

5. Quantitative

by Erica

Submission date: 10-Jan-2026 03:29PM (UTC+0700)

Submission ID: 2652408792

File name: -_Effects_of_Radial_Head_Replacement_and_IOM_Reconstruction.docx (23.14M)

Word count: 4239

Character count: 25649

7 Quantitative Analysis of Forearm Instability in an Essex-Lopresti Injury Model: Effects of Radial Head Replacement and IOM Reconstruction

Erica Kholinne, MD, PhD¹; In-Ho Jeon, MD, PhD²

⁵ Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia

²Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

9 Abstract

10 **Background:**

11 Essex-Lopresti injuries, characterized by radial head fracture, interosseous membrane (IOM)
12 **rupture, and distal radioulnar joint (DRUJ) disruption**, lead to forearm longitudinal instability,
13 ulnar-positive variance, pain, and loss of rotation. While radial head replacement (RHR) is widely
14 used, the biomechanical importance of IOM reconstruction remains debated. This study aimed to
15 quantify the relationship between sequential forearm stabilizer disruption and longitudinal
16 translation and rotation, and to assess the ability of RHR with IOM reconstruction to restore
17 stability.

18 Methods:

19 Ten fresh-frozen cadaveric forearms underwent sequential sectioning of the proximal radioulnar
20 joint (PRUJ), DRUJ, partial and complete IOM, and radial head, followed by anatomic,
21 overstuffed, and understuffed RHR combined with IOM reconstruction. Rotational arc was
22 measured using a custom jig and goniometer, and longitudinal displacement was measured under
23 axial load using a materials testing machine. ⁹ Statistical analysis included paired t-tests and
24 repeated-measures ANOVA.

25 Results:

Sequential sectioning produced significant increases in rotational and longitudinal instability. The total forearm rotation arc increased from 84° (intact) to 171° (complete injury; $p<0.001$), with the greatest increase in supination. Longitudinal displacement increased by ~30% with PRUI/DRUJ injury, 100% with partial IOM sectioning, 200% with complete IOM disruption, and 435% after radial head removal ($p<0.001$). RHR with IOM reconstruction restored rotation (90°; $p=0.518$ vs.

31 intact) and axial displacement (neutral, 4.37 mm; supination, 6.34 mm; $p=1.000$ vs. intact) to near-
32 normal levels. Overstuffed RHR restricted rotation (66.8° , $p=0.003$), while understuffed RHR
33 showed no significant difference from intact.

34 **Conclusions:**

35 Loss of forearm stabilizing structures results in both longitudinal translation and rotational
36 instability. In the Essex-Lopresti injury model, forearm rotation and longitudinal translation
37 increased approximately twofold and fourfold, respectively, compared to the intact forearm. **Radial**
38 **head replacement** combined with **interosseous membrane** (IOM) **reconstruction** effectively
39 restored both longitudinal and rotational stability to near-normal levels.

40 **Introduction**

41 The Essex-Lopresti lesion, characterized by a radial head fracture, interosseous membrane
42 (IOM) disruption, and distal radioulnar joint (DRUJ) injury, results in a loss of longitudinal
43 forearm stability.¹ Chronic Essex-Lopresti injuries can lead to ulnar-positive variance at the wrist,
44 causing ulnocarpal impaction syndrome, chronic wrist pain, decreased forearm rotation, and
45 diminished grip strength.²⁻⁷

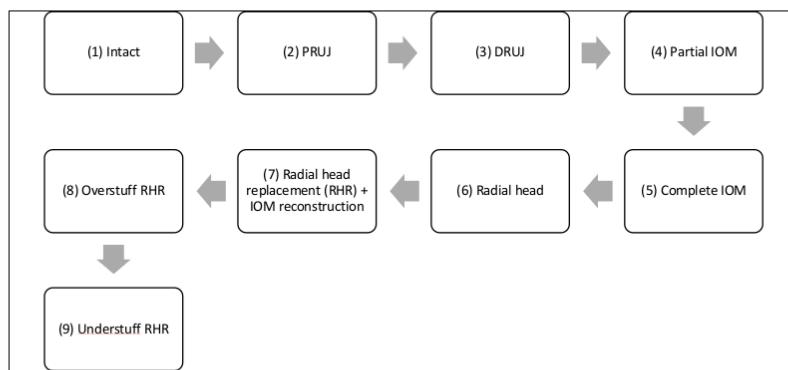
46 Despite its clinical severity, the optimal management of Essex-Lopresti injuries remains a
47 matter of debate. Essex-Lopresti originally emphasized the importance of early diagnosis and
48 advocated for radial head replacement in cases of non-reconstructible fractures to maintain the
49 anatomic relationship between the radius and ulna during IOM healing.⁸ Prior biomechanical
50 studies using sequential forearm sectioning models have highlighted the critical roles of the IOM,
51 radial head, and DRUJ in preserving forearm stability.⁹ However, these experimental models have
52 typically not included radial head arthroplasty, limiting their translational relevance for guiding
53 surgical treatment.

