

Reconstruction

by Erica Kholinne

Submission date: 10-Jan-2026 01:43PM (UTC+0700)

Submission ID: 2584521504

File name: Joint_Dislocation-_A_Systematic_Review_of_Treatment_Outcomes.pdf (1.01M)

Word count: 6199

Character count: 35581

Reconstruction Alone Versus Hardware-Augmented Reconstruction in Chronic High-Grade AC Joint Dislocation: A Systematic Review of Treatment Outcomes

Erica Kholinne^{1,2} · Karina Sylvana Gani² · Mitchell² · Claudia Santosa³ · Erick Wonggokusuma² · Jae-Man Kwak⁴ · In-Ho Jeon⁵

Received: 14 March 2025 / Accepted: 27 June 2025 / Published online: 26 July 2025
© Indian Orthopaedics Association 2025

Abstract

Background Acromioclavicular joint dislocation is a common shoulder injury, with chronic high-grade cases often requiring surgical intervention to restore stability. While reconstruction techniques are the standard approach for managing chronic dislocations, the role of hardware augmentation remains controversial. This systematic review compares the clinical outcomes of reconstruction alone versus hardware-augmented reconstruction in patients with chronic high-grade acromioclavicular joint dislocation.

Methods We searched Cochrane Library, EMBASE, and Pubmed databases using the keywords "acromioclavicular joint," "dislocation," and "surgery" according to the MeSH index for English-language studies. We performed a systematic review using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

Results Two authors independently reviewed 915 articles. 36 met the inclusion criteria, comprising 1013 patients who underwent reconstruction surgery and 57 patients who underwent reconstruction with hardware-augmented reconstruction surgery. The reconstruction group demonstrated higher Constant–Murley (88.2 vs. 85.6) and Subjective Shoulder Value scores (84.1 vs. 70) compared to the combination group. However, the combination group had a superior American Shoulder and Elbow Surgeons score (93 vs. 82). The complication rate was higher in the reconstruction group (16% vs. 12%). In comparison, the combination technique had a lower revision rate (4.5% vs. 5.86%).

Conclusion This study compared treatment outcomes between reconstruction alone and hardware-augmented reconstruction, and it revealed that reconstruction alone is superior in functional outcomes. However, reconstruction augmented with a hardware-augmented reconstruction approach is superior in terms of lower complications and revision rates.

Keywords Acromioclavicular joint · Chronic · High-grade · Reconstruction · Hardware fixation · Dislocation · Shoulder

Introduction

AC (acromioclavicular) joint dislocation is a common injury caused by direct trauma to the shoulders, accounting for 9% of ¹³ older girdle injuries [1]. It is associated with injuries to the acromioclavicular (AC) and coracoclavicular (CC) ligaments [2]. The most commonly used criterion for AC dislocation is the Rockwood classification. The current guideline is that Rockwood grades I and II are treated conservatively, whereas high-grade injuries (grades III–VI) are treated surgically [3]. However, since no explicit treatment algorithm exists, whether immediate operative, delayed, or

conservative treatment is appropriate for Grade III remains debatable. A recent study suggests surgery is often recommended for patients with high shoulder activity, such as workers, athletes, or soldiers who frequently engage in shoulder movement [4].

In chronic AC joint dislocations (> 3 weeks after injury), surgical treatment is required to heal the torn structures and maintain shoulder stability [5]. Various surgical techniques have been documented in the literature and categorized into four groups: (a) nonbiological fixation between the coracoid and clavicle, including suture loops and synthetic ligaments (polydioxanone (PDS), the Gore-Tex, Dacron, carbon fiber and Mersilene tape, the TightRope, the Lockdown, the Surgilig, and the ligament augmentation and reconstruction system (LARS); (b) biological reconstruction of

Extended author information available on the last page of the article

the CC ligaments, including allograft or autograft tendon construction (hamstring or palmaris longus autograft); (c) ligament and/or tendon transfer, such as the Weaver–Dunn and Dew procedures; and (d) hardware-augmented reconstruction with Kirschner wires (Pemister technique), a hook plate, or other extra-articular techniques (Bosworth screw fixation) [4].

This systematic review aims to evaluate and compare the clinical outcomes of reconstruction bone versus hardware-augmented reconstruction fixation for treating high-grade AC joint dislocations, as classified by the Rockwood criteria. The secondary objective is to compare the complications and revision rates of these two treatment approaches. The findings will guide clinical decision-making and optimize patient outcomes.

