Bokhari
[Download PDF](#) DOI: 10.57239/prn.26.03410017

Subcutaneous pedicled rhomboid flap technique in post burn contracture release 155-163
Huda Sarkawt Ibrahim, Jalal Hamasalih
[Download PDF](#) DOI: 10.57239/prn.26.03410018

Research on nutritional health of Vietnamese children 164-176
Huynh Phuc Minh
[Download PDF](#) DOI: 10.57239/prn.26.03410019

The effectiveness of differentiated Problem-Based Learning (PBL) biology learning modules to improve student learning outcomes 177-190
Indra Himayatul Asri, I Nyoman Jampel, Ida Bagus Putu Arnyana, I Wayan Suastha
[Download PDF](#) DOI: 10.57239/prn.26.03410020

Exploring knowledge, attitudes and practices of urban community on herbal plant cultivation in Klang valley, Malaysia 200-211
Mohd Amin Zakaria, Paiman Bawon, Mohd Hasmadi Ismail
[Download PDF](#) DOI: 10.57239/prn.26.03410021

The influence of budget participation, transformational leadership, and good university governance on lecturer performance through the concept of Tri Kaya Parisudha at the Bali tourism polytechnic 212-221
I Gusti Ngurah Agung Wiryanata, I Made Yudana, Anak Agung Gede Agung, I Putu Wisna Ariawan
[Download PDF](#) DOI: 10.57239/prn.26.03410022

Developing an inclusive UDL module for Malaysian teacher education: Expert evaluation through the fuzzy Delphi method 222-226
Nurul Salwana Mohd Multazam Khair, Low Hui Min
[Download PDF](#) DOI: 10.57239/prn.26.03410023

A Cross-Sectional study of the incidence and bacteriological profile of vascular access infections among chronic hemodialysis patients at a dialysis unit in Maysan governorate 227-238
Safaa Ibrahim Insaf, Nusaibah Khalid Saddam, Hayder Dawood Saleem
[Download PDF](#) DOI: 10.57239/prn.26.03410024

The effect of nano ZNO and nano iron oxide on the expression of some genes of pathogenic escherichia coli bacteria 239-247
Halah Kamal Al-Qazzaza, Muntaha R. Ibraheem
[Download PDF](#) DOI: 10.57239/prn.26.03410025

Patient experiences and reporting of suspected vaccine adverse events in Croatia: A Cross-Sectional pharmacoepidemiologic study 258-266
Sara Karmel, Nives Radošević Quadranti, Željko Jovanović
[Download PDF](#) DOI: 10.57239/prn.26.03410026

The role of academic leadership in mitigating job burnout among university 267-279
Ateih Mohammad Alahmad Albadarneh, Mohammad Mahmoud Sulaiman Al-Sadi
[Download PDF](#) DOI: 10.57239/prn.26.03410027

Understanding how AI acceptance shapes Employee-AI collaboration in hospitals: Insights from a pilot study 280-290
Tang Song, Nor 'Ain Bt Abdullahz, Zunirah Mohd Talib
[Download PDF](#) DOI: 10.57239/prn.26.03410028

Integrated management systems influencing sustainable business development of Thai real estate companies 291-300
Maya Khan, Sukhumpong Channuwong, Prapas Siripap, Nitikan Dhammadhansakul, Kirati Wongwisuthirat, Md Mafijul Islam

[Download PDF](#) DOI: 10.57239/prn.26.03410031

 The quadrilateral verb as a morphological framework for Arabization: A study of English and French loanwords 291-304
Saleh Belhassen, Turki Alharbi, Amera Alharbi, Kholod Sendi
[Download PDF](#) DOI: 10.57239/prn.26.03410032

 Legal protection for patient safety in Indonesia's national health insurance system: Urging regulatory reform 305-310
Dody Suhartono, Sigit Irianto, Mashari
[Download PDF](#) DOI: 10.57239/prn.26.03410033

 Effects of a solution-focused family adaptation program on families of children with cancer 311-321
Gune Gu, PhD, Sung Hee Lee, PhD
[Download PDF](#) DOI: 10.57239/prn.26.03410034

 Distributed intelligence in cancer care: A systematic review of Cloud-Based oncology solutions 322-338
Vijay Govindarajan, Pawan Kumar, Dr. Kajol Kumari, Danesh Kumar, Sooraj Kumar, Ashish Shiwlani
[Download PDF](#) DOI: 10.57239/prn.26.03410035

 Afamin level and their correlation with insulin resistance in patients with type 2 diabetes 339-346
Mohanad S. Al-Fayyadah, Hala Ali Turky, Sarah F. Al-Taie, Kefah H. Ismael, Hind Mahmood Jumaah, Ali J.R.AL-Sa'ady
[Download PDF](#) DOI: 10.57239/prn.26.03410036

 The effect of the transcultural health education model based on Arja Muani art on husbands' knowledge and attitudes in supporting the success of early initiation of breastfeeding in Buleleng regency, Bali 347-354
Ni Wayan Dewi Tarini, Nursalam, Esti Yunitasari, Ilya Krishnana
[Download PDF](#) DOI: 10.57239/prn.26.03410037

 Comparison between Effects of Ephedrine and Phenylephrine on Hemodynamic Parameters of Patients going under Spinal Anesthesia 355-362
Haji Mohammed Shakir, Abdulhameed Abdulrazaq, Rekawt Fadhl
[Download PDF](#) DOI: 10.57239/prn.26.03410038

 The impact of ovarian surgery on female fertility: The mediating role of reduced ovarian reserve 363-371
Hadeel Abdulameer Shamkhi Alshlah, Manal Nasih Ahmed Hamdan, Nibras Tareq Alnaqeeb, Seena Abdulhasan Ahmed Ahmed, Abdul Amir H. Kadhum
[Download PDF](#) DOI: 10.57239/prn.26.03410039

 Use of Pocket-Sized ultrasound device (V scan air) in the labor and delivery room 372-374
Serena Guerra MD, Gabriele Saccone MD, Brunella Zizolfi MD, Giulia Scamardella MD, Giorgia Buonomo MD, Attilio Di Spiezo Sardo MD
[Download PDF](#) DOI: 10.57239/prn.26.03410040

 Managing unbiopsied nephrotic syndrome in High-Risk twin pregnancy: A case report 375-379
Notaricia Qori Amalia F.C.N, Satriyo Dwi Suryantoro
[Download PDF](#) DOI: 10.57239/prn.26.03410041

 Improving executive function and vitamin D levels by outdoor walking 380-385
Dyah Gita Rambu Kareri, Agung Pranoto, Damayanti Tinduh
[Download PDF](#) DOI: 10.57239/prn.26.03410042

 Parents' knowledge and attitudes towards vaccinating preschool children: Insights from pediatric practice 386-393
Maja Šarić, Bojan Miletić, Svetlana Šegulja, Nives Radošević Quadranti, Željko Jovanović
[Download PDF](#) DOI: 10.57239/prn.26.03410043

 The international legal framework for the protection of data privacy in health care 394-401
Professor Amer Fakhoury, Professor Mahir Al Banna
[Download PDF](#) DOI: 10.57239/prn.26.03410044

 The contribution of green human resource management to promoting the use of artificial intelligence in Arab universities 402-415
Radi Mohammad AL Shannaq, Buthiana Elias Awais, Khaled M Hamadin, Bayan Thaher Almadi, Tariq Safar AL Tagfy, Israa Hasan Alshare, Omar Mohammed Al-Kharabsheh, Amjad Mahmoud Daradkah, Badie Ahmad Hasan Alazzam, Adnan Badri Al-Ibrahim
[Download PDF](#) DOI: 10.57239/prn.26.03410045

 Obstacles facing academic women leaders assuming positions in the boards of trustees of Jordanian public universities 416-430
Tamara S. Al Baghdadi, Mervat Hussein Mohammad Alomari, Amjad Mahmoud Daradkah
[Download PDF](#) DOI: 10.57239/prn.26.03410046

 Proposed model for developing educational neuroscience management in Arab schools from the perspective of school leadership 431-446
Falah Dhuwaihi AL-Ajmi, Atieh Mohd Albadarneh, Mutaib Mohammad alotaibi, Abeer Muneeb Mahmoud Ghadaireh, Tariq Safar ALTagfy, Amjad Mahmoud Daradkah, Habis Mohammed Khalifa Hatamleh, Omar Mohammed Al-Kharabsheh, Diana Mohammad AlShahwan, Fadwa Abd elhaleem Al Braizat
[Download PDF](#) DOI: 10.57239/prn.26.03410047

 A proposed strategic vision for enhancing an attractive and engaging school environment in the era of technological transformation 447-463
Mutaib Mohammad Alotaibi, Rabha Adnan Alqudah, Falah Dhuwaihi AL-AJMI, Amjad Mahmoud Daradkah, Habis Mohammed Khalifa Hatamleh, Shooroq Maberah, Diana Mohammad AlShahwan, Fadwa Abd elhaleem Al Braizat, Muneera M. ALShurman, Shima'a Amjad Daradkah
[Download PDF](#) DOI: 10.57239/prn.26.03410048

 Antibiotic prescribing patterns and antimicrobial resistance among uropathogens causing uncomplicated urinary tract infections: An observational study 464-471
Eman Abdulaziz Osman, Rachel Elaine Dunham, Ali Shakir Dauod
[Download PDF](#) DOI: 10.57239/prn.26.03410049

 Demographic, endoscopic, and histological profile of esophageal cancer: A Cross-Sectional study at the gastroenterology department of Digna hospital, Port Sudan, red sea state 472-484
Mohamed Mahmoud, Mohammed Ibrahim, Mogahid Mahmoud Mohammed Ali, Mohammed Elnibras, Isam Gaafar, Gawahir Suliman, Awadalla Abdelwahid
[Download PDF](#) DOI: 10.57239/prn.26.03410050

 Incidence and risk factors of femoral Access-Site hematoma following cardiac catheterization: A six-month observational study from Erbil cardiac center 485-492
Bawer Omer Khidher, Rafid Fayath Al-Aqeedy
[Download PDF](#) DOI: 10.57239/prn.26.03410051

 Intercultural awajún governance model to strengthen inclusive public management in a local government in Amazonas, Peru 493-498
Allan Wagner Shijap Duire
[Download PDF](#) DOI: 10.57239/prn.26.03410052

 Association between helicobacter pylori infection and gallstone disease among patients undergoing cholecystectomy: A Cross-Sectional study from Ibrahim Saeed hospital, Sudan 499-510
Mohamed Mahmoud, Sara Elsadeq, Mogahid Mahmoud Mohammed Ali, Mohammed Elnibras, Isam Gaafar, Gawahir Suliman, Awadalla Abdelwahid
[Download PDF](#) DOI: 10.57239/prn.26.03410053

 Legal regulation of green and sustainable bonds (SUKUK) A case study of the Saudi capital market authority 511-519
Hani Mounes Awad, Asmaa Saad Elhadedy
[Download PDF](#) DOI: 10.57239/prn.26.03410054

 Modulation of the glutamatergic system in neuropathic pain: The role of pregabalin 520-530
M. Afif Nurizfantiar, Prananda Surya Airlangga, Herdiani Sulistyo Putri
[Download PDF](#) DOI: 10.57239/prn.26.03410055