54 A key challenge in clinical practice is determining when IOM reconstruction is necessary.
55 While often considered the central lesion in forearm instability, IOM reconstruction is technically
56 demanding and its indications are not clearly defined. In contrast, radial head replacement is a
57 more straightforward procedure and widely accepted in the management of these injuries.
58 Currently, there is a lack of objective, quantitative data describing how sequential disruption of
59 forearm stabilizers affects longitudinal and rotational stability, and how much stability can be
60 restored by radial head arthroplasty with or without IOM reconstruction.

61 ⁸ The objectives of this study were threefold: (1) to quantify the relationship between loss of
62 forearm stabilizing structures and radioulnar longitudinal translation, (2) to assess the relationship
63 between stabilizer loss and forearm rotational motion, and (3) to evaluate the role of radial head
64 replacement and IOM reconstruction in restoring forearm stability. We hypothesized that (1)
65 progressive disruption of forearm stabilizers would result in proportional increases in longitudinal
66 translation and rotational motion, and (2) radial head replacement combined with IOM
67 reconstruction would restore forearm stability to near-intact levels.

68 **Materials and methods**

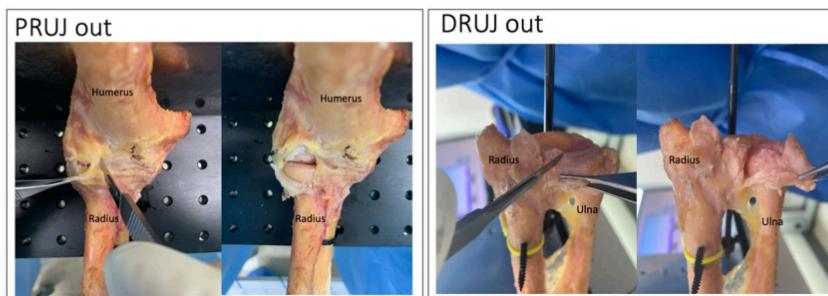
69 *Gross tissue preparation*

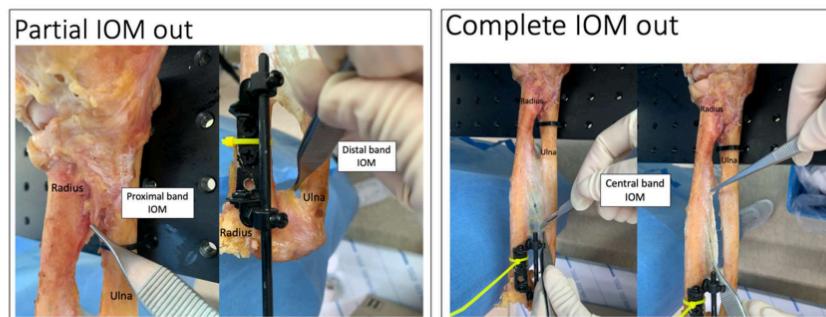

70 Institutional review board approval was obtained prior to the study (approval numbers S2020-
71 1463-0001/2020-0981). Ten fresh-frozen human upper extremities, amputated at the mid-humeral
72 and radiocarpal levels, were used for this study. The mean donor age at death was 65.6 years (range,
73 64–68 years). Specimens were stored at -25°C and thawed overnight at room temperature before
74 dissection.

75 To ensure that all specimens were free of gross abnormalities, the passive range of motion in
76 flexion-extension and pronation-supination was assessed. The integrity of the collateral ligaments
77 was confirmed by performing manual valgus and varus stress testing. Dissection was performed
78 carefully by a fellowship-trained orthopedic surgeon specializing in upper extremity surgery (E.K.),
79 following previously published protocols⁹, with particular care to preserve the interosseous
80 membrane (IOM) and the integrity of the proximal and distal radioulnar joints (PRUJ and DRUJ).
81 Throughout specimen preparation and testing, the tissues were kept moist using continuous
82 irrigation with normal saline.

83

84 *Experimental set-up*


85 Each forearm underwent two tests: rotational testing and translational (axial) loading, with a
86 30-minute resting period at room temperature between tests. The sequence of sequential sectioning
87 was as follows: proximal radioulnar joint (PRUJ), distal radioulnar joint (DRUJ), partial
88 interosseous membrane (IOM), complete IOM, and radial head resection (**Figure 1**).