Methods

20

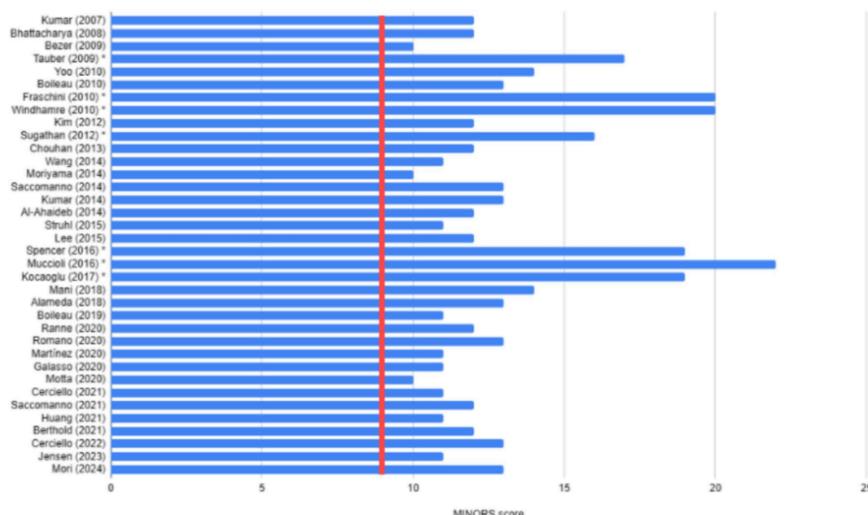
This study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This study used the PICO (population, intervention, comparison, and outcomes) model; the study population included patients with chronic high-grade AC joint dislocation (III–VI); the intervention was any of the two surgical treatments (reconstruction with and without hardware fixation); no comparison group; and the outcomes were the functional score, revision rates, and complications rates.

Search Strategy

A literature search for eligible studies was conducted on August 28, 2024, using the Cochrane Library, EMBASE, and Pubmed databases. The search engines were used to locate studies with the combination of “acromioclavicular joint,” “dislocation,” and “surgery.” The search in PubMed was conducted using (“acromioclavicular joint”[MeSH Terms] OR (“acromioclavicular”[All Fields] AND “joint”[All Fields]) OR “acromioclavicular joint”[All Fields]) AND (“dislocate”[All Fields] OR “dislocated”[All Fields] OR “dislocates”[All Fields] OR “dislocating”[All Fields] OR “dislocator”[All Fields] OR “dislocators”[All Fields] OR “joint dislocations”[MeSH Terms] OR (“joint”[All Fields] AND “dislocations”[All Fields]) OR “joint dislocations”[All Fields] OR “dislocation”[All Fields] OR “dislocations”[All Fields]) AND (“surgery”[MeSH Subheading] OR “surgery”[All Fields] OR “surgical procedures, operative”[MeSH Terms] OR (“surgical”[All Fields] AND “procedures”[All Fields] AND “operative”[All Fields]) OR “operative surgical procedures”[All Fields] OR “general surgery”[MeSH Terms] OR (“general”[All Fields] AND “surgery”[All Fields]) OR “general surgery”[All Fields]

OR “surgery”[All Fields] OR “surgeries”[All Fields] OR “surgeries”[All Fields])

Study Selection


All included studies contained original data, were published in English, and had at least 12 months of follow-up. Studies involving adjuvant surgery, additional surgical methods, or patients with previous AC joint surgery were excluded. The authors resolved any discrepancies in the final list of studies by consensus. Reference lists were also reviewed to identify additional studies.

Quality Assessment and Risk of Bias Assessment

Two authors (M and KSG) independently reviewed the search results. Studies were initially screened by title and abstract, with full texts of the relevant articles obtained and independently reviewed by both the authors. Disagreements between the two authors were resolved through consensus and discussion with a third author (EK). The risk of bias was assessed using the Methodological Index for Non-Randomized Studies (MINORS) score for non-randomized studies and the Cochrane Risk of Bias 2 assessment tool for randomized studies. The MINORS score allows 16 points for non-comparative studies and 24 points for comparative studies. High-quality studies were defined as those with scores above 60%—9 out of 16 for non-comparative studies and 14 out of 24 for comparative studies. According to the Cochrane assessment, the risk of bias was categorized as high, low, or unclear. The 39 non-randomized studies comprised 29 non-comparative and seven comparative studies (Fig. 1). These studies are considered high-quality studies according to MINORS criteria.