 A legal analysis of insolvency provisions in Jordanian legislation and their comparative alignment with regional frameworks 531-535
Shaima Al-Hussien, Ali Ahmad Alzubi
[Download PDF](#) DOI: 10.57239/prn.26.03410056

 The legal governance of artificial intelligence and its role in supporting the sustainable development goals 536-543
Hashim Balas
[Download PDF](#) DOI: 10.57239/prn.26.03410057

 Acute pancreatitis and omental thickening in a patient with Acute-On-Chronic Liver Failure (ACLF) associated with hepatitis B 544-557
Nindy Tjonganata, Ulfia Kholili
[Download PDF](#) DOI: 10.57239/prn.26.03410058

 Analysis of cellular immune response in adults after administration of the coronavirus disease 2019 vaccine using the virus vector platform (Astra Zeneca) 558-565
Jihan Samira Thabit, Ida Effendi, Arleen Devita, T. Robertus, Isa Bella, Monica Dwi Hartanti, Khariri
[Download PDF](#) DOI: 10.57239/prn.26.03410059

 Social determinants of multimorbidity diabetesCardiovascular disease 566-577
Yuanfan Xu
[Download PDF](#) DOI: 10.57239/prn.26.03410060

 Digital administrative law: Data management and electronic government services 578-586
Hashim Balas
[Download PDF](#) DOI: 10.57239/prn.26.03410061

 Diagnosis problems in patients with chronic teraparsec 587-599
Sheila Clarissa, Awalia
[Download PDF](#) DOI: 10.57239/prn.26.03410062

 Time for suit to maritime carrier liability claims in the convention on contracts for the international carriage of goods wholly or partly by sea 600-607
Hani Mounes Awad, Asmaa Saad Elhadedy
[Download PDF](#) DOI: 10.57239/prn.26.03410063

 Platelet indices and Platelet-To-Lymphocyte ratio in iron deficiency anemia: Insights for clinical interpretation from a comparative study 608-615
Najeeb Saeed Rasheed, Hawar Mohammed Saeed, Bizav Naji Rasheed
[Download PDF](#) DOI: 10.57239/prn.26.03410064

 Association of MMP-9 and PAD-4 according to UC extension and severity 616-624
Naser Elias Khudhur, Dr.Ekhsal Saddam Falih, Dr.Sadeq Kadhim Hachim
[Download PDF](#) DOI: 10.57239/prn.26.03410065

 Design of seamless learning model to improving digital literacy skill in higher education 625-634
Idawati, Mifta Hulaikah, Moch. Bakhtiar
[Download PDF](#) DOI: 10.57239/prn.26.03410066

Extended flipped classroom with HTML5 package integration in Moodle: Impact on instructional motivational design among informatics students at universities Wijaya Kusuma Surabaya	635-646
Tjatursari Widiartin, Yatim Riyanto, Andi Kristanto	
Download PDF DOI: 10.57239/prn.26.03410067	
Managing third space pedagogy through literature circle	647-655
Lailatus Sa'adah, Pratiwi Retnaningdyah, Widystuti	
Download PDF DOI: 10.57239/prn.26.03410068	
The influence of sad sasana leadership, work motivation, and emotional intelligence on elementary school teacher performance in Buleleng regency	656-662
Putu Yulia Angga Dewi, Anak Agung Gede Agung, I Putu Wisna Ariawan, Basilius Redan Werang	
Download PDF DOI: 10.57239/prn.26.03410069	
Epidemiology of Aeromonas species isolated from different samples in Al-Diwanyiah province	663-667
Maryam Jabbar Nasser, Abeer Hamoodi Jabbar, Hanaa Neamah Abdullah	
Download PDF DOI: 10.57239/prn.26.03410070	
Ultrasound-Guided transversus abdominis plane block as an elective anesthetic technique for transverse colostomy in a 2-Day old infant with atresia ANI	668-673
Okky Hudaya, Kohar Hari Santoso, Arie Utariani	
Download PDF DOI: 10.57239/prn.26.03410071	
Exploring the effectiveness of the VAK-Augmented reality learning model on English-Speaking fluency and comprehension among nursing students	674-682
Athia Fidian, Nur Hidayanto Pancoro Setyo Putro, Arif Rohman	
Download PDF DOI: 10.57239/prn.26.03410072	
Innovation analysis of Shiwan ceramic art murals for sustainable cities and communities	683-693
Manoon Tho-Ard, Kanchana Meesilapavikkai, Wichian Namkan, Wenyuan Han, Wong Ling Shing	
Download PDF DOI: 10.57239/prn.26.03410073	
Assessing Higher-Order thinking skills: Development and content validation of a Domain-Specific test in business mathematics	694-703
Ni Wayan Suardiati Putri, I Gusti Putu Suharta, I Gde Wawan Sudatha, I Komang Sudarma	
Download PDF DOI: 10.57239/prn.26.03410074	
Gender equality perspective shifting of Islamic students: From boarding school to university	704-717
Fauzan Atsari, Pratiwi Retnaningdyah, Ali Mustofa	
Download PDF DOI: 10.57239/prn.26.03410075	
Extent of harmonization of Jordan's cybercrime act no. 17 of 2023 with international legislation on freedom of opinion and expression	718-731
Moayd Husni Ahmad Al-Khawaldah, Rafat Ibrahim Radwan Khawaldeh, Waqas Abdulkhaleq Faleeh, Rasha Taysir Kamel Odeh, Mamoon Suliman Alsmadi, Nabeel Zaid Suliman Magableh, Hamdan abdel qader Ghunemah	
Download PDF DOI: 10.57239/prn.26.03410076	
Molecular characterization and genetic diversity of salmonella spp	732-738
Ashwaq R. Nazzal, Hassan Nima Habib	
Download PDF DOI: 10.57239/prn.26.03410077	
Al-Alusi's Da'wah methods of in the interpretation of the soul of the meanings (Ruh Al-Ma'an)	739-750
Maher Zuhair Ghazal, Dr. Mohamed Ahmed Abd-Elmotib Azab	
Download PDF DOI: 10.57239/prn.26.03410078	
The image of Russian-Ukrainian relations (1991-2005) in the Saudi press: A historical analytical study	751-763
Muath Hilal Jasim Al-Mohammadi	
Download PDF DOI: 10.57239/prn.26.03410079	
Research on factors affecting construction cost overrun based on SEM	764-774
Qian Wu, Ali Khatibi, Jacqueline Tham	
Download PDF DOI: 10.57239/prn.26.03410080	
How access to sustainable finance alleviates poverty: A case study of Blantyre rural Malawi	775-787
Kondwani Kachamba Ngwira, Saima Sajid, Syed Saqlain ul Hassan, Hao Liu	
Download PDF DOI: 10.57239/prn.26.03410081	
Digital transformation, social media platforms, and the reshaping of media policies in Jordan (2020–2025): A Political-Legal approach to governance, legitimacy, and digital security	788-809
Hani Mefleh O Hamdon, ESSA LAFI HASSAN AL SMADI	
Download PDF DOI: 10.57239/prn.26.03410082	
Evaluation of the pathogenicity of culex flavivirus and quang binh virus in mice	810-817
Thuy Bao Tran Ngo, Thi My Tien Dao, Xuan Nghiep Ho, Xuan Phu Pham, Thi Dieu Hien Luu, Huynh Tan Tran, Huu Cuong Nguyen, Thi Kim Chi Nguyen	
Download PDF DOI: 10.57239/prn.26.03410083	
Challenges and opportunities for Deep and Meaningful Learning (DML) approaches: An overview of critical learning paradigms, the new curriculum in Indonesia	818-831
Jarot Suseno, Prof. Dr. Suryanti, M. Pd, Prof. Dr. Bachtiar Sjaiful Bachri, M.Pd	
Download PDF DOI: 10.57239/prn.26.03410084	
Ventilator inspiratory trigger sensitivity adjustment versus threshold device training on pulmonary functions in	832-842

acute stroke patients
Mohamed S. Zidan, Amira Ezzat Mohamed Abd Elhay, Doaa Mohammed Mahmoud Allam, Amir Abdel Moneam Mohamed Abo Taleb, Bassem M. Fouad, Sara Rabie Elhadad, Mahmoud Zaki ElReadi, Safaa Yehia Eid, Hesham Saad Ata, Marian A. Aziz
[Download PDF](#) [DOI: 10.57239/prn.26.03410085](#)

Age-Related changes in the quality of semen and sperm DNA among a sample of men in Iraq-Kurdistan 843-850
Rana Mohammed Taha, Ali Shaker Daoud, Lana Adil Bakir
[Download PDF](#) [DOI: 10.57239/prn.26.03410086](#)

Determinants of graduate leadership ability of university students in Zheng Zhou city: The mediating role of SelfEfficacy in higher education 851-864
Ziqian Peng, Ali Khatibi, Jacqueline Tham
[Download PDF](#) [DOI: 10.57239/prn.26.03410087](#)

Developing system congruence for the integration of formal and Non-Formal education 865-875
Dwi Eristi, Prof. Dr. Bambang Supriyono, M. S, I Gede Eko Putra Sri Sentanu, S.AP., M.AP., Ph. D
[Download PDF](#) [DOI: 10.57239/prn.26.03410088](#)

Individual medical face mask use behavior and development of Ultraviolet-C irradiation disinfection system in rural areas 876-882
Kaiwit Ruengruehan, Nirawan Sanphot
[Download PDF](#) [DOI: 10.57239/prn.26.03410089](#)

The effect of endorphine massage on the progress of labor of women in labor during the active phase at the health center in the south Jakarta area 883-889
Fenti Hasnani, Dewi Ratna Wulansari
[Download PDF](#) [DOI: 10.57239/prn.26.03410090](#)

The knowledge of Indonesian pulmonology residents about respiratory syncytial virus 890-898
Fariz Nurwidya, Ajeng Tias Endarti, Titi Indriyati, Angky Budianti, Linda Mahardhika
[Download PDF](#) [DOI: 10.57239/prn.26.03410091](#)

The influence of sad sasana leadership, work motivation, and emotional intelligence on elementary school teacher performance in Buleleng regency 899-905
Putu Yulia Angga Dewi, Anak Agung Gede Agung, I Putu Wisna Ariawan, Basilius Redan Werang
[Download PDF](#) [DOI: 10.57239/prn.26.03410092](#)

Coupling coordination between urban human settlement environment and economic resilience 906-914
Ling Chai
[Download PDF](#) [DOI: 10.57239/prn.26.03410093](#)

The mediating role of breast Self-Examination education based on the stages of change and health belief model on factors affecting breast cancer early detection ability 915-924
Nurlela Mufida, Esti Yunitasari, Hanik Endang Nihayati, Intan Rismatul Azizah, Megawati Sinambela, Darmawati, Idawati Idawati, Riska Nurrahmah
[Download PDF](#) [DOI: 10.57239/prn.26.03410094](#)

Studying the effects of wavelengths (565, 810) NM used inhome cosmetic laser on native rabbits 925-931
Zainab K. Ibrahim, Ahmed R. Mathloom
[Download PDF](#) [DOI: 10.57239/prn.26.03410095](#)