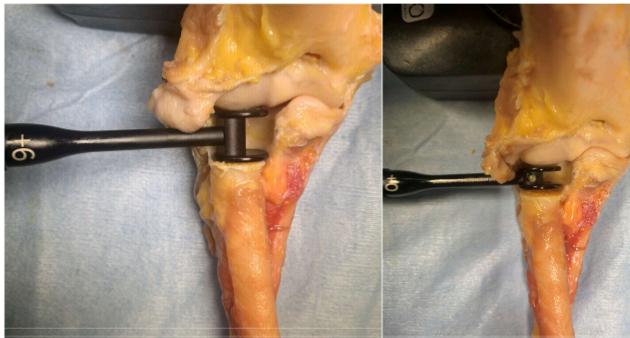

89

90 Figure 1. Sequence of forearm structure sectioning followed by radial head replacement (RHR).
91

92 Radial head replacement (RHR) was performed at the end of the sectioning sequence.
93 Sectioning of the proximal radioulnar joint (PRUJ) was carried out using a vertical incision
94 through the joint capsule and annular ligament (Figure 2)¹⁰ (Figure 2) Sectioning of the distal
95 radioulnar joint (DRUJ) was performed via a vertical incision through the triangular fibrocartilage
96 complex (TFCC), distal radioulnar ligaments, and joint capsule.⁹
97

98
99 Figure 2. Sectioning of the proximal radioulnar joint (PRUJ) (left) and distal radioulnar joint
100 (DRUJ) (right) in the specimen.

101
102 Figure 3. Sectioning of the proximal and distal bands (left) and the central band (right) of the
103 interosseous membrane in the specimen.


104
105 **Figure 4.** Radial head removal performed at the neck level (left), followed by radial head
106 replacement (RHR) (right).

107

108 Partial sectioning of the interosseous membrane (IOM) involved cutting the proximal and
109 distal bands, followed by sectioning of the central band to complete the IOM disruption (Figure
110 3)¹. The radial head was resected at the neck using an oscillating saw to simulate the Essex-
111 Lopresti injury model.

112 Following radial head removal, RHR and IOM reconstruction using a palmaris longus tendon
113 graft were performed as previously described (Figure 4)¹¹. The RHR procedure followed the
114 manufacturer's guidelines. The anatomical radial head prosthesis used in this study was the
115 Acumed Radial Head System Solutions 2 (Acumed, LLC, Oregon, USA). The native radial head
116 diameter was measured using the Acumed ARH Solutions 2 Impactor Block, and implant size was
117 selected according to the manufacturer's recommendations. The trial radial head and standard stem
118 were inserted until the coronoid contacted the trochlea without radioulnar joint step-off.

119 To simulate implant malpositioning, the overstuffed RHR condition was created by increasing the
120 implant height by 2 mm, and the understuffed RHR condition was created by decreasing the
121 implant height by 2 mm (Figure 5).

122

123 Figure 5. Overstuffed (left) and understuffed (right) RHR models, created according to the
124 tested height gauge.

125

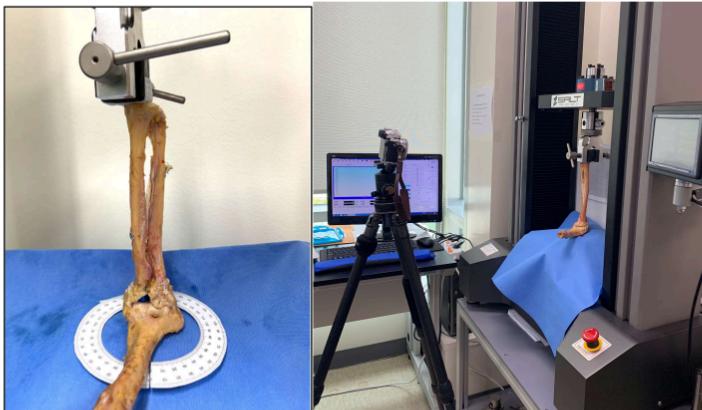
126 *Rotational testing*

127 For the rotational test, each specimen was mounted in a custom-made jig designed to
128 securely hold the forearm while allowing controlled application of rotational motion (Figure 6)¹²
129 An external fixator system was used to maintain the elbow at 90 degrees of flexion. A goniometer
130 was positioned at the wrist level in the axial plane to measure changes in the rotational angle
131 following each sectioning sequence. The speed of rotational movement was controlled using a
132 customized servo-motor device.

133 To stabilize the forearm, the ulnar shaft was drilled and rigidly clamped to the fixed testing
134 table to prevent any movement. The distal radius was drilled and secured to a metal bar connected
135 to the servo-motor, enabling the radius to rotate relative to the ulna at a constant angular speed of
136 4.75 revolutions per minute (rpm). The axis of rotation was determined according to previously
137 published methods.¹³

4

138
139 Figure 6. Rotational test setup showing each specimen mounted in a custom-made jig designed to
140 securely hold the forearm while allowing controlled rotational motion.


141

142 *Translational testing*

143 For the translational loading test, each specimen was positioned in a uniaxial universal
144 materials testing machine (Universal Testing Machine ST-1001; SALT, Daejeon, Korea), with the
145 distal radius secured using a toothed clamp (Figure 7). The elbow was flexed to 90 degrees and
146 rested on the base platform, which allowed testing in 40 degrees of pronation, neutral position, and
147 40 degrees of supination, adjusted using a protractor.¹⁴

148 A calibrated graph paper was placed in the background of the experimental setup as a reference
149 for measuring translational displacement. A 37-mm prime lens digital camera was fixed in position
150 for consistent image acquisition across all experiments.¹⁵ The alignment of the graph paper and
151 camera was checked and adjusted prior to each test.