Data Extraction and Analysis

Data were extracted from each study's text, figures, tables, and supplementary files. The extracted data included (1) study and patient characteristics; (2) mean follow-up time; (3) mean AC joint dislocation onset (4) pain visual analog scale (VAS) score (11–5) functional scores, revision, and complication rates. The primary outcome was the functional score (e.g., Constant, Disabilities of the Arm, Shoulder and Hand (DASH), Simple shoulder test (SST) score, The University of California at Los Angeles (UCLA) score, Larsen, Acromioclavicular Joint Instability Score (ACJIS)). The Constant–Murley score was rated as poor (0–55), fair (56–70), good (71–85), and very good (86–100) [6, 7]. Secondary outcomes included revision and complication rates. The process of study selection is detailed in Fig. 2. The initial search identified 460 studies, with 418 studies excluded due to duplication or not meeting the criteria. After screening,

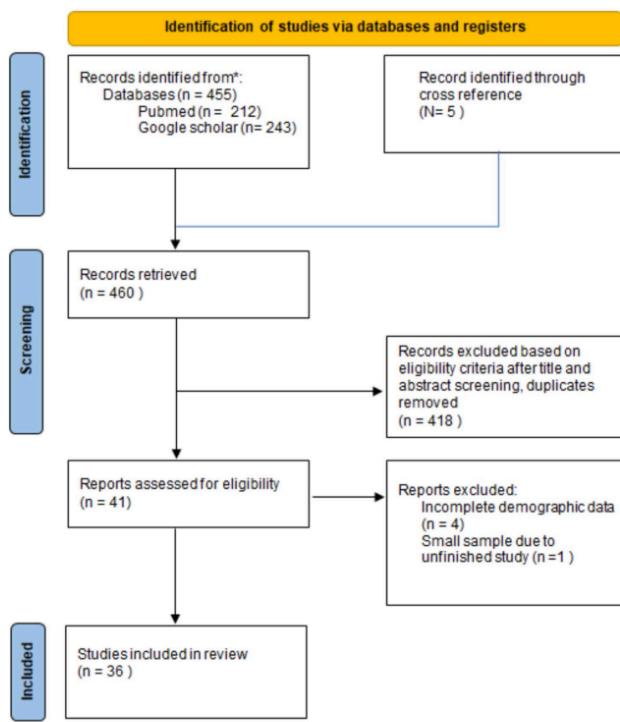
Fig. 1 MINORS quality assessment of the 29 studies was non-comparative, and seven studies (indicated with asterisks) was comparative. The vertical red line represents the cutoff point for non-comparative studies considered high quality. MINORS, methodological index for non-randomized studies

41 were eligible for review. Four studies were excluded due to incomplete demographic data, and one was excluded because the study was unfinished, resulting in a small sample size [8–12]. Thirty-six studies are included in this systematic review [4, 5, 13–46]. Given the various surgical techniques used in this study, we categorized them into two methods: reconstruction surgery only and reconstruction surgery combined with hardware-augmented reconstruction. Due to the heterogeneity of the patient populations and variations in treatment approaches across the included studies, conducting meaningful quantitative analyses proved challenging. Therefore, a qualitative approach was adopted. A narrative synthesis of the data was provided, offering detailed descriptions of patient demographics, treatment modalities, and outcomes to highlight trends and commonalities across the studies.

Result

Characteristics and Demographics

1070 with chronic high-grade AC joint dislocation cases were included in this study. The mean age of patients was 37.8 ± 5.6 years. The chronic high-grade AC joint


dislocation cases were followed up for 37.2 ± 22.8 months. 1013 patients underwent reconstruction surgery, and the remaining 57 patients underwent hardware-augmented reconstruction surgery. This study only included 5 studies that treated grade VI chronic AC joint dislocation [18, 21, 34, 38, 41].

The detailed characteristics, demographics, and treatment techniques are provided in Table 1.

Outcome Measurement and Result

Table 2 summarizes various functional outcomes from the included studies. The Constant–Murley score was reported in 25 studies for the reconstruction group (mean score: 88.2 (Good)) and in two studies for the combination group (mean score: 85.6 (Good)). Three studies in the reconstruction group and one in the combination group reported the Subjective Shoulder Value (SSV), with scores of 84.1 and 70, respectively. The American Shoulder and Elbow Surgeons (ASES) Shoulder Score was reported in five studies from the reconstruction group (mean score: 82 (Good)) and one study in the combination group (93 (Good)). Additional outcomes include the Oxford score, modified UCLA Shoulder Score, DASH score, UCLA, and JOA functional outcome scores.

Fig. 2 Preferred reporting items for systematic review and meta-analysis diagram

All patients experienced mild pain as assessed by the VAS score. The reconstruction group included 136 patients with an average follow-up of 44.1 months, whereas the combination group had 57 patients with an average follow-up of 48.5 months.

One study with 22 patients in the combination technique group had a lower revision rate than the reconstruction technique group, which included ten studies with 44 patients (4.5% vs. 5.86%). It also had a more extended follow-up period (43 vs. 36.9 months).