Information security and confidentiality in a wise government: An analytical study 932-943
Jamal Awwad Alkharman, Sami Ahmad Mahmoud Alomari, Fadiah Sami Ali Khasawneh, Mishael Mohammad Al-Raggad, Maher Thamer Saleh Mohammed, Maher Ail Moh'D Amoush, Alaa Fadhil Khalaf, Mamoon Suliman Alsmadi, Hanan Shaker Hamoud Jassim, Mohamed Abouyounes
[Download PDF](#) [DOI: 10.57239/prn.26.03410096](#)

Impact of digital transformation on the direct management of Jordan's public utilities 944-955
Saleem Asouli, Hamdan Abdel Qader Ghunem, Prof. Faisal Al-Nawasreh, Muntaser Alqudah, Abdulkareem Jasim Hussein, Ibrahim Muhammad Fandi Bani Amer, Mohamed Abouyounes, Faisal Helmi Salman Alblewi
[Download PDF](#) [DOI: 10.57239/prn.26.03410097](#)

The determinants of capital structure: Evidence from public listed healthcare companies in Indonesia and Singapore 956-967
Sabrina C. Suwandi, Oxy A. Ansori, Gracia Shinta S. Ugut
[Download PDF](#) [DOI: 10.57239/prn.26.03410098](#)

Respiratory disorders in newborns: A Five-Year retrospective study in a Secondary-Level hospital 968-972
Una Drača, Mladen Jašić, Željko Jovanović
[Download PDF](#) [DOI: 10.57239/prn.26.03410099](#)

Development of Tiktok-Based digital content for public relations of a master's program 973-981
Chatchanok Poenmunkong, Rinranee Dtiplian, Kuntida Thamwipat, Pornpapatsorn Princhankol
[Download PDF](#) [DOI: 10.57239/prn.26.03410100](#)

Historical economic aspects of healthcare delivery and hospital performance in Athens 982-1000
Constantinos Chaloumis, Nikolaos Eriots, Dimitrios Vasiliou
[Download PDF](#) [DOI: 10.57239/prn.26.03410101](#)

Communication alienation and value reconstruction of literary and artistic criticism in the era of short videos: Taking film and television review exts as an example 1001-1014
Miaozhu Zhang
[Download PDF](#) [DOI: 10.57239/prn.26.03410102](#)

Antibacterial activity of bioactive brown pigment produced from <i>Streptomyces</i> spp. Against pathogenic bacteria	1015-1024
Talib S. Al – Rubaye Download PDF DOI: 10.57239/prn.26.034100103	
Exploring knowledge, practices of safety measures for AlHijama practitioners at Qatar cupping community centers	1025-1035
Mohammed Hassan Amien Ali, Ekram Mohammed Abdel Khalek, Asmaa Kamal Hassan, Safaa Ahmed Mohamed Kotb Download PDF DOI: 10.57239/prn.26.034100104	
A study on the mediating effect of community music participation between perceived community environment and psychological Well-Being —taking the elderly population in Chengdu as an example	1036-1043
Funan Wang, Ali Khatibi, Jacqueline Tham Download PDF DOI: 10.57239/prn.26.034100105	
Intrauterine transfusion in Non-Immune hydrops fetalis with anemia	1044-1048
Arief Sukma Hariyanto, Betty Agustina Tambunan, Agung Sunarko Putra, Verna Biutifasari Download PDF DOI: 10.57239/prn.26.034100106	
Knowledge, attitude, and practice study on antimicrobial use and resistance among Karbala university students	1049-1056
Kawkab. Abdullah Hussein Alsaadi Download PDF DOI: 10.57239/prn.26.034100107	
Comparative study of academic culture and teaching practices among lecturers in Malaysia and Pakistan	1057-1076
Rabia Alam, Mohd Mokhtar Muhamad, Fathiyah Mohd Fakhruddin Download PDF DOI: 10.57239/prn.26.034100108	
Intangible resource influence on sustainable firm performance: A qualitative analysis of Chinese firms	1077-1096
Jiao Qiwen, Shairil Izwan Bin Taasim, Noor Jalilah Binti Jumaat, Shazali Bin Johari Download PDF DOI: 10.57239/prn.26.034100109	
Association between insulin hormone, homa index levels and vitamin D3 level in infertile women of Babylon provinces	1097-1103
Sama Mohammed Ejrish, Naseer Almukhtar, Hussain Ashraf MA Download PDF DOI: 10.57239/prn.26.034100110	
How rituals construct cultural identity: A PracticeTheoretical interpretation of FUXI worship in XINLE, China	1104-1112
Hao Zhang Download PDF DOI: 10.57239/prn.26.034100111	
Thermal radiation impact on cellular viability: Comparative modeling of tolerable and lethal distances using probit methods	1113-1123
Manal Abouelouafa, Hicham El Ossmani, Youssef Bakri, Soufian Omari, Anas Mbarki Download PDF DOI: 10.57239/prn.26.034100112	
Child abuse and child protection policies in Kosovo	1124-1133
Arjeta Shaqiri Latifi, Adile Shaqiri Download PDF DOI: 10.57239/prn.26.034100113	
The Pro-Inflammatory cytokines and vital physiological functions exploring among Iraqi ASD children: A comparative and correlation study	1134-1144
Zainab Sabah Hassab, Saadia O. Mohammed, Ali Hassanan Ali Download PDF DOI: 10.57239/prn.26.034100114	
Effective of clinical and radiological variables in diagnoses of intrusion in permanent teeth	1145-1149
Karam Ammar Ammoun, Samira Zraiki Download PDF DOI: 10.57239/prn.26.034100115	

- About Perinatal Journal
- Author Guidelines
- Article Processing Charge
- Editorial Policies
- Editorial Board
- Publication Ethics
- Contact Us

Archive

- Current Issue
- All Issues

Submission

- About Perinatal Journal
- Author Guidelines

Please ensure that all correspondence regarding articles is submitted as email attachments to editor@perinataljournal.com

Journal Information**Publisher (from 2025-Onwards)**

Perinatal Mediinc Society Pakistan

Online ISSN

1305-3124

DOI

10.57239/prn

Established

2005

Editorial Board

Editorial Board Members**Dr. Elifsen Canan Alp ARICI**

Batman Education and Research Hospital, Batman, Türkiye

Prof. Dr. Zeliha Selamoglu

Nigde Ömer Halisdemir University, Türkiye

Dr. Bülent Babaoğlu

Batman Training and Research Hospital, Türkiye

Prof. Dr. Andrea Giannini

Sapienza University of Rome, Italy

Yunxiang Zhou

Zhejiang University, China

Dr. Feroz Khan Jadhakhan

Birmingham City University, UK

Dr. Khalid Alnababtah

Birmingham City University, UK

Dr. Masoud Mohammadnezhad

Birmingham City University, UK

Dr. Chinene Anetekhai

Birmingham City University, UK

Multidisciplinary Review Board Members**Prof. Dr. Dilip Kumar Behara**

JNTUA College of Engineering Anantapuram, India

Prof. Dr. Yeduguri Sundinti Sharada

Sri Padmavati Mahila Visvavidyalayam, India

Dr. Dorcas Adeoye

University of Bedfordshire, UK

Dr. Divya K.

Central Tribal University of Andhra Pradesh, India

Assoc. Prof. Dr. Abenezer Wakuma Kitila

Haramaya University, Ethiopia

Analysis of cellular immune response in adults after administration of the coronavirus disease 2019 vaccine using the virus vector platform (Astra Zeneca)

Jihan Samira Thabit^{1*}, Ida Effendi², Arleen Devita³, T. Robertus⁴, Isa Bella⁵, Monica Dwi Hartanti⁶, Khariri⁷

^{1,2,3,4,5,6}Universitas Trisakti, Indonesia

⁷Badan Riset dan Inovasi Nasional (BRIN)

Abstract

Coronavirus Disease 2019 (Covid-19) is caused by a novel virus that has never been identified or detected in humans before. To date, there is no specific treatment available for managing Covid-19 infection. To analyze the cellular immune response in adults 12 months after receiving the Covid-19 vaccine using the viral vector platform (AstraZeneca) as an alternative method to evaluate vaccination success. (AstraZeneca). The research sample consists of a group of recipients of the viral vector platform vaccine (AstraZeneca) for a period of 12 months since the second dose. Blood samples will be taken, followed by PBMC isolation and T cell immunophenotyping to calculate T cell and B cell subpopulations. Relevance of the research topic to the faculty's research roadmap: This study will explore the role of viral vector vaccination in the immune response to Covid-19. This objective is closely related to and supports the achievement of the 2016-2020 Strategic Plan and Master Plan for Research at Trisakti University, with a focus on biomedical and health behavior research. Preliminary results: The subjects involved in this study are mostly women, aged 36-45 years. They have received a third dose (booster) of the vaccine, have not been infected with Covid-19 in the past year, and show indications of prehypertension based on blood pressure measurements at the time of sampling. The patients' blood samples have undergone PBMC isolation and are currently stored. Immunophenotyping will be conducted to determine the T cell and B cell subpopulations using flow cytometry, which is currently in the optimization stage. Preliminary The subjects involved in this study are mostly women aged 36-45 years. They have received a third dose of the vaccine (booster), have not been infected with COVID-19 in the past year, and show indications of prehypertension based on blood pressure measurements taken at the time of sampling. Some of the samples that have undergone cellular immune response analysis show a percentage of CD4+ and CD8+ T cells of around 70%.

Keywords: Covid-19, Astra Zeneca, Immune response, PBMC isolation, Flow cytometry

Introduction

Coronavirus Disease 2019 (Covid-19) is caused by a new type of virus that has never been found or identified in humans before. This infection was first discovered in the city of Wuhan, China(Yu et al., 2020) . The World Health Organization (WHO) has named the source of the infection *Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)*, while the disease is referred to as *Coronavirus Disease 2019 (COVID-19)*. The number of Covid-19 cases continues to grow and it has taken only a relatively short time for the disease to spread to almost all countries in various parts of the world(Yu et al., 2020; Chams et al., 2020) . In line with the increasing number of cases in all countries, the WHO officially declared Covid-19 a pandemic on March 11, 2021(Li et al., 2020) . In Indonesia, the first confirmed case of SARS-CoV-2 infection was reported on March 2, 2020, and the number of cases continues to increase to this

day(Khariri, 2020) .

Before the emergence of Covid-19, two types of coronaviruses had already been identified as the source of infection in major epidemics over the past two decades. These two viruses are SARS-CoV, which was also first discovered in China around 2002-2003. In addition, there is the *Middle East Respiratory Syndrome Coronavirus (MERS-CoV)*, which was discovered in Saudi Arabia in April 2012. These three coronaviruses are suspected to be zoonotic and can cause severe infections and death in humans(Guo et al., 2020; Elrashdy et al., 2020). Coronaviruses have great genetic diversity and frequent genome recombination. Additionally, the unavoidable interaction between humans and animals, particularly in activities related to agriculture and plantation work, leads to the potential emergence of new and evolving Coronavirus strains that become sources of seasonal infections regularly (Guo et al.,

2020).