152 A preload of 5 N was applied for 1 minute, followed by continuous axial compression up to
153 134 N at a displacement rate of 1 mm/s.^{1, 16, 17} Radial displacement was measured at the end of
154 each loading test.¹⁸ (Figure 8). The output data from the testing system were exported as comma-
155 separated values (.csv) files for analysis (Figure 8).

156
157 Figure 7. Longitudinal (translational) test setup showing the specimen positioned in the
158 uniaxial testing machine (left), with image acquisition throughout the experiment (right).
159

160
161 Figure 8. Calibrated graph paper used as a reference for measuring longitudinal displacement
162 of the distal radius.
163

Statistical Analysis

164 A sample size of 10 specimens was calculated to provide 80% power to detect a significant
165 difference of 0.9 standard deviations at a significance level of $p \leq 0.05$.¹⁴ The normality of the data
166 distribution for each parameter was assessed using the Kolmogorov-Smirnov test. Student's *t*-tests
167 were used to analyze differences in forearm rotational changes between each sequential sectioning

168 stage. Repeated-measures ANOVA was applied to compare forearm longitudinal displacement
169 across the sectioning sequence in the three forearm positions (neutral, pronation, and supination).
170 Bonferroni post hoc tests were performed to evaluate differences between the intact condition and
171 each sequential sectioning stage.

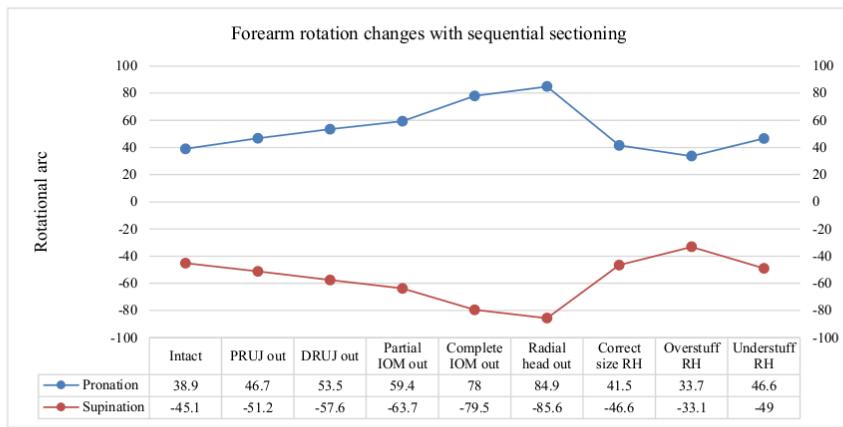
172 **Results**

173 *Forearm rotational stability*

174 Serial sectioning resulted in progressively increasing rotational arc changes (Table 1, Figure 9).
175 Sectioning of the PRUJ or DRUJ alone produced a 33% increase in the forearm rotational arc
176 compared to the intact state. Subsequent partial and complete sectioning of the interosseous
177 membrane (IOM) further increased the rotational arc by 47% and 87%, respectively. When the
178 radial head was resected, simulating an Essex-Lopresti injury, the total rotational arc increased by
179 102% relative to the intact condition. Across all sectioning stages, the rotational arc was
180 consistently greater in supination compared to pronation.

181

182 Table 1. Changes in forearm rotational arc with sequential sectioning.


	Intact	PRUJ out	DRUJ out	Partial IOM out	Complete IOM out	Radial head out	Radial head replacement with IOM reconstruction	Over-stuff radial head replacement	Under-stuff radial head replacement
Total rotational arc	84.0 (71 - 109)	97.9 (86 - 120)	113.7 (99 - 130)	125.3 (114 - 138)	159.5 (138 - 170)	171.1 (153 - 180)	90.0 (73 - 120)	66.8 (52 - 77)	95.5 (83 - 115)
P value		0.019	0.000	0.000	0.000	0.518		0.003	0.109

183 8

184 Statistically significant for $p < 0.05$ (student t-test was performed for each condition compare to
185 intact condition)

186

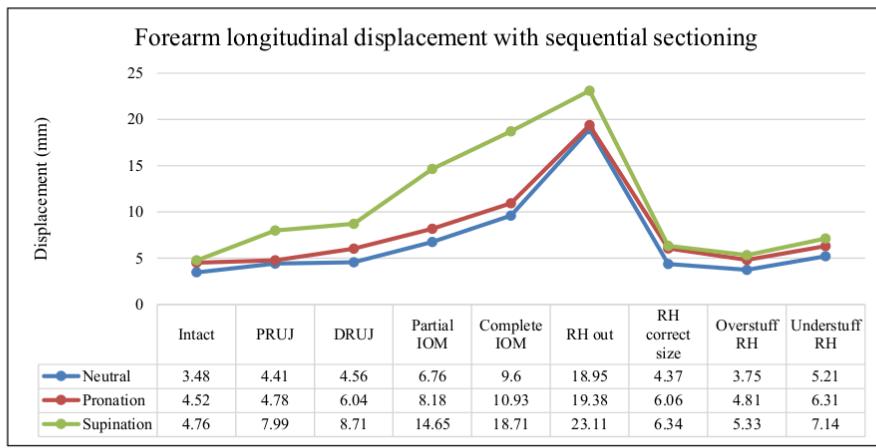
187 Figure 9. Changes in forearm pronation and supination following sequential sectioning of the
188 forearm stabilizing structures.