146 patients (16%) in the reconstruction group experienced a complication, with a mean time to follow-up of 34 months. The combination group reported complications in 6 patients (12%) with a mean follow-up time of 57.5 months. The implant-related complication rate was 23.3% in the reconstruction group and one participant (16.7%) in the combination group. Non-implant related complication rates were 76.7% and 83.3% in the reconstruction and

combination group, consecutively. Table 3 provides detailed information on specific complications in each group.

Discussion

This systematic review of chronic AC joint dislocation found that the reconstruction group had a better functional outcome than the combination group (reconstruction augmented with hardware fixation). Still, the combination group had lower complication and revision rates. However, it must be highlighted that only four out of the 36 studies included were combination groups [13–16].

The reconstruction group had a better Constant–Murley score and SSV score than the combination group. This finding is in line with a study by Windham et al. that compared Weaver–Dunn (WD) augmented with PDS-braid and WD augmented with a hook plate and found no significant

Table 1 Characteristics and demographics of the studies

No.	Study (year)	Design	Level of study	Surgical technique	Type of surgery	Sample size (M/F)	Age (years)	Follow-up (months)	Type of AC joint injury according to Rockwood type
1	Windhamme (2010) [13]	Retrospective	III	Weaver–Dunn augmented with PDS	Reconstruction	23 (N/A)	39.5	114	III, IV, and V [15]
2	Chouhan (2013) [14]	Prospective	II	Weaver–Dunn with temporary hook plate	Reconstruction + hardware fixation	22 (N/A)	38	43	III
3	Moriyama (2014) [15]	Case series	IV	Artificial braided polyester ligament prosthesis + K-wire	Reconstruction + hardware fixation	8 (8/0)	33	46	III
4	Wang (2014) [16]	Retrospective	III	Modified Cadet procedure (suture CA ligament + K-wire)	Reconstruction + hardware fixation	6 (5/1)	49.3	72	III
5	Kumar (2007) [17]	Retrospective	III	Conoid process [13] transfer alignment [13] with a hook plate fixation	Reconstruction + hardware fixation	21 (20/1)	41.6	33	III and V
6	Bhattacharya (2008) [18]	Prospective	II	Modified Weaver–Dunn technique	Reconstruction	15 (N/A)	42	27	III
7	Bezer (2009) [19]	Prospective	II	Surgilig Nettingham	Reconstruction	11 (10/1)	35.1	24	III, IV, V, and VI
8	Taubert (2009) [20]	Prospective	II	Weaver–Dunn semitendinosus tendon graft vs. modified Weaver–Dunn	Reconstruction	29 (21/8)	29.8 ± 8.3	69.5	III
9	Fraschini (2010) [21]	Retrospective	III	Dacron vascular prostheses vs. LARS I [12] (ligament advanced reinforcement [12] System: surgical implants and devices, Arc-sur-Tille, France)	Reconstruction	16 (10/6)	41.4	37	III, IV, and V
10	Boileau (2010) [22]	Prospective	II	Weaver–Dunn + double-builton	Reconstruction	90 (84/6)	31.5	15	III, IV, V, and VI
11	Yoo (2010) [23, 24]	Retrospective	III	Semitendinosus autograft	Reconstruction	10 (8/2)	41	12.9	III and IV
12	Sugathan (2012) [24]	Retrospective	III	Weaver–Dunn Lateral half conjoined tendon and coracocervical ligament transfer	Reconstruction	5 (4/1)	33	33	III
13	Kim (2012) [25]	Retrospective	III		Reconstruction	11 (8/3)	31.7	72	III
						12 (12/0)	37.3 ± 7.7	31.2 ± 9.5	V

Table 1 (continued)