A person can contract Covid-19 infection through close contact with an infected person, contaminated objects or environments, droplets, or *airborne transmission*. When a Covid-19 patient expels droplets, they can travel up to 1-2 meters. *Airborne transmission* can travel even further. Transmission often occurs unnoticed when we are in public places. When we are in a place where the virus is present, it can attach itself to our clothes or the objects we use. These objects can then become a source of transmission for people who live in the same house, even if they do not leave the house. Being in a crowd or in a crowded place also puts you at risk of contracting Covid-19.

Transmission is also possible for those visiting areas categorized as virus circulation zones or pandemic areas(Yuen et al., 2020; Kaur et al., 2020; Zimmermann & Curtis, 2019) . To date, there is no specific treatment available for managing Covid-19 infections. Scientists continue to conduct research and development to find the best ways to mitigate the spread and treat COVID-19 infections. To date, effective therapy for COVID-19 patients is not yet available, and several studies related to this are still ongoing. Every individual and community behavior aimed at preventing transmission is an effort to break the chain of transmission and reduce the number of infections. One of the measures to prevent COVID-19 infection is through vaccination (Andersem et al., 2020).

COVID-19 vaccination is an artificial immune system that is deliberately obtained by exposing antigens in an effort to actively boost a person's immune system against the threat of SARS-CoV-2 infection. A person who has received the COVID-19 vaccine will have antibodies so that if exposed to SARS-CoV-2, they will not develop symptoms or the symptoms that do appear will be milder. Vaccination aims to prevent infection by a microorganism in an individual. Through vaccination, the body is trained to produce antibodies as an immune response to infection by introducing specific substances that can be recognized by the body. Antibodies are formed after vaccination as an immune response to infection by introducing specific substances that can be recognized by the body(Tang et al., 2020) .

Vaccination plays a role in introducing antigens to stimulate the production of specific antibodies that will last for a long time. Someone who has been vaccinated and infected with COVID-19 will have a specific immune system that will quickly form antibodies that can fight the disease. The adaptive immune response formed due to vaccination can be divided into two types, namely cellular and humoral. The humoral immune response is necessary for the host's defense mechanism because it is the first line of defense, so that a person will have antibodies that can resist infection. During embryogenesis, cytotoxic T cells play a role in the cellular immune response. T cells migrate from the bone marrow to the thymus and undergo differentiation into immunocompetent cells (Deng & Peng, 2020).

Vaccination is an effort to reduce the spread, reduce morbidity and mortality due to Covid-19, build *herd immunity* in the population, and protect against the threat of Covid-19 so that community activities can continue. *Herd immunity* is indirect protection from the threat of certain infectious diseases. This occurs when a population has immunity acquired through vaccination or immunity developed from a previous infection. *Herd immunity* reduces the likelihood of individuals becoming infected when in contact with vulnerable individuals. *Herd immunity* can be achieved if vaccination coverage is high (>70%) and widespread across all regions (He et al., 2020; Chan et al., 2020).

Indonesia began its COVID-19 vaccination program in January 2021. Vaccination data as of March 4, 2022 shows that 196,880,116 (94.53%) of Indonesia's population has received the first dose of the COVID-19 vaccine, 160,107,111 (76.88%) have received their second dose, and 24,045,810 (11.55%) have received their third dose. The vaccination targets have been distributed among 1,468,764 health workers, 21,553,118 elderly people, public officials (17,327,167), vulnerable and general communities (141,211,181), the 12-17 age group (26,705,490), and the 6-11 age group (26,400,300). The COVID-19 vaccination program in Indonesia has been ongoing for 15 months and has been conducted in two phases. Period 1 ran from early January to late April 2021. Vaccinations during period 1 were prioritized for 1.3 million health workers and 17.4 million public officials in 34 provinces. Phase 2 lasted for 11 months,

from April 2021 to March 2022, and began to reach the general public, including the elderly (aged 60 and above), those aged 50 and above, followed by those aged 12 and above, with a vaccination coverage target of 181.5 million people (Wu et al., 2020).

The effectiveness of *herd immunity* can be influenced by several factors, such as vaccine efficacy, the duration of immunity formed, including neutralizing antibodies and memory cells, and the threat of new *variants of concern* (VoC) emerging. The emergence of several variants poses a challenge in vaccination programs. Each Covid-19 vaccine has its own characteristics, such as the number of doses, the interval between doses, and the platform, which also vary. Some of the platforms used in the development of COVID-19 vaccines include *inactivated* or *attenuated vaccines*, *subunit vaccines*, *mRNA vaccines*, and *viral vector-based vaccines* (Zhou et al., 2020).

Inactivated vaccines express various native viral antigens, including surface antigens with epitope conformations that will induce an antibody response. The manufacture of inactivated vaccines requires additional ingredients and repeated administration to achieve the desired effectiveness. Inactivated vaccines cannot induce CD8 T cells well and will induce a T helper 2-mediated immune response. Viral vector vaccines are created with replication deficiency or weakened replication through biological engineering to express the target antigen. These vaccines are already widely used, although only a few viral vectors have been approved for use in vaccine production. Most viral vector vaccine candidates express the S protein or RBD of SARS-CoV-2. These vaccines generally induce a strong immunological response and do not produce infectious particles, making them safe to administer (Zhou et al., 2020).

Viral vector vaccines are endocytosed by APC cells. Immune stimulation by viral vector immunogens can induce the NOD-like receptor family pyrin domain-containing (NLRP) 3 pathway, inflammasome activation, and cytokine production. Transgenic vector-encoded genes are transcribed to produce immunogenic proteins, which are then processed by proteasomes and associated with MHC-I or MHC-II in endocytic vesicles. MHC-I molecules loaded with transgenic epitopes translocate to the cell membrane and are recognized by antigen-specific CD8+ T cells.

This results in the killing of infected cells and the release of antigens into the extracellular space. Similarly, MHC-II molecules loaded with transgenic epitopes and translocated to the cell membrane are recognized by CD4+ helper T cells that secrete cytokines and chemokines and subsequently activate antigen-specific CD8+ T cells and B cells. Stimulated B cells mature into plasma cells that secrete antibodies and/or memory B cells, and some stimulated T cells become memory cells. Overall, live immunogens are capable of stimulating both humoral and cellular immune responses (Jiang et al., 2020).

In whole virus vaccine-induced immune stimulation, the antigen inoculated together with the adjuvant will induce cytokine production from local cells. Cytokines will activate or attract APCs. Antigens can also directly activate APCs through binding to TLR cell membranes. Inactivated viruses are phagocytosed by APCs, and traces of nucleic acid within the phagosome can activate endosomal TLR, leading to cytokine and chemokine production. After entering, the antigen is degraded in endocytic vesicles, then loaded onto MHC-II molecules and presented to CD4+ T cells. Activation of CD4+ T lymphocytes causes the production of cytokines and chemokines that induce the activation of antigen-specific B cells that mature into plasma cells that secrete antibodies and/or memory B cells. Whole-virus vaccines induce a potent humoral response and a low to moderate T cell response. CD8+ T cell activation occurs via an alternative pathway not depicted in this figure. The stimulation process in whole-virus vaccines is reported to be less frequent and less robust compared to viral vector vaccines (Jiang et al., 2020; Jam et al., 2025).

The effectiveness of a vaccine can be determined by its ability to withstand several variants that occur from the virus evolution process. Therefore, it is necessary to develop a vaccine platform that can adapt to many variants. To date, there is no data explaining the duration of immunity as an individual response after vaccination (Letko et al., 2020). Several studies have reported a decline in immunity (*waning immunity*) to the Covid-19 vaccine. One study conducted by Levin et al. (2021) reported a decline in humoral immune response in individuals who had received a second dose of the BNT162b2 (Pfizer-BioNTech) vaccine in Israel, especially in men, among

people aged 65 years or older, and people with immunosuppression (Kai et al., 2021). Similar results were also reported from a study of healthcare workers in Belgium who had received two doses of the BNT162b2 (Pfizer-BioNTech) vaccine (Azkur et al., 2020), and several other locations. A study conducted in Qatar on participants in the Coronavac vaccine clinical trial showed a decrease in neutralizing antibody titers 6 months after the second dose of the vaccine (Casella et al., 2020). These results are similar to those reported in Thailand, which showed a decrease in antibody titers 3 months after two doses of Coronavac (Zhao et al., 2020).

The number of companies producing Covid-19 vaccines continues to grow, and they are beginning to introduce their products for global consumption, including in Indonesia. So far, most of the vaccines that have been distributed to the public appear to be effective and safe. However, the effectiveness of vaccination in protecting individuals and populations continues to be studied further. Information regarding the effectiveness of vaccines in immune response after Covid-19 vaccination in Indonesia is currently still being gathered. With immunity still declining, it is a concern whether the government needs to implement policies related to immunity status in the community. Knowing the immunity status of the community can provide further insight to help health authorities plan for future health system needs (Saif, 2020).

This study will evaluate the immune response formed after vaccination with two different types of vaccines, namely whole virus and viral vector vaccines. The immune response analyzed includes humoral and cellular immune responses. Studies related to immune responses in Indonesia are still very limited, especially regarding cellular immune responses to vaccines with whole virus and viral vector platforms. Even if there are studies, they are still limited to one type of vaccine and the observation period is not yet optimal, so they do not provide conclusions about the duration of the immune response after vaccination. Data collection will be carried out in the city of Bogor and Sleman Regency because both places already have the infrastructure to support cohort studies.

Research Method

This study was conducted in 2022-2023. Samples were collected in Bogor City for the group receiving the viral vector platform vaccine (AstraZeneca). Sampling was conducted on November 24-27, 2022, for a period of 12 months after the second dose of the vaccine was administered. The target population in this study was the group of people who received the AstraZeneca COVID-19 vaccine. The location or site used was the city of Bogor. The accessible population in this study was people who received the AstraZeneca COVID-19 vaccine who came to health care facilities (community health centers) or vaccination centers in the working area of the Bogor City community health center. The sample to be taken is the accessible population that meets the inclusion criteria to become a sample in this study and is willing to participate in the study by stating their consent on the informed consent (IC) form. The inclusion criteria for the sample include:

1. Willing to participate and sign *informed consent*
2. Age ≥ 18 years
3. Not pregnant
4. Not known or never confirmed positive for Covid-19
5. Have received the second dose of the AstraZeneca vaccine within 12 months before sample collection.

The sample size (n) to be used was calculated using the G power application for a paired two-group mean test. Based on the sample calculations that have been carried out, the minimum sample size used for the study is 78 samples for the virus vector vaccine (AstraZeneca) recipient group.

The data will be stored by the Research Team and only the Research Team will have access to it. Data generated from analysis using MacsQuant 10 flow cytometer software was then analyzed using SPSS 21.0. The data was first tested for normality using the Kolmogorov-Smirnov test. If the resulting P value was > 0.05 , it meant that the data was normally distributed, and if the resulting P value was < 0.05 , it meant that the data was not normally distributed. After the normality test, the data were analyzed using a paired two-group mean difference test (dependent

t-test) if the data were normally distributed. Otherwise, the Wilcoxon test was used. A P-value < 0.05 indicated significant results.