191 *Forearm longitudinal stability*

192 Serial sectioning resulted in progressively increasing longitudinal displacement of the forearm
193 (Table 2, Figure 10). There was a statistically significant effect of sequential sectioning on
194 longitudinal displacement, Wilks' Lambda = 0.046, F(2, 80) = 833.725, p < 0.001. Sectioning of
195 the PRUJ or DRUJ alone produced a 30% increase in longitudinal displacement compared to the
196 intact state. Additional partial and complete IOM sectioning further increased displacement by
197 100% and 200%, respectively. When the radial head was removed, simulating an Essex-Lopresti
198 injury, displacement increased by 435% relative to the intact condition. Across all sectioning
199 stages, longitudinal displacement was consistently greater in the supination position compared to
200 pronation.

201

202 Table 2. Forearm longitudinal displacement across three positions following sequential sectioning
203 of stabilizing structures.


Sequences of sectioning	Displacement (mm) (range) measured in each forearm position			p-values
	Neutral	Pronation	Supination	
Intact	3.48 (2.7 – 5.4)	3.48 (2.7 – 5.4)	3.48 (2.7 – 5.4)	
PRUJ out	4.41 (3.5 – 6.9)	4.78 (3.8 – 7.6)	7.99 (6.9 – 11.0)	0.828
DRUJ out	4.56 (3.5 – 7.0)	6.04 (5.0 – 8.9)	8.71 (7.2 – 15.9)	0.035
Partial IOM out	6.76 (5.6 – 10.3)	8.18 (6.9 – 12.7)	14.54 (12.9 – 18.4)	0.000
Complete IOM	9.60 (8.2 – 15.7)	10.93 (9.2 – 17.2)	18.71 (17.2 – 21.1)	0.000
Radial head out	18.95 (17.6 – 22.0)	19.38 (17.8 – 24.1)	23.11 (21.9 – 28.0)	0.000
Radial head replacement with IOM reconstruction	4.37 (4.0 – 6.0)	6.06 (4.9 – 7.4)	6.34 (5.2 – 7.5)	1.000
Over-stuff radial head replacement	3.75 (2.9 – 7.0)	4.81 (4.0 – 8.4)	5.33 (4.4 – 10.2)	1.000
Under-stuff radial head replacement	5.21 (4.5 – 6.7)	6.31 (5.5 – 7.2)	7.14 (5.5 – 8.0)	0.165

204

205 Statistically significant if p < 0.05 (Bonferroni post-hoc between intact condition and each
206 sequence of sectioning).

207 Figure 10. Forearm longitudinal displacement measured in three positions (neutral, pronation,
208 supination) after sequential sectioning of forearm stabilizing structures.

209

210 **Discussion**

211 The most important finding of this study was that loss of forearm stabilizing structures led to
212 progressive increases in both longitudinal translation and rotational instability. The longitudinal
213 displacement of the forearm increased proportionally with the cumulative number of disrupted
214 stabilizing structures.

215 The clinical implication of this finding is the potential to provide a practical diagnostic
216 reference when evaluating forearm instability. In addition to obtaining a thorough patient history
217 and performing a detailed physical examination, radiographic imaging extending from the elbow
218 to the wrist—on both the affected and contralateral sides—can help assess evidence of forearm
219 instability.¹⁹ Static anteroposterior and lateral forearm radiographs are useful for detecting ulnar-
220 positive variance. However, no specific threshold of ulnar-positive variance has been defined to
221 represent the severity of injury to the forearm stabilizers.

222 The longitudinal displacement measurements obtained in the present study may serve as a
223 surrogate marker for ulnar-positive variance in the clinical setting. Based on our results, the
224 cumulative extent of structural disruption can be grouped into four stages, each contributing
225 progressively to the degree of ulnar-positive variance (Table 3).