Springer

No.	Study (year)	Design	Level of study	Surgical technique	Type of surgery	Sample size (M/F)	Age (years)	Follow-up (months)	Type of AC joint injury according to Rockwood type
14	Kumar (2014) [26]	Retrospective	III	Modified Weaver–Dunn/Surgical synthetic ligament Semitendinosus grafting	Reconstruction	55 (N/A)	42	40	III, IV, and V 6
15	Sacconamano (2014) [27]	Prospective	II	Semitendinosus grafting	Reconstruction	18 (17/1)	27.5 ± 8.2	26.4 ± 2.3	III, IV, and V
16	Al-Ahadeb (2014) [28]	Retrospective	III	Weaver–Dunn + tightrope	Reconstruction	9 (N/A)	38.6	20	III
17	Lee (2015) [29]	Retrospective	III	Double-bundle CC reconstruction	Reconstruction	18 (14/4)	36.5	35.3	III, IV, and V
18	Strahl (2015) [30]	Case series	IV	surgery using the CA ligament and the conjoined tendon	Reconstruction	26 (23/3)	41.2	50.4	III, IV, and V
19	Muccioli (2016) [31]	Prospective	II	Continuous loop double endo button	Reconstruction	43 (43/0)	30	28.2 ± 7.3	III, IV, and V
20	Spencer (2016) [32]	Retrospective	III	Ligament augmentation and reconstruction system (LARS)	Reconstruction	167 (N/A)	38.1 ± 14.7	15.7 ± 16.2	III, IV, and V
				(1) Modified Weaver–Dunn					
				(2) Allograft fixed through coracoid and clavicular tunnels					
				(3) Allograft loop coracoclavicular fixation					
				(4) Combined allograft loop and synthetic cortical button fixation					
21	Kocaoğlu (2017) [33]	Retrospective	III	Palmaris longus tendon graft vs modified Weaver–Dunn	Reconstruction	32 (27/5)	39.7	44.9	III, IV, and V 1
22	Mani (2018) [34]	Case series	IV	Modified Weaver–Dunn	Reconstruction	40 (29/11)	36.5 ± 11.1	12	IV, V, and VI
23	Alameda (2018) [35]	Retrospective	III	Modified Weaver–Dunn	Reconstruction	28 (24/4)	34.9 ± 9.7	12	III
24	Boileau (2019) [36]	Prospective	II	Arthroscopic modified Weaver–Dunn procedure with CC suture button fixation (Twinbridge)	Reconstruction	57 (49/8)	42	36	III and V

Table 1 (continued)

No.	Study (year)	Design	Level of study	Surgical technique	Type of surgery	Sample size (M/F)	Age (years)	Follow-up (months)	Type of AC joint injury according to Rockwood type ⁶
25	Galasso (2020) [37]	Retrospective	III	Modified Weaver–Dunn	Reconstruction	27 (24/3)	50.5 ± 14.6	12	III
26	Martinez (2020) [38]	Retrospective	III	Twin tail tightrope Infinity-lock button system	Reconstruction	21 (19/2)	30.7 ± 11.7	49.7 ± 17.1	III, IV, V, and VI
27	Romano (2020) [41]	Retrospective	III	Autogenous semitendinosus graft	Reconstruction	15 (15/0)	32	18	III
28	Ranne (2020) [39]	Retrospective	III	Graftrope technique	Reconstruction	58 (54/4)	36.4 ± 13.3	24	III and V
29	Motta (2020) [40]	Case series	IV	Semitendinosus/peronaeus longus allograft tendons	Reconstruction	12 (N/A)	36	91	IV
30	Cerciello (2021) [5]	Retrospective	III	Semitendinosus/peronaeus longus allograft tendons	Reconstruction	42 (34/8)	42.7 ± 12.8	45.6 ± 37.2	III and V
31	Berthold (2021) [41]	Retrospective	III	Duo-figure 8 autogenous graft wrapping technique	Reconstruction	24 (22/2)	44.7 ± 13.4	37 ± 35	III, IV, V, and VI
32	Huang (2021) [42]	Retrospective	III	Semitendinosus tendon graft	Reconstruction	7/3 (10)	47.0 ± 13.8	26.3	III and V
33	Saccomanno (2021) [43]	Prospective	II	Primary fixation with a suspensory system	Reconstruction	30 (28/2)	28.9 ± 8.3	28.1 ± 2.4	III, IV, and V
34	Cerciello (2022) [44]	Prospective	II	Coracoclavicular ligaments reconstruction with a double loop of autologous Gracilis	Reconstruction	22 (19/3)	34.4 ± 9	49.9 ± 11.8	III, IV, and V
35	Jensen (2023) [45]	Retrospective	III	Acromioclavicular ligament reconstruction with autologous Coracoclavicular ligament	Reconstruction	16 (14/2)	44.4	13	III and V
36	Mori (2024) [46]	Retrospective	III	Graft rope + horizontal tendon augmentation	Reconstruction	21 (16/5)	40	31.7	III, IV, and V
		Mean ± SD					37.8 ± 5.6	37.2 ± 22.8	

WD Weaver–Dunn technique, CC coracoclavicular, CA coracacromial, LARS ligament advanced reinforcement system; PDS polydioxan sulfate

Table 2 Functional outcome following AC joint reconstruction versus hardware-augmented reconstruction