Discussion

From the target of a minimum sample size of 78, 90 blood specimens were successfully collected during data collection. On the day of data collection, the collected blood underwent laboratory testing, namely PBMC isolation, on the same day. PBMC isolation must be performed on fresh specimens. PBMC isolation was performed at the Genomics Laboratory of the National Research and Innovation Agency. The PBMCs obtained were then taken to Jakarta for temporary storage before undergoing cellular immune response testing using flow cytometry.

Although the objective of the study was to assess the cellular immune response after 12 months of the second dose, the government's policy of providing a third dose to the public meant that some subjects had already received a third dose. However, due to funding constraints, the cellular immune response analysis will still focus on research subjects who have only received the second dose.

Overall, the subjects involved in this study were mostly female (66.7%), aged 36-45 years (43.3%), and had a high school education (50%). In accordance with the government program that implemented a third-dose vaccination policy, some of the research subjects had received a third dose of the vaccine. A total of 5.67% had received the third dose of the vaccine, while the rest had only received the second dose. In terms of Covid-19 infection history, there was one research subject who had been exposed to SARS-CoV-2 infection.

Specific cellular responses were assessed using ex vivo stimulation of PBMCs with a pool of lyophilized peptides. PBMCs were added to a 96-well plate at a concentration of 1×10^6 in RPMI1640 supplemented with 10% human serum and then stimulated with 1 $\mu\text{g}/\text{ml}$ PepTivator. For positive and negative controls, PBMCs were stimulated with 2.5 $\mu\text{g}/\text{ml}$ Phytohemagglutinin-Latau or 2 μl sterile water with 10% DMSO, respectively. Cells were incubated for 20 hours at 37°C, 5% CO₂. After specific stimulation, cells

were labeled with specific antibodies for flow cytometry analysis. Cryopreserved cells were thawed, washed, and stimulated for flow cytometry determination using cell marker assays. CD4 and CD8, B cells were analyzed after ex vivo stimulation of PBMCs with PepTivator for 20 hours. Data were analyzed using Kaluza Analysis Software.

Table 1. Characteristics of study subjects

Characteristics	Sample Size (N)	%
Gender		
- Male	30	33.3
- Women	60	66.7
Age group (years)		
- 17 - 25	6	6.7
- 26-35	5	5.6
- 36-45	39	43.3
- 46-55	32	35.6
- 56-65	8	8.9
- 65 and above	0	0
Education		
- Did not complete elementary school/MI	4	4.4
- Elementary school/MI graduate	15	16.7
- Completed junior high school/MTS	25	27.8
- High school/MA graduate	45	50
- Completed D1, D2, D3	0	0
- Completed S1, S2, S3	1	1.1
COVID-19 vaccination status		
- 2 doses	39	43.3
- 3 doses	51	56.7
Brand of third dose vaccine		
- AstraZeneca	44	86.27
- Pfizer	7	13.72
Have you been infected with Covid in the past year?		
- No	89	98.8

Table 2. Average percentage of CD4+ and CD8+ T cell measurements

Variable	Percentage
CD4	70.00
CD8	70.00

In this study, data collection and analysis were

conducted 12 months after the second dose of both types of vaccines. The immune response formed in the body, both post-infection and post-vaccination, serves to prevent or reduce infection through the mechanisms of pathogen diffusion prevention, virus replication neutralization, bacterial opsonophagocytosis, and complement activation. Antibodies can last for some time depending on the type of vaccine, adjuvant, generality, and administration schedule. Live vaccines or virus particles have a longer duration. The presence of memory B cells is important in vaccination programs, so strategies are needed to maintain them. Secondary doses or boosters or the use of adjuvants play a role in inducing memory B cells, including the interval between booster doses, which affects memory B cell affinity.

When examining the characteristics of the samples from this study, they exhibit nearly identical variability. This is important because homogeneous samples provide valid and accurate measurement results. This indicates the occurrence of a decrease in antibody titers 12 months after the second dose of vaccination, as previous studies showed that four weeks after the second dose, the proportion of positive antibodies reached 100%. Previous studies also showed that 68.5% of subjects had positive titers before receiving the first dose of the vaccine, meaning that some subjects already had antibodies even though they had never received the Covid-19 vaccine.

Immunity was likely acquired through exposure to infection in the surrounding environment, as Covid-19 cases were high in Indonesia at that time. After the first dose of vaccination, the proportion of positive titers continued to increase in subsequent observations at H14, H28, and reached 100% at H56 or four weeks after the second dose. For the AstraZeneca vaccine, the proportion of positive antibody titers remained at 100% twelve months after the second dose, showing no decrease compared to H112 or four weeks after the second dose.

When looking at antibody titers 12 months after the second dose of vaccination, the results are quite good. When compared to the median titer in previous studies, the median titer, which was originally 8985.05 AU/mL at H14 after the first dose, decreased fourfold to 2221.9 at H84 and increased slightly four

weeks after the second dose (H112) to 3651.15 AU/mL. After 12 months, the antibody titer decreased to 2609.7 AU/mL (before receiving the third dose) and 5000.4 AU/mL (after receiving the third dose). A fairly high proportion of seropositivity (100%) after 12 months of the second dose of vaccination and the median antibody titer, especially for the AstraZeneca vaccine, is also supported by the results of a COVID-19 serosurvey conducted by the Ministry of Health in March 2022 across 34 provinces in Indonesia, which showed that 99.8% of the Indonesian population had antibodies against COVID-19 with sufficiently high titers, regardless of their vaccination status.

The AstraZeneca two-dose vaccine clinical trial in the UK in the 18+ age group showed seropositivity in all groups 28 days after the second dose. The median antibody titer in each age group was sufficiently high: 18–55 years (20,713 AU/mL), 56–69 years (16,170 AU/mL), and ≥ 70 years (17,561 AU/mL). After the booster dose, the neutralizing antibody titer in all three age groups did not show a significant difference and reached $>99.9\%$, as only one of 209 subjects had a negative neutralizing antibody titer. The results of this study indicate that although the AstraZeneca vaccine (ChAdOx1 nCoV-19) has the same immunogenicity in all adult age groups, it appears to be more tolerable in older adults than in younger adults, based on the safety testing of the vaccine.

Neutralizing antibody titers are very important because they can be used to predict protection against Covid-19 infection, especially symptomatic cases. Antibody titers usually decrease over time, but can increase if there is sufficient exposure to cause antibodies to rise again. Based on research in Germany conducted on medical personnel who had a history of Covid-19 infection and some of whom had received boosters, it was found that IgG antibody titers decreased slowly, but booster administration significantly increased antibodies. The increase in antibody titers due to booster vaccination was higher than that due to infection. However, the role of memory T cells was not correlated with the level of antibodies formed.

In our study, although seropositive antibodies 12 months after two doses of vaccination decreased slightly compared to before, the median titer

increased in subjects who had not received a booster. One possibility is exposure to Covid-19 infection in their surroundings, even though it did not cause significant symptoms, as only 1.8% of subjects reported having been infected with Covid-19 in the past year. Regarding booster vaccines, more than half of the subjects had received a booster vaccine. This is because since January 12, 2022, the government has recommended booster vaccines to complement the two doses of vaccine that had been given previously. In accordance with the Ministry of Health Circular Letter No. SR.02.06/II/1188/2022, there are currently four types of vaccines used in Indonesia, namely AstraZeneca, Pfizer, Moderna, and Sinopharm. However, in practice, the type of booster vaccine is adjusted to the availability of vaccines in the region.

T cell-mediated immunity plays an important role in the host's defense against infection, especially CD4+ T cells of the T-helper 1 (Th1) type that secrete interferon gamma (IFN- γ). CD8+ T cells can also produce IFN- γ to help destroy microorganisms. CD4+ T cells alone are not sufficient to control the growth of microorganisms; CD8+ T cells are also needed to increase IFN- γ production.⁶ Interferon gamma is the cytokine that plays the most important role in the host's defense against infection. Increased IFN- γ production by CD4+ T cells and CD8+ T cells is expected to protect against infection.

Decreased function of CD4+ T cells and CD8+ T cells in producing IFN- γ can interfere with the process of eliminating microorganisms. Failure of the immune response to eliminate and inhibit the replication of microorganisms that infect macrophages and dendritic cells in the alveoli. CD4+ T cells and CD8+ T cells have the same capacity to produce IFN- γ . Low levels of IFN- γ expression in CD4+ T cells and CD8+ T cells result in an unprotective immune response to infection.

Conclusion

The subjects involved in this study were mostly women aged 36-45 years who had received a third dose of vaccine (booster), had not been infected with Covid-19 during the past year, and showed signs of prehypertension based on blood pressure measurements at the time of sampling. Blood samples

from patients have undergone PBMC isolation, and currently, only a portion has been analyzed for cellular immune response using flow cytometry. Preliminary results of the cellular immune response analysis show that the percentage of CD4+ and CD8+ T cell measurements is around 70%. Antibody titer and neutralizing antibody testing are required to predict protection against the current Covid-19 infection.

References

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. *Nature medicine*, 26(4), 450-452.

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. C., ... & Akdis, C. A. (2020). Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. *Allergy*, 75(7), 1564-1581.

Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation, treatment of coronavirus (COVID-19).

Chams, N., Chams, S., Badran, R., Shams, A., Araji, A., Raad, M., ... & Hajj Hussein, I. (2020). COVID-19: a multidisciplinary review. *in Public Health*, 8, 383.

Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. *Emerging microbes & infections*, 9(1), 221-236.

Jam, F. A., Khan, T. I., & Paul, J. (2025). Driving brand evangelism by Unleashing the power of branding and sales management practices. *Journal of Business Research*, 190, 115214.

Deng, S. Q., & Peng, H. J. (2020). Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. *Journal of Clinical Medicine*, 9(2), 575.

? Elrashdy, F., Redwan, E. M., & Uversky, V. N. (2020). Why COVID-19 transmission is more efficient and aggressive than viral transmission in previous coronavirus epidemics. *Biomolecules*, 10(9), 1312.

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, , and

clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—update on the status. *Military Medical Research*, 7(1), 11.

He, F., Deng, Y., & Li, W. (2020). Coronavirus disease 2019: What we know? *Journal of Medical Virology*, 92(7), 719-725.

Jiang, S., Hillyer, C., & Du, L. (2020). Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. *Trends in immunology*, 41(5), 355-359.

Kai, X. I. N. G., Xiao-Yan, T. U., Miao, L. I. U., Jiang-Nan, C. H. E. N., Jiao-Jiao, L. I., & Fu-Qiang, X. I. N. G. (2021). Efficacy and safety of COVID-19 vaccines: a systematic review. *Chinese Journal of Contemporary Pediatrics*, 23(3), 221.

Kaur, S. P., & Gupta, V. (2020). COVID-19 Vaccine: A comprehensive status report. *Research*, 288, 198114.

Khariri, K. (2020). Socialization of the dangers and prevention efforts of coronavirus disease (COVID-19) INDRA: *Journal of Community Service*, 1(2), 37-40.

Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Microbiology*, 5(4), 562-569.

Li, H., Liu, S. M., Yu, X. H., Tang, S. L., & Tang, C. K. (2020). Coronavirus disease 2019 (COVID-19): current status and future perspectives. *International journal of antimicrobial agents*, 55(5), 105951.