226 Table 3. Stages of forearm longitudinal instability and corresponding degrees of ulnar variance.

Stages of forearm longitudinal instability	Degree of Ulnar-variance
Stage 1: PRUJ and DRUJ insult	30% increase
Stage 2: Stage 1 with Partial IOM insult	100% increase
Stage 3: Stage 2 with Complete IOM insult	200% increase
Stage 4: Stage 3 with Radial head insult	435% increase

227
228 Intraoperative tests have been proposed to assess forearm instability. The “radius pull test,”
229 described in cadaver models, demonstrated that applying longitudinal traction to the radius
230 resulting in more than 3 mm of proximal migration indicates disruption of the interosseous
231 membrane (IOM).¹⁸ Similarly, the “radius joystick test,” also described in cadaver models,
232 involves applying lateral traction to the radial neck while the forearm is maximally pronated;
233 lateral displacement of the radius suggests IOM disruption.²⁰
234 However, these tests do not evaluate the forearm’s ability to withstand axial load, and as a result,
235 partial IOM disruptions may go undetected. If partial IOM injury is under-recognized, radial head

236 removal can further compromise the remaining IOM fibers, leading to forearm instability.
237 Importantly, unlike the radius pull test, which provides a fixed threshold (3 mm) as a diagnostic
238 cutoff, the relative values (percentage increases) reported in the present study may allow for
239 broader generalizability across diverse patient populations and forearm sizes.

240 The range of motion during forearm rotation has been a key focus of biomechanical studies,
241 particularly in relation to distal radioulnar joint (DRUJ) injury. Experimental setups typically
242 involve measuring the rotational arc following serial sectioning of the soft tissue stabilizers of the
243 DRUJ to identify which structures are most critical for limiting forearm motion.⁹
244 In our study, the intact forearm positioned in 90° of elbow flexion demonstrated an average
245 rotational arc of approximately 84°. This value was higher compared to previously reported studies,
246 likely due to differences in elbow positioning.^{9,21} We specifically positioned the specimens at 90°
247 of elbow flexion to simulate the clinical conditions of in-office physical examination.

248 The observed increases in rotational arc across all specimens following sequential sectioning
249 of the forearm stabilizing structures highlight the critical role these structures play in maintaining
250 rotational stability (Table 4). The clinical implication of these findings is that rotational
251 examination of the forearm under general anesthesia can be a useful diagnostic tool, particularly
252 when Essex-Lopresti injury is suspected, and should be compared with the contralateral, uninjured
253 forearm.

254 Table 4. Stages of forearm rotational instability and associated rotational arc changes.

Stages of forearm rotational instability	Increase of rotational arc
Stage 1: PRUJ and DRUJ insult	33%
Stage 2: Stage 1 with Partial IOM insult	47%
Stage 3: Stage 2 with Complete IOM insult	87%
Stage 4: Stage 3 with Radial head insult	102%

255
256 The forearm is described as a functional joint composed of a tri-articular complex—the proximal
257 radioulnar joint (PRUJ), middle radioulnar joint (MRUJ), and distal radioulnar joint (DRUJ)—
258 which share a single axis of rotation that must remain both stable and mobile to allow a full range
259 of motion.^{22, 23} Injury to any one component of this complex can compromise overall forearm
260 stability, altering both force transmission and rotational mechanics.²³

261

262 Previous studies have reported that the combination of radial head replacement and IOM
263 reconstruction can restore distal ulnar loading forces¹⁷ and forearm stiffness⁵ to a near-normal
264 levels^{24, 25}. However, these studies often lacked a clearly defined experimental approach
265 addressing all three components of the forearm complex (PRUJ, MRUJ, DRUJ) and did not
266 specifically assess longitudinal radioulnar displacement or rotational instability in a way that could
267 be directly applied to clinical decision-making after forearm stabilization procedures for Essex-
268 Lopresti injuries.

269 The present study demonstrates that using an appropriately sized radial head prosthesis in
270 combination with IOM reconstruction effectively restores both longitudinal and rotational forearm
271 stability following an Essex-Lopresti injury model. Importantly, this study also provides a
272 clinically useful reference to help guide surgeons in managing Essex-Lopresti injuries, particularly
273 when radial head replacement is indicated.

274

275 There were several notable limitations in our study. First, the small sample size and the advanced 6
276 mean age of the cadaveric specimens may limit the generalizability of the findings to younger or
277 more diverse populations. Second, removal of the forearm musculature may have altered the native
278 kinematics of the elbow and forearm, potentially underestimating or overestimating stability. Third,
279 the use of standardized axial loading and rotational torque values, while necessary for consistency,
280 may not fully reflect the variability of forces encountered in vivo, which could limit the direct
281 clinical translation of the data.

282 Despite these limitations, the study has several important strengths. First, the experimental design
283 comprehensively included all three major stabilizing components of the forearm: the PRUJ, DRUJ,
284 and MRUJ. Second, both rotational and longitudinal displacement tests were conducted using a
285 mechanical testing system, minimizing the risk of observer bias. Third, the study provides
286 clinically relevant diagnostic insights: longitudinal displacement can potentially be assessed
287 through imaging, while rotational instability can be evaluated through physical examination.

288 Future research should focus on in vivo studies to validate the degree of forearm 11
289 rotation in patients with confirmed Essex-Lopresti injuries and compare these findings with the

290 contralateral, uninjured limb. Such studies would help support the clinical use of these
291 measurements as a screening tool for diagnosing forearm instability.