Functional outcome	Reconstruction group (interpretation)	Combination group (interpretation)
Constant–Murley score	88.2 [4, 5, 13, 17–20, 23, 27–31, 33, 36–40, 42–46]	85.6 [13, 14, 16]
SSV	84.1 [13, 22, 36]	70 [13]
ASES shoulder score	82 [5, 20, 30, 33, 41, 42, 44, 46]	12 [14]
Oxford score	46.6 [12, 14, 19, 22, 23]	N/A
Modified UCLA shoulder score	20.3 [21, 22, 25, 29]	N/A
DASH score	9.3 [27, 35, 43]	N/A
UCLA shoulder score	29.3 [23, 30]	N/A
Nottingham score	86.7 [26, 34]	N/A
JOA	N/A	94.1 [15]

SSV subjective shoulder value, ASES American shoulder and elbow surgeon, UCLA University of California, Los Angeles, DASH disabilities of the arm, shoulder, and hand, JOA Japanese Orthopaedic Association

Table 3 The complications following AC joint reconstruction versus hardware-augmented reconstruction

Complication	Reconstruction group	Combination group
Total (%)	146 (16%)	6 (12%)
N total	911	36
Mean follow-up (months)	34	57.5
Implant related	23.3%	16.7%
Loosening	9 (6.2%) [18, 21, 32]	N/A
Intraoperative fracture (clavicle + coracoid)	6 (4.1%) [5, 21, 31, 41]	N/A
Migration	3 (2.1%) [22, 35]	N/A
Discomfort	16 (10.9%) [17, 34, 38, 45]	1 (16.7%) [13]
Non-implant related	76.6%	83.3%
Graft problem	6.8%	N/A
Rupture, dislodge	10 (6.8%) [18, 21, 34]	N/A
Skin	26%	66.6%
Superficial infection	31 (21.2%) [13, 20, 22, 26, 29, 31–36, 38, 39, 43–45]	4 (66.6%) [13, 14]
Fistula	2 (1.4%) [38]	N/A
Hypertrophic scar	5 (3.4%) [27]	N/A
Bone and joint	43.8%	16.7%
Deep infection	1 (0.7%) [39]	N/A
Arthrosis	16 (10.9%) [20, 24, 33, 39]	1 (16.7%) [15]
Stiffness	9 (6.2%) [17, 32, 34, 42]	N/A
HO and ossification	21 (14.3%) [5, 37, 41, 44, 45]	N/A
Chronic pain	9 (6.2%) [24, 34, 43, 44]	N/A
Radiographic failure	8 (5.5%) [32]	N/A

HO Heterotrophic ossification, N/A Not available

difference in Constant–Murley score but higher in WD augmented with PDS-braid or reconstruction group (85 vs. 71). A better ASES score is found in the combination group. A study by Wang et al. reported on 21 patients who underwent coracoid transfer augmented with hook plate fixation, showing improved functional scores, with all patients returning to their original sports activities within 3.7 months postoperatively [16]. A similar study utilizing the modified Cadenat

technique with hook plate fixation demonstrated improved functional scores [15]. In our opinion, this can be due to the components of the ASES score, which are pain and function. Using hardware fixation to hold fixation and temporary stabilization can improve function and even allow early mobility.

In our study, the complication rate was higher in the reconstruction group, with a reported rate of 16%. The

most common complication in both groups was superficial infection. The higher incidence of disease in the reconstruction group may be attributed to specific reconstruction techniques that involve the placement of bulky knots over the superior (clavicular) button, potentially increasing the risk of local irritation and subsequent infection [22]. Large knots can cause skin irritation, eventually leading to skin erosion and localized infection [47]. The combination technique mainly uses a hook plate as an adjunct to the reconstruction procedure. In our combination group, a higher rate of discomfort was observed, likely due to the hook plate causing chronic irritation in the subacromial space, leading to persistent pain [13]. While the hook plate protects the reconstructed ligament, limits vertical and horizontal displacement, and mitigates anteroposterior instability, our findings indicate that it does not significantly reduce the incidence of recurrent subluxation of the lateral clavicle [16]. Rigid protection of the reconstructed ligament failed to prevent elongation of the transferred ligament over time, likely due to premature removal of the hook plate. In addition, according to Bostrom et al., reconstruction augmented with a hook plate resulted in increased pain during movement, no improvement in functional outcomes, and required removal of the hook plate, necessitating an additional surgical procedure [13].

To our knowledge, no studies analyze the revision rate in reconstruction combined with a hardware for chronic high-grade AC joint dislocation. Our study observed a lower revision rate in the combination group. Windhamre et al. also found the same result. This may be attributed to the hardware providing more excellent initial mechanical stability, thereby reducing the risk of failure caused by graft elongation or loosening [13]. In addition, the hardware creates a supportive environment during the crucial graft healing period [48].