Saif, L. J. (2020). Vaccines for COVID-19: perspectives, prospects, challenges based on candidate SARS, MERS, and animal coronavirus vaccines. *Med J*, 200324(10.33590).

Tang, D., Comish, P., & Kang, R. (2020). The hallmarks of COVID-19 disease. *Pathogens*, 16 (5), e1008536.

Tang, D., Comish, P., & Kang, R. (2020). The hallmarks of COVID-19 disease. *PLoS pathogens*, 16 (5), e1008536.

Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., ... & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. *Cell host- &*, 27(3), 325-328.

Yu, F., Du, L., Ojcius, D. M., Pan, C., & Jiang, S. (2020). Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. *Microbes and Infection*, 22(2), 74-79.

Yuen, K. S., Ye, Z. W., Fung, S. Y., Chan, C. P., & Jin, D. Y. (2020). SARS-CoV-2 and COVID-19: The most important research questions. *Cell & bioscience*, 10(1), 40.

Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., ... & Zhang, Z. (2020). Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. *infectious diseases*, 71(16), 2027-2034.

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. *579(7798)*, 270-273.

Zimmermann, P., & Curtis, N. (2019). Factors that influence the immune response to vaccination. *Microbiology Reviews*, 32(2), 10-1128

Analysis of cellular immune response in adults after administration of the coronavirus disease 2019 vaccine using the virus vector platform (Astra Zeneca)

by Turnitin.library

Submission date: 28-Jan-2026 02:06PM (UTC+0700)

Submission ID: 2865452228

File name: Article59v34i1_1.pdf (763.32K)

Word count: 5451

Character count: 28544

Analysis of cellular immune response in adults after administration of the coronavirus disease 2019 vaccine using the virus vector platform (Astra Zeneca)

Jihan Samira Thabit¹, Ida Effendi², Arleen Devita³, T. Robertus⁴, Isa Bella⁵, Monica Dwi Hartanti⁶, Khariri⁷

^{1,2,3,4,5,6}Universitas Trisakti, Indonesia
⁷Badan Riset dan Inovasi Nasional (BRIN)

Abstract

Coronavirus Disease 2019 (Covid-19) is caused by a novel virus that has never been identified or detected in humans before. To date, there is no specific treatment available for managing Covid-19 infection. To analyze the cellular immune response in adults 12 months after receiving the Covid-19 vaccine using the viral vector platform (AstraZeneca) as an alternative method to evaluate vaccination success. (AstraZeneca). The research sample consists of a group of recipients of the viral vector platform vaccine (AstraZeneca) for a period of 12 months since the second dose. Blood samples will be taken, followed by PBMC isolation and T cell immunophenotyping to calculate T cell and B cell subpopulations. Relevance of the research topic to the faculty's research roadmap: This study will explore the role of viral vector vaccination in the immune response to Covid-19. This objective is closely related to and supports the achievement of the 2016-2020 Strategic Plan and Master Plan for Research at Trisakti University, with a focus on biomedical and health behavior research. Preliminary results: The subjects involved in this study are mostly women, aged 36-45 years. They have received a third dose (booster) of the vaccine, have not been infected with Covid-19 in the past year, and show indications of prehypertension based on blood pressure measurements at the time of sampling. The patients' blood samples have undergone PBMC isolation and are currently stored. Immunophenotyping will be conducted to determine the T cell and B cell subpopulations using flow cytometry, which is currently in the optimization stage. Preliminary The subjects involved in this study are mostly women aged 36-45 years. They have received a third dose of the vaccine (booster), have not been infected with COVID-19 in the past year, and show indications of prehypertension based on blood pressure measurements taken at the time of sampling. Some of the samples that have undergone cellular immune response analysis show a percentage of CD4+ and CD8+ T cells of around 70%.

Keywords: Covid-19, Astra Zeneca, Immune response, PBMC isolation, Flow cytometry

21 Introduction

Coronavirus Disease 2019 (Covid-19) is caused by a new type of virus that has never been found or identified in humans before. This infection was first discovered in the city of Wuhan, China (Yu et al., 2020). The World Health Organization (WHO) has named the source of the infection *Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)*, while the disease is referred to as *Coronavirus Disease 2019 (COVID-19)*. The number of Covid-19 cases continues to grow and it has taken only a relatively short time for the disease to spread to almost all countries in various parts of the world (Yu et al., 2020; Chams et al., 2020). In line with the increasing number of cases in all countries, the WHO officially declared Covid-19 a pandemic on March 11, 2020 (Li et al., 2020). In Indonesia, the first confirmed case of SARS-CoV-2 infection was reported on March 2, 2020, and the number of cases continues to increase to this

day (Khariri, 2020).

Before the emergence of Covid-19, two types of coronaviruses had already been identified as the source of infection in major epidemics over the past two decades. These two viruses are SARS-CoV, which was also first discovered in China around 2002-2003. In addition, there is the *Middle East Respiratory Syndrome Coronavirus (MERS-CoV)*, which was discovered in Saudi Arabia in April 2012. These three coronaviruses are suspected to be zoonotic and can cause severe infections and death in humans (Guo et al., 2020; Elrashdy et al., 2020). Coronaviruses have great genetic diversity and frequent genome recombination. Additionally, the unavoidable interaction between humans and animals, particularly in activities related to agriculture and plantation work, leads to the potential emergence of new and evolving Coronavirus strains that become sources of seasonal infections regularly (Guo et al.,

²⁵
Correspondence: Jihan Samira Thabit, Universitas Trisakti, Indonesia, e-mail: drjhansamira@gmail.com, **Received:** November 1, 2025 **Accepted:** December 10, 2025

2020).

A person can contract Covid-19 infection through close contact with an infected person, contaminated objects or environments, droplets, or *airborne transmission*. When a Covid-19 patient expels droplets, they can travel up to 1-2 meters. *Airborne* transmission can travel even further. Transmission often occurs unnoticed when we are in public places. When we are in a place where the virus is present, it can attach itself to our clothes or the objects we use. These objects can then become a source of transmission for people who live in the same house, even if they do not leave the house. Being in a crowd or in a crowded place also puts you at risk of contracting Covid-19.

Transmission is also possible for those visiting areas categorized as *virus circulation zones* or *pandemic areas* (Yuen et al., 2020; Kaur et al., 2020; Zimmermann & Curtis, 2019). To date, there is no specific treatment available for managing Covid-19 infections. Scientists continue to conduct research and development to find the best ways to mitigate the spread and treat COVID-19 infections. To date, effective therapy for COVID-19 patients is not yet available, and several studies related to this are still ongoing. Every individual and community behavior aimed at preventing transmission is an effort to break the chain of transmission and reduce the number of infections. One of the measures to prevent COVID-19 infection is through vaccination (Andersem et al., 2020).

COVID-19 vaccination is an artificial immune system that is deliberately obtained by exposing antigens in an effort to actively *boost* a person's immune system against the threat of SARS-CoV-2 infection. A person who has received the COVID-19 vaccine will have antibodies so that if exposed to SARS-CoV-2, they will not develop symptoms or the symptoms that do appear will be milder. Vaccination aims to prevent infection by a microorganism in an individual. Through vaccination, the body is trained to produce antibodies as an immune response to infection by introducing specific substances that can be recognized by the body. Antibodies are formed after vaccination as an immune response to infection by introducing specific substances that can be recognized by the body (Tang et al., 2020).

Vaccination plays a role in introducing antigens to stimulate the production of specific antibodies that will last for a long time. Someone who has been vaccinated and infected with COVID-19 will have a specific immune system that will quickly form antibodies that can fight the disease. The adaptive immune response formed due to vaccination can be divided into two types, namely cellular and humoral. The humoral immune response is necessary for the host's defense mechanism because it is the first line of defense, so that a person will have antibodies that can resist infection. During *embryogenesis*, cytotoxic T cells play a role in the cellular immune response. T cells migrate from the bone marrow to the thymus and undergo differentiation into immunocompetent cells (Deng & Peng, 2020).

Vaccination is an effort to reduce the spread, reduce *morbidity* and mortality due to Covid-19, build *herd immunity* in the population, and protect against the threat of Covid-19 so that community activities can continue. *Herd immunity* is indirect protection from the threat of certain infectious diseases. This occurs when a population has immunity acquired through vaccination or immunity developed from a previous infection. *Herd immunity* reduces the likelihood of individuals becoming infected when in contact with vulnerable individuals. *Herd immunity* can be achieved if vaccination coverage is *high* (>70%) and widespread across all regions (He et al., 2020; Chan et al., 2020).

Indonesia began its COVID-19 vaccination program in January 2021. Vaccination data as of March 4, 2022 shows that 196,880,116 (94.53%) of Indonesia's population has received the first dose of the COVID-19 vaccine, 160,107,111 (76.88%) have received their second dose, and 24,045,810 (11.55%) have received their third dose. The vaccination targets have been distributed among 1,468,764 health workers, 21,553,118 elderly people, public officials (17,327,167), vulnerable and general communities (141,211,181), the 12-17 age group (26,705,490), and the 6-11 age group (26,400,300). The COVID-19 vaccination program in Indonesia has been ongoing for 15 months and has been conducted in two phases. Period 1 ran from early January to late April 2021. Vaccinations during period 1 were prioritized for 1.3 million health workers and 17.4 million public officials in 34 provinces. Phase 2 lasted for 11 months,

7 from April 2021 to March 2022, and began to reach the general public, including the elderly (aged 60 and above), those aged 50 and above, followed by those aged 12 and above, with a vaccination coverage target of 181.5 million people (Wu et al., 2020).

The effectiveness of *herd immunity* can be influenced by several factors, such as vaccine efficacy, the duration of immunity formed, including neutralizing antibodies and memory cells, and the threat of new variants of concern (VoC) emerging. The emergence of several variants poses a challenge in vaccination programs. Each Covid-19 vaccine has its own characteristics, such as the number of doses, the interval between doses, and the platform, which also vary. Some of the platforms used in the development of COVID-19 vaccines include *inactivated* or *attenuated vaccines, subunit vaccines, mRNA vaccines, and viral vector-based vaccines* (Zhou et al., 2020).

30 Inactivated vaccines express various native viral antigens, including surface antigens with epitope conformations that will induce an antibody response. The manufacture of inactivated vaccines requires additional ingredients and repeated administration to achieve the desired effectiveness. Inactivated vaccines cannot induce CD8 T cells well and will induce a T helper 2-mediated immune response. Viral vector vaccines are created with replication deficiency or weakened replication through biological engineering to express the target antigen. These vaccines are already widely used, although only a few viral vectors have been approved for use in vaccine production. Most viral vector vaccine candidates express the S protein or RBD of SARS-CoV-2. These vaccines generally induce a strong immunological response and do not produce infectious particles, making them safe to administer (Zhou et al., 2020).

Viral vector vaccines are endocytosed by APC cells. Immune stimulation by viral vector immunogens can induce the NOD-like receptor family pyrin domain-containing (NLRP) 3 pathway, inflammasome activation, and cytokine production. Transgenic vector-encoded genes are transcribed to produce immunogenic proteins, which are then processed by proteasomes and associated with MHC-I or MHC-II in endocytic vesicles. MHC-I molecules loaded with transgenic epitopes translocate to the cell membrane and are recognized by antigen-specific CD8+ T cells.