292

293 **Conclusions**

294 Loss of forearm stabilizing structures results in both longitudinal translation and rotational
295 instability. In the Essex-Lopresti injury model, forearm rotation and longitudinal translation
296 increased approximately twofold and fourfold, respectively, compared to the intact forearm. Radial
297 head replacement combined with interosseous membrane (IOM) reconstruction effectively
298 restored both longitudinal and rotational stability to near-normal levels.

299 Acknowledgement: This study was supported by an educational grant (Study 19021) provided by
300 Acumed (Hillsboro, OR, USA) . The authors gratefully acknowledge Acumed for providing their
301 implants.

302 **Figure and table captions**

303 **Figure captions**

304 Figure 1. Sequence of forearm structure sectioning followed by radial head replacement (RHR). ²

305 Figure 2. Sectioning of the proximal radioulnar joint (PRUJ) (left) and distal radioulnar joint
306 (DRUJ) (right) in the specimen.

307 Figure 3. Sectioning of the proximal and distal bands (left) and the central band (right) of the
308 interosseous membrane in the specimen. ³

309 **Figure 4.** Radial head removal performed at the neck level (left), followed by radial head
310 replacement (RHR) (right).

311 Figure 5. Overstuffed (left) and understuffed (right) RHR models, created according to the tested
312 height gauge.

313 Figure 6. Rotational test setup showing each specimen mounted in a custom-made jig designed
314 to securely hold the forearm while allowing controlled rotational motion. ⁴

315 Figure 7. Longitudinal (translational) test setup showing the specimen positioned in the uniaxial
316 testing machine (left), with image acquisition throughout the experiment (right).

317 Figure 8. Calibrated graph paper used as a reference for measuring longitudinal displacement of
318 the distal radius. ⁵

319 Figure 9. Changes in forearm pronation and supination following sequential sectioning of the
320 forearm stabilizing structures.

321 Figure 10. Forearm longitudinal displacement measured in three positions (neutral, pronation,
322 supination) after sequential sectioning of forearm stabilizing structures.

323

324 **Table captions**

325 Table 1. Changes in forearm rotational arc with sequential sectioning.

326 Table 2. Forearm longitudinal displacement across three positions following sequential
327 sectioning of stabilizing structures.

328 Table 3. Stages of forearm longitudinal instability and corresponding degrees of ulnar variance.

329 Table 4. Stages of forearm rotational instability and associated rotational arc changes.

331 **References**

332 1. Shepard MF, Markolf KL, Dunbar AM. The effects of partial and total interosseous membrane
333 transection on load sharing in the cadaver forearm. *J Orthop Res*. 2001;19:587-592.

334 2. Rabinowitz RS, Light TR, Havey RM, et al. The role of the interosseous membrane and triangular
335 fibrocartilage complex in forearm stability. *J Hand Surg Am*. 1994;19:385-393.

336 3. Kihara H, Palmer AK, Werner FW, Short WH, Fortino MD. The effect of dorsally angulated distal
337 radius fractures on distal radioulnar joint congruency and forearm rotation. *J Hand Surg Am*.
338 1996;21:40-47.

339 4. Schneiderman G, Meldrum RD, Bloebaum RD, Tarr R, Sarmiento A. The interosseous membrane
340 of the forearm: structure and its role in Galeazzi fractures. *The Journal of trauma*. 1993;35:879-
341 885.

342 5. Sellman DC, Seitz WH, Jr., Postak PD, Greenwald AS. Reconstructive strategies for radioulnar
343 dissociation: a biomechanical study. *Journal of orthopaedic trauma*. 1995;9:516-522.

344 6. Skahen JR, 3rd, Palmer AK, Werner FW, Fortino MD. Reconstruction of the interosseous
345 membrane of the forearm in cadavers. *J Hand Surg Am*. 1997;22:986-994.

346 7. Skahen JR, 3rd, Palmer AK, Werner FW, Fortino MD. The interosseous membrane of the
347 forearm: anatomy and function. *J Hand Surg Am*. 1997;22:981-985.

348 8. Essex-Lopresti P. Fractures of the radial head with distal radio-ulnar dislocation; report of two
349 cases. *The Journal of bone and joint surgery. British volume*. 1951;33B:244-247.

350 9. Ward LD, Ambrose CG, Masson MV, Levaro F. The role of the distal radioulnar ligaments,
351 interosseous membrane, and joint capsule in distal radioulnar joint stability. *J Hand Surg Am*.
352 2000;25:341-351.

353 10. Malone PS, Cooley J, Morris J, Terenghi G, Lees VC. The biomechanical and functional
354 relationships of the proximal radioulnar joint, distal radioulnar joint, and interosseous ligament.
355 *J Hand Surg Eur Vol*. 2015;40:485-493.

356 11. Masouros PT, Apergis EP, Mavrogenis AF, Babis GC, Artemi DK, Nikolaou VS. Reconstruction of
357 the forearm interosseous membrane: a biomechanical study of three different techniques. *J
358 Hand Surg Eur Vol*. 2020;45:360-368.

359 12. Kholinne E, Kwak JM, Sun Y, Koh KH, Jeon IH. The role of the interosseous ligament in forearm
360 rotation: A bio-mechanical study. *J Orthop Surg (Hong Kong)*. 2020;28:2309499020973481.