Our study represents the first systematic review to identify the optimal treatment approach for chronic high-grade AC joint dislocations. It is characterized by well-defined inclusion and exclusion criteria and a highly systematic approach to study selection. A minimum follow-up duration of >1 year was established as a criterion to ensure an accurate assessment of functional outcomes, complications, and revision rates. Moreover, we included recent publications, ensuring they reflect current conditions and are generalizable to clinical settings. The limitation of this study is that it is a systematic review, which inherently includes studies with varying surgical techniques and outcome measures. Consequently, the functional outcome scores reported are highly variable, potentially affecting the generalizability of the findings. In addition, the combination techniques or hardware-augmented reconstruction evaluated in our study were limited to only four studies that may influence the results.

Conclusion

The current systematic review revealed that reconstruction alone is superior in functional outcomes. However, hardware-augmented reconstruction approach is superior in terms of lower complications and revision rates. While this review provides insight into potential differences between the two approaches, the qualitative nature of the analysis, along with variations in study design, outcome measures, and the number of included studies, suggests that these findings should be interpreted with thoughtful consideration.

Acknowledgements All figures and illustrations in this review article are original and created by the authors.

18

Funding The author(s) received no financial support for this article's research, authorship, and/or publication.

Data availability This systematic review is based on previously published studies. All data generated or analyzed during this study are included in the published articles cited in the references.

Declarations

10

Conflict of interest All the authors declare that they have no conflict of interest.

Ethical approval Ethical clearance was not required.

Informed consent For this type of study, informed consent is not required.

References

1. Mazzocca, A. D., Arciero, R. A., & Bicos, J. (2007). Evaluation and treatment of acromioclavicular joint injuries. *American Journal of Sports Medicine*. <https://doi.org/10.1177/0363546506298022>
2. Rieser, G. R., Edwards, K., Gould, G. C., et al. (2013). Distal-third clavicle fracture fixation: A biomechanical evaluation of fixation. *Journal of Shoulder Elbow Surgery*. <https://doi.org/10.1016/j.jse.2012.08.022>
3. Sonnier, J. H., Kemler, B., Coladonato, C., et al. (2023). Surgical management of acute, high-grade acromioclavicular joint separations: a systematic review. *JSES Reviews Reports and Techniques*. <https://doi.org/10.1016/j.xrxt.2022.10.002>
4. Romano, A. M., Casillo, P., De Simone, M., et al. (2020). The infinity-lock system for chronic grade iii ac joint dislocation: A novel technique, rehabilitation protocol and short term results. *Journal of Clinical Medicine*. <https://doi.org/10.3390/jcm9082519>
5. Cerciello, S., Berthold, D. P., Uyeki, C., et al. (2021). Anatomic coracoclavicular ligament reconstruction (ACCR) using free tendon allograft is effective for chronic acromioclavicular joint injuries at mid-term follow-up. *Knee Surgery, Sports Traumatology, Arthroscopy*. <https://doi.org/10.1007/s00167-020-06123-0>
6. Bahrs, C., Badke, A., Rolauß, B., et al. (2010). Long-term results after non-plate head-preserving fixation of proximal humeral fractures. *International Orthopaedics*. <https://doi.org/10.1007/s00264-009-0848-4>