This results in the killing of infected cells and the release of antigens into the extracellular space. Similarly, MHC-II molecules loaded with transgenic epitopes and translocated to the cell membrane are recognized by CD4+ helper T cells that secrete cytokines and chemokines and subsequently activate antigen-specific CD8+ T cells and B cells. Stimulated B cells mature into plasma cells that secrete antibodies and/or memory B cells, and some stimulated T cells become memory cells. Overall, live immunogens are capable of stimulating both humoral and cellular immune responses (Jiang et al., 2020).

In whole virus vaccine-induced immune stimulation, the antigen inoculated together with the adjuvant will induce cytokine production from local cells. Cytokines will activate or attract APCs. Antigens can also directly activate APCs through binding to TLR cell membranes. Inactivated viruses are phagocytosed by APCs, and traces of nucleic acid within the phagosome can activate endosomal TLR, leading to cytokine and chemokine production. After entering, the antigen is degraded in endocytic vesicles, then loaded onto MHC-II molecules and presented to CD4+ T cells. Activation of CD4+ T lymphocytes causes the production of cytokines and chemokines that induce the activation of antigen-specific B cells that mature into plasma cells that secrete antibodies and/or memory B cells. Whole-virus vaccines induce a potent humoral response and a low to moderate T cell response. CD8+ T cell activation occurs via an alternative pathway not depicted in this figure. The stimulation process in whole-virus vaccines is reported to be less frequent and less robust compared to viral vector vaccines (Jiang et al., 2020; Jam et al., 2025).

The effectiveness of a vaccine can be determined by its ability to withstand several variants that occur from the virus evolution process. Therefore, it is necessary to develop a vaccine platform that can adapt to many variants. To date, there is no data explaining the duration of immunity as an individual response after vaccination (Letko et al., 2020). Several studies have reported a decline in immunity (*waning immunity*) to the Covid-19 vaccine. One study conducted by Levin et al. (2021) reported a decline in humoral immune response in individuals who had received a second dose of the BNT162b2 (Pfizer-BioNTech) vaccine in Israel, especially in men, among

11 people aged 65 years or older, and people with immunosuppression (Kai et al., 2021). Similar results were also reported from a study of healthcare workers in Belgium who had received two doses of the BNT162b2 (Pfizer-BioNTech) vaccine (Azkur et al., 2020), and several other locations. A study conducted in Qatar on participants in the Coronavac vaccine clinical trial showed a decrease in neutralizing antibody titers 6 months after the second dose of the vaccine (Casella et al., 2020). These results are similar to those reported in Thailand, which showed a decrease in antibody titers 3 months after two doses of Coronavac (Zhao et al., 2020).

The number of companies producing Covid-19 vaccines continues to grow, and they are beginning to introduce their products for global consumption, including in Indonesia. So far, most of the vaccines that have been distributed to the public appear to be effective and safe. However, the effectiveness of vaccination in protecting individuals and populations continues to be studied further. Information regarding the effectiveness of vaccines in immune response after Covid-19 vaccination in Indonesia is currently still being gathered. With immunity still declining, it is a concern whether the government needs to implement policies related to immunity status in the community. Knowing the immunity status of the community can provide further insight to help health authorities plan for future health system needs (Saif, 2020).

This study will evaluate the immune response formed after vaccination with two different types of vaccines, namely whole virus and viral vector vaccines. The immune response analyzed includes humoral and cellular immune responses. Studies related to immune responses in Indonesia are still very limited, especially regarding cellular immune responses to vaccines with whole virus and viral vector platforms. Even if there are studies, they are still limited to one type of vaccine and the observation period is not yet optimal, so they do not provide conclusions about the duration of the immune response after vaccination. Data collection will be carried out in the city of Bogor and Sleman Regency because both places already have the infrastructure to support cohort studies.

Research Method

This study was conducted in 2022-2023. Samples were collected in Bogor City for the group receiving the viral vector platform vaccine (AstraZeneca). Sampling was conducted on November 24-27, 2022, for a period of 12 months after the second dose of the vaccine was administered. The target population in this study was the group of people who received the AstraZeneca COVID-19 vaccine. The location or site used was the city of Bogor. The accessible population in this study was people who received the AstraZeneca COVID-19 vaccine who came to health care facilities (community health centers) or vaccination centers in the working area of the Bogor City community health center. The sample to be taken is the accessible population that meets the inclusion criteria to become a sample in this study and is willing to participate in the study by stating their consent on the informed consent (IC) form. The inclusion criteria for the sample include:

1. Willing to participate and sign *informed consent*
2. Age \geq 18 years
3. Not pregnant
4. Not known or never confirmed positive for Covid-19
5. Have received the second dose of the AstraZeneca vaccine within 12 months before sample collection.

The sample size (n) to be used was calculated using the G power application for a paired two-group mean test. Based on the sample calculations that have been carried out, the minimum sample size used for the study is 78 samples for the virus vector vaccine (AstraZeneca) recipient group.

The data will be stored by the Research Team and only the Research Team will have access to it. Data generated from analysis using MacsQuant 10 flow cytometer software was then analyzed using SPSS 21.0. The data was first tested for normality using the Kolmogorov-Smirnov test. If the resulting P value was > 0.05 , it meant that the data was normally distributed, and if the resulting P value was < 0.05 , it meant that the data was not normally distributed. After the normality test, the data were analyzed using a paired two-group mean difference test (dependent

23

t-test if the data were normally distributed. Otherwise, the Wilcoxon test was used. A P-value < 0.05 indicated significant results.

Discussion

From the target of a minimum sample size of 78, 90 blood specimens were successfully collected during data collection. On the day of data collection, the collected blood underwent laboratory testing, namely PBMC isolation, on the same day. PBMC isolation must be performed on fresh specimens. PBMC isolation was performed at the Genomics Laboratory of the National Research and Innovation Agency. The PBMCs obtained were then taken to Jakarta for temporary storage before undergoing cellular immune response testing using flow cytometry.

Although the objective of the study was to assess the cellular immune response after 12 months of the second dose, the government's policy of providing a third dose to the public meant that some subjects had already received a third dose. However, due to funding constraints, the cellular immune response analysis will still focus on research subjects who have only received the second dose.

Overall, the subjects involved in this study were mostly female (66.7%), aged 36-45 years (43.3%), and had a high school education (50%). In accordance with the government program that implemented a third-dose vaccination policy, some of the research subjects had received a third dose of the vaccine. A total of 5.67% had received the third dose of the vaccine, while the rest had only received the second dose. In terms of Covid-19 infection history, there was one research subject who had been exposed to SARS-CoV-2 infection.

Specific cellular responses were assessed using ex vivo stimulation of PBMCs with a pool of lyophilized peptides. PBMCs were added to a 96-well plate at a concentration of 1×10^6 in RPMI1640 supplemented with 10% human serum and then stimulated with 1 μ g/ml PepTivator. For positive and negative controls, PBMCs were stimulated with 2.5 μ g/ml Phytohemagglutinin-Latau or 2 μ l sterile water with 10% DMSO, respectively. Cells were incubated for 20 hours at 37°C, 5% CO₂. After specific stimulation, cells

were labeled with specific antibodies for flow cytometry analysis. Cryopreserved cells were thawed, washed, and stimulated for flow cytometry determination using cell marker assays. CD4 and CD8, B cells were analyzed after ex vivo stimulation of PBMCs with PepTivator for 20 hours. Data were analyzed using Kaluza Analysis Software.

Table 1. Characteristics of study subjects

Characteristics	Sample Size (N)	%
Gender		
- Male	30	33.3
- Women	60	66.7
Age group (years)		
- 17 - 25	6	6.7
- 26-35	5	5.6
- 36-45	39	43.3
- 46-55	32	35.6
- 56-65	8	8.9
- 65 and above	0	0
Education		
- Did not complete elementary school/MI	4	4.4
- Elementary school/MI graduate	15	16.7
- Completed junior high school/MTS	25	27.8
- High school/MA graduate	45	50
- Completed D1, D2, D3	0	0
- Completed S1, S2, S3	1	1.1
COVID-19 vaccination status		
- 2 doses	39	43.3
- 3 doses	51	56.7
Brand of third dose vaccine		
- AstraZeneca	44	86.27
- Pfizer	7	13.72
Have you been infected with Covid in the past year?		
- No	89	98.8

Table 2. Average percentage of CD4+ and CD8+ T cell measurements

Variable	Percentage
CD4	70.00
CD8	70.00

In this study, data collection and analysis were

conducted 12 months after the second dose of both types of vaccines. The immune response formed in the body, both post-infection and post-vaccination, serves to prevent or reduce infection through the mechanisms of pathogen diffusion prevention, virus replication, neutralization, bacterial opsonophagocytosis, and complement activation. Antibodies can last for some time depending on the type of vaccine, adjuvant, generality, and administration schedule. Live vaccines or virus particles have a longer duration. The presence of memory B cells is important in vaccination programs, so strategies are needed to maintain them. Secondary doses or boosters or the use of adjuvants play a role in inducing memory B cells, including the interval between booster doses, which affects memory B cell affinity.

When examining the characteristics of the samples from this study, they exhibit nearly identical variability. This is important because homogeneous samples provide valid and accurate measurement results. This indicates the occurrence of a decrease in antibody titers 12 months after the second dose of vaccination, as previous studies showed that four weeks after the second dose, the proportion of positive antibodies reached 100%. Previous studies also showed that 68.5% of subjects had positive titers before receiving the first dose of the vaccine, meaning that some subjects already had antibodies even though they had never received the Covid-19 vaccine.

Immunity was likely acquired through exposure to infection in the surrounding environment, as Covid-19 cases were high in Indonesia at that time. After the first dose of vaccination, the proportion of positive titers continued to increase in subsequent observations at H14, H28, and reached 100% at H56 or four weeks after the second dose. For the AstraZeneca vaccine, the proportion of positive antibody titers remained at 100% twelve months after the second dose, showing no decrease compared to H112 or four weeks after the second dose.

When looking at antibody titers 12 months after the second dose of vaccination, the results are quite good. When compared to the median titer in previous studies, the median titer, which was originally 8985.05 AU/mL at H14 after the first dose, decreased fourfold to 2221.9 at H84 and increased slightly four

weeks after the second dose (H112) to 3651.15 AU/mL. After 12 months, the antibody titer decreased to 2609.7 AU/mL (before receiving the third dose) and 5000.4 AU/mL (after receiving the third dose). A fairly high proportion of seropositivity (100%) after 12 months of the second dose of vaccination and the median antibody titer, especially for the AstraZeneca vaccine, is also supported by the results of a COVID-19 serosurvey conducted by the Ministry of Health in March 2022 across 34 provinces in Indonesia, which showed that 99.8% of the Indonesian population had antibodies against COVID-19 with sufficiently high titers, regardless of their vaccination status.