361 13. Tay SC, van Riet R, Kazunari T, Amrami KK, An KN, Berger RA. In-vivo kinematic analysis of
362 forearm rotation using helical axis analysis. *Clinical biomechanics (Bristol, Avon)*. 2010;25:655-
363 659.

364 14. Hwang JT, Kim Y, Shields MN, et al. Effects of axial forearm instability on force transmission
365 across the elbow. *J Shoulder Elbow Surg*. 2019;28:170-177.

366 15. Rausch V, Wegmann S, Hackl M, et al. Insertional anatomy of the anterior medial collateral
367 ligament on the sublime tubercle of the elbow. *Journal of shoulder and elbow surgery*.
368 2019;28:555-560.

369 16. Markolf KL, Dunbar AM, Hannani K. Mechanisms of load transfer in the cadaver forearm: role of
370 the interosseous membrane. *J Hand Surg Am*. 2000;25:674-682.

371 17. Tejwani SG, Markolf KL, Benhaim P. Graft reconstruction of the interosseous membrane in
372 conjunction with metallic radial head replacement: a cadaveric study. *J Hand Surg Am*.
373 2005;30:335-342.

374 18. Smith AM, Urbanosky LR, Castle JA, Rushing JT, Ruch DS. Radius pull test: predictor of
375 longitudinal forearm instability. *The Journal of bone and joint surgery. American volume*.
376 2002;84:1970-1976.

377 19. Loeffler BJ, Green JB, Zelouf DS. Forearm instability. *The Journal of hand surgery*. 2014;39:156-
378 167.

379 20. Soubeyrand M, Ciais G, Wassermann V, et al. The intra-operative radius joystick test to diagnose
380 complete disruption of the interosseous membrane. *The Journal of bone and joint surgery.*
381 *British volume*. 2011;93:1389-1394.

382 21. Gutowski CJ, Darvish K, Ilyas AM, Jones CM. Interosseous Ligament and Transverse Forearm
383 Stability: A Biomechanical Cadaver Study. *The Journal of hand surgery*. 2017;42:87-95.

384 22. Soubeyrand M, Wassermann V, Hirsch C, Oberlin C, Gagey O, Dumontier C. The middle
385 radioulnar joint and triarticular forearm complex. *J Hand Surg Eur Vol*. 2011;36:447-454.

386 23. Orbay JL, Cambo RA. Biomechanical Factors in Stability of the Forearm. *Hand Clin*. 2020;36:407-
387 415.

388 24. Kam CC, Jones CM, Fennema JL, Latta LL, Ouellette EA, Evans PJ. Suture-button construct for
389 interosseous ligament reconstruction in longitudinal radioulnar dissociations: a biomechanical
390 study. *The Journal of hand surgery*. 2010;35:1626-1632.

391 25. Jones CM, Kam CC, Ouellette EA, Milne EL, Kaimrajh D, Latta LL. Comparison of 2 forearm
392 reconstructions for longitudinal radio-ulnar dissociation: a cadaver study. *The Journal of hand*
393 *surgery*. 2012;37:741-747.
394

5. Quantitative

ORIGINALITY REPORT

PRIMARY SOURCES

1	Keisuke Koizumi, Hiroshi Yamazaki. "Essex-Lopresti injury treated with radial head replacement and interosseous membrane reconstruction using synthetic graft: A case report", JOS Case Reports, 2024	1 %
2	jorthoptraumatol.springeropen.com	1 %
3	Julie E. Adams, Meredith N. Osterman, A. Lee Osterman. "Interosseous Membrane Reconstruction for Forearm Longitudinal Instability", Techniques in Hand & Upper Extremity Surgery, 2010	1 %
4	Shaaban, H.. "the distal radioulnar joint as a load-bearing mechanism-a biomechanical study", Journal of Hand Surgery, 200401	1 %
5	Tejwani, S.G.. "Reconstruction of the interosseous membrane of the forearm with a graft substitute: A cadaveric study", Journal of Hand Surgery, 200503	1 %
6	josr-online.biomedcentral.com	<1 %
7	sicot.org	<1 %

Internet Source

Publication

Publication

Publication

Publication

Internet Source

Internet Source

8	Internet Source	<1 %
9	www.icbcongress.com Internet Source	<1 %
10	www.pubfacts.com Internet Source	<1 %
11	Christina J. Gutowski, Kurosh Darvish, Asif M. Ilyas, Christopher M. Jones. "Interosseous Ligament and Transverse Forearm Stability: A Biomechanical Cadaver Study", The Journal of Hand Surgery, 2017 Publication	<1 %
12	Masaoka, S.. "Biomechanical analysis of two ulnar head prostheses", Journal of Hand Surgery, 200209 Publication	<1 %
13	European Surgical Orthopaedics and Traumatology, 2014. Publication	<1 %

Exclude quotes

On

Exclude bibliography

On

Exclude matches

< 15 words