The AstraZeneca two-dose vaccine clinical trial in the UK in the 18+ age group showed seropositivity in all groups 28 days after the second dose. The median antibody titer in each age group was sufficiently high: 18–55 years (20,713 AU/mL), 56–69 years (16,170 AU/mL), and ≥70 years (17,561 AU/mL). After the booster dose, the neutralizing antibody titer in all three age groups did not show a significant difference and reached >99.9%, as only one of 209 subjects had a negative neutralizing antibody titer. The results of this study indicate that although the AstraZeneca vaccine (ChAdOx1 nCoV-19) has the same immunogenicity in all adult age groups, it appears to be more tolerable in older adults than in younger adults, based on the safety testing of the vaccine.

Neutralizing antibody titers are very important because they can be used to predict protection against Covid-19 infection, especially symptomatic cases. Antibody titers usually decrease over time, but can increase if there is sufficient exposure to cause antibodies to rise again. Based on research in Germany conducted on medical personnel who had a history of Covid-19 infection and some of whom had received boosters, it was found that IgG antibody titers decreased slowly, but booster administration significantly increased antibodies. The increase in antibody titers due to booster vaccination was higher than that due to infection. However, the role of memory T cells was not correlated with the level of antibodies formed.

In our study, although seropositive antibodies 12 months after two doses of vaccination decreased slightly compared to before, the median titer

increased in subjects who had not received a booster. One possibility is exposure to Covid-19 infection in their surroundings, even though it did not cause significant symptoms, as only 1.8% of subjects reported having been infected with Covid-19 in the past year. Regarding booster vaccines, more than half of the subjects had received a booster vaccine. This is because since January 12, 2022, the government has recommended booster vaccines to complement the two doses of vaccine that had been given previously. In accordance with the Ministry of Health Circular Letter No. SR.02.06/II/1188/2022, there are currently four types of vaccines used in Indonesia, namely AstraZeneca, Pfizer, Moderna, and Sinopharm. However, in practice, the type of booster vaccine is adjusted to the availability of vaccines in the region.

²⁹ T cell-mediated immunity plays an important role in the host's defense against infection, especially CD4+ T cells of the T-helper 1 (Th1) type that secrete interferon gamma (IFN- γ). CD8+ T cells can also produce IFN- γ to help destroy microorganisms. CD4+ T cells alone are not sufficient to control the growth of microorganisms; CD8+ T cells are also needed to increase IFN- γ production.⁶ Interferon gamma is the cytokine that plays the most important role in the host's defense against infection. Increased IFN- γ production by CD4+ T cells and CD8+ T cells is expected to protect against infection.

²⁸ Decreased function of CD4+ T cells and CD8+ T cells in producing IFN- γ can interfere with the process of eliminating microorganisms. Failure of the immune response to eliminate and inhibit the replication of microorganisms that infect macrophages and dendritic cells in the alveoli. CD4+ T cells and CD8+ T cells have the same capacity to produce IFN- γ . Low levels of IFN- γ expression in CD4+ T cells and CD8+ T cells result in an unprotective immune response to infection.

Conclusion

The subjects involved in this study were mostly women aged 36-45 years who had received a third dose of vaccine (booster), had not been infected with Covid-19 during the past year, and showed signs of prehypertension based on blood pressure measurements at the time of sampling. Blood samples

from patients have undergone PBMC isolation, and currently, only a portion has been analyzed for cellular immune response using flow cytometry. Preliminary results of the cellular immune response analysis show that the percentage of CD4+ and CD8+ T cell measurements is around 70%. Antibody titer and neutralizing antibody testing are required to predict protection against the current Covid-19 infection.

References

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. *Nature medicine*, 26(4), 450-452.

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. C., ... & Akdis, C. A. (2020). Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. *Allergy*, 75(7), 1564-1581.

Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation, treatment of coronavirus (COVID-19).

Chams, N., Chams, S., Badran, R., Shams, A., Araji, A., Raad, M., ... & Hajj Hussein, I. (2020). COVID-19: a multidisciplinary review. *in Public Health*, 8, 383.

Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. *Emerging microbes & infections*, 9(1), 221-236.

Jam, F. A., Khan, T. I., & Paul, J. (2025). Driving brand evangelism by Unleashing the power of branding and sales management practices. *Journal of Business Research*, 190, 115214.

Deng, S. Q., & Peng, H. J. (2020). Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. *Journal of Clinical Medicine*, 9(2), 575.

Elrashdy, F., Redwan, E. M., & Uversky, V. N. (2020). Why COVID-19 transmission is more efficient and aggressive than viral transmission in previous coronavirus epidemics. *Biomolecules*, 10(9), 1312.

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, , and

clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-update on the status. *Military Medical Research*, 7(1), 11.

He, F., Deng, Y., & Li, W. (2020). Coronavirus disease 2019: What we know? *Journal of Medical Virology*, 92(7), 719-725.

Jiang, S., Hillyer, C., & Du, L. (2020). Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. *Trends in immunology*, 41(5), 355-359.

Kai, X. I. N. G., Xiao-Yan, T. U., Miao, L. I. U., Jiang-Nan, C. H. E. N., Jiao-Jiao, L. I., & Fu-Qiang, X. I. N. G. (2021). Efficacy and safety of COVID-19 vaccines: a systematic review. *Chinese Journal of Contemporary Pediatrics*, 23(3), 221.

Kaur, S. P., & Gupta, V. (2020). COVID-19 Vaccine: A comprehensive status report. *Research*, 288, 198114.

Khariri, K. (2020). Socialization of the dangers and prevention efforts of coronavirus disease (COVID-19) *INDRA: Journal of Community Service*, 1(2), 37-40.

Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Microbiology*, 5(4), 562-569.

Li, H., Liu, S. M., Yu, X. H., Tang, S. L., & Tang, C. K. (2020). Coronavirus disease 2019 (COVID-19): current status and future perspectives. *International journal of antimicrobial agents*, 55(5), 105951.

Saif, L.J. (2020). Vaccines for COVID-19: perspectives, prospects, challenges based on candidate SARS, MERS, and animal coronavirus vaccines. *Med J*, 200324(10.33590).

Tang, D., Comish, P., & Kang, R. (2020). The hallmarks of COVID-19 disease. *Pathogens*, 16 (5), e1008536.

Tang, D., Comish, P., & Kang, R. (2020). The hallmarks of COVID-19 disease. *PLoS pathogens*, 16 (5), e1008536.

Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., ... & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. *Cell host- &*, 27(3), 325-328.

Yu, F., Du, L., Ojcius, D. M., Pan, C., & Jiang, S. (2020). Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. *Microbes and Infection*, 22(2), 74-79.

Yuen, K. S., Ye, Z. W., Fung, S. Y., Chan, C. P., & Jin, D. Y. (2020). SARS-CoV-2 and COVID-19: The most important research questions. *Cell & bioscience*, 10(1), 40.

Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., ... & Zhang, Z. (2020). Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. *infectious diseases*, 71(16), 2027-2034.

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. *579(7798)*, 270-273.

Zimmermann, P., & Curtis, N. (2019). Factors that influence the immune response to vaccination. *Microbiology Reviews*, 32(2), 10-1128

Analysis of cellular immune response in adults after administration of the coronavirus disease 2019 vaccine using the virus vector platform (Astra Zeneca)

ORIGINALITY REPORT

13%
SIMILARITY INDEX

10%
INTERNET SOURCES

7%
PUBLICATIONS

2%
STUDENT PAPERS

PRIMARY SOURCES

1	www.medrxiv.org Internet Source	1%
2	www.perinataljournal.com Internet Source	1%
3	www.frontiersin.org Internet Source	1%
4	Muhammad Imran Sajid, Muhammad Moazzam, Yeseom Cho, Shun Kato, Ava Xu, J. Way, Sandeep Lohan, Rakesh K. Tiwari. "siRNA Therapeutics for the Therapy of COVID-19 and Other Coronaviruses", <i>Molecular Pharmaceutics</i> , 2021 Publication	1%
5	Robert L. Atmar, Wendy A. Keitel. "Chapter 16 Adjuvants for Pandemic Influenza Vaccines", Springer Science and Business Media LLC, 2009 Publication	1%
6	Kazuhiko Nakaharai, Yasushi Nakazawa, Masaki Yoshida. "Association between rubella vaccination response and long-term immune response to severe acute respiratory syndrome coronavirus 2 after BNT162b2 vaccination", <i>Journal of Infection and Chemotherapy</i> , 2024 Publication	1%
7	voi.id Internet Source	<1%

8	Submitted to University of Nottingham Student Paper	<1 %
9	journals.aai.org Internet Source	<1 %
10	Edgar A. Melgoza-González, Diana Hinojosa-Trujillo, Mónica Reséndiz-Sandoval, Verónica Mata-Haro et al. "Analysis of IgG, IgA and IgM antibodies against SARS-CoV-2 spike protein S1 in convalescent and vaccinated patients with the Pfizer-BioNTech and CanSinoBio vaccines", <i>Transboundary and Emerging Diseases</i> , 2021 Publication	<1 %
11	V. Samuel Raj, Vishwa Mohan Katoch, Nirmal Kumar Ganguly. "Deadly RNA Viruses - Diagnosis, Detection, and Mitigation of Epidemics and Pandemics", CRC Press, 2025 Publication	<1 %
12	"COVID-19 Vaccine Janssen: rare unusual blood clots, low platelets", <i>Reactions Weekly</i> , 2021 Publication	<1 %
13	download.bibis.ir Internet Source	<1 %
14	f1000research.com Internet Source	<1 %
15	www-dweb-cors.dev.archive.org Internet Source	<1 %
16	www.medindia.net Internet Source	<1 %
17	Bernstein, D.I.. "Safety and immunogenicity of a candidate parvovirus B19 vaccine", <i>Vaccine</i> , 20111006 Publication	<1 %
18	Submitted to Florida Institute of Technology Student Paper	

		<1 %
19	journal.umpr.ac.id Internet Source	<1 %
20	unsworks.unsw.edu.au Internet Source	<1 %
21	bmcwomenshealth.biomedcentral.com Internet Source	<1 %
22	www.coursehero.com Internet Source	<1 %
23	www.em-consulte.com Internet Source	<1 %
24	Submitted to Des Moines University Student Paper	<1 %
25	journal.julypress.com Internet Source	<1 %
26	Faheem Hyder Pottoo, Tareq Abu-Izneid, Abdallah Mohammad Ibrahim, Md. Noushad Javed, Noora AlHajri, Amar M. Hamrouni. "Immune system response during viral Infections: Immunomodulators, cytokine storm (CS) and Immunotherapeutics in COVID-19", Saudi Pharmaceutical Journal, 2021 Publication	<1 %
27	bnrc.springeropen.com Internet Source	<1 %
28	edepositireland.ie Internet Source	<1 %
29	qa1.scielo.br Internet Source	<1 %
30	sciendo.com Internet Source	<1 %

31

Internet Source

<1 %

32

www.degruyter.com

Internet Source

<1 %

33

www.researchgate.net

Internet Source

<1 %

Exclude quotes On

Exclude matches < 10 words

Exclude bibliography On

Analysis of cellular immune response in adults after
administration of the coronavirus disease 2019 vaccine using
the virus vector platform (Astra Zeneca)

GRADEMARK REPORT

FINAL GRADE

GENERAL COMMENTS

/0

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8