7. Constant, C. R., & Murley, A. H. (1987). A clinical method of functional assessment of the shoulder. *Clinical Orthopaedics and Related Research*, 214, 160–164.
8. Jeon, I. H., Dewnany, G., Hartley, R., et al. (2007). Chronic acromioclavicular separation: The medium term results of coracoclavicular ligament reconstruction using braided polyester prosthetic ligament. *Injury*. <https://doi.org/10.1016/j.injury.2007.05.019>
9. Nolte, P. C., Ruzbarsky, J. J., Elrick, B. P., et al. (2021). Mid-term outcomes of arthroscopically-assisted anatomic coracoclavicular ligament reconstruction using tendon allograft for high-grade acromioclavicular joint dislocations. *Arthroscopy Journal of Arthroscopic and Related Surgery*. <https://doi.org/10.1016/j.arthro.2021.04.035>
10. Nordin, J. S., Agaard, K. E., & Lunsjö, K. (2015). Chronic acromioclavicular joint dislocations treated by the GraftRope device. *Acta Orthopaedica*. <https://doi.org/10.3109/17453674.2014.976806>
11. Muench, L. N., Kia, C., Jerliu, A., et al. (2019). Functional and radiographic outcomes after anatomic coracoclavicular ligament reconstruction for type III/V acromioclavicular joint injuries. *Orthopaedics Journal of Sports Medicine*. <https://doi.org/10.1177/2325967119884539>
12. Vascellari, A., Schiavetti, S., Battistella, G., et al. (2015). Clinical and radiological results after coracoclavicular ligament reconstruction for type III acromioclavicular joint dislocation using three different techniques: A retrospective study. *Joints*. <https://doi.org/10.11138/jts/2015.3.2.054>
13. Boström Windhamre, H. A., von Heideken, J. P., Une-Larsson, V. E., et al. (2010). Surgical treatment of chronic acromioclavicular dislocations: A comparative study of Weaver-Dunn augmented with PDS-braid or hook plate. *Journal of Shoulder Elbow Surgery*. <https://doi.org/10.1016/j.jse.2010.02.006>
14. Chouhan, D. K., Saini, U. C., & Dhillon, M. S. (2013). Reconstruction of chronic acromioclavicular joint disruption with artificial ligament prosthesis. *Chinese Journal of Traumatology English Edition*. <https://doi.org/10.3760/cma.j.issn.1008-1275.2013.04.006>
15. Moriyama, H., Gotoh, M., Mitsui, Y., et al. (2014). Clinical outcomes of the cadet procedure in the treatment of acromioclavicular joint dislocations. *Kurume Medical Journal*. <https://doi.org/10.2739/kurumemedj.MS64001>
16. Wang, Y., & Zhang, J. (2014). Acromioclavicular joint reconstruction by coracoid process transfer augmented with hook plate. *Injury*. <https://doi.org/10.1016/j.injury.2013.12.013>
17. Kumar, S., Penematsu, S. R., & Selvan, T. (2007). Surgical reconstruction for chronic painful acromioclavicular joint dislocations. *Archives of Orthopaedic and Trauma Surgery*. <https://doi.org/10.1007/s00402-007-0298-7>
18. Bhattacharya, R., Goodchild, L., & Ranoo, A. (2008). Acromioclavicular joint reconstruction using the Nottingham Surgilig: A preliminary report. *Acta Orthopadica Belgica*, 74, 167.
19. Bezer, M., Saygi, B., Aydin, N., et al. (2009). Quantification of acromioclavicular reduction parameters after the Weaver-Dunn procedure. *Archives of Orthopaedic and Trauma Surgery*. <https://doi.org/10.1007/s00402-008-0723-6>
20. Tauber, M., Gordon, K., Koller, H., et al. (2009). Semitendinosus tendon graft versus a modified Weaver-Dunn procedure for acromioclavicular joint reconstruction in chronic cases: A prospective comparative study. *American Journal of Sports Medicine*. <https://doi.org/10.1177/0363546508323255>
21. Fraschini, G., Ciampi, P., Scotti, C., et al. (2010). Surgical treatment of chronic acromioclavicular dislocation: Comparison between two surgical procedures for anatomic reconstruction. *Injury*. <https://doi.org/10.1016/j.injury.2010.09.023>
22. Boileau, P., Old, J., Gastaud, O., et al. (2010). Allarthroscopic Weaver-Dunn-Chunard procedure with double-button fixation for chronic acromioclavicular joint dislocation. *Arthroscopy Journal of Arthroscopic and Related Surgery*. <https://doi.org/10.1016/j.arthro.2010.08.008>
23. Yoo, J. C., Ahn, J. H., Yoon, J. R., et al. (2010). Clinical results of single-tunnel coracoclavicular ligament reconstruction using autogenous semitendinosus tendon. *American Journal of Sports Medicine*. <https://doi.org/10.1177/0363546509356976>
24. Kovilazhakuthu Sugathan, H., & Dodenhoff, R. M. (2012). Management of type 3 acromioclavicular joint dislocation: Comparison of long-term functional results of two operative methods. *ISRN Surgery*. <https://doi.org/10.5402/2012/580504>
25. Kim, S. H., Lee, Y. H., Shin, S. H., et al. (2012). Outcome of conjoined tendon and coracoacromial ligament transfer for the treatment of chronic type V acromioclavicular joint separation. *Injury*. <https://doi.org/10.1016/j.injury.2011.08.003>
26. Kumar, V., Garg, S., Elzein, I., et al. (2014). Modified Weaver-Dunn procedure versus the use of a synthetic ligament for acromioclavicular joint reconstruction. *Journal of Orthopaedic Surgery*. <https://doi.org/10.1177/230949901402200217>
27. Saccomanno, M. F., Fodale, M., Capasso, L., et al. (2014). Reconstruction of the coracoclavicular and acromioclavicular ligaments with semitendinosus tendon graft: A pilot study. *Joints*. <https://doi.org/10.11138/jts/2014.2.1.006>
28. Al-Ahaideb, A. (2014). Surgical treatment of chronic acromioclavicular joint dislocation using the Weaver-Dunn procedure augmented by the TightRope® system. *European Journal of Orthopaedic Surgery and Traumatology*. <https://doi.org/10.1007/s00590-013-1356-1>
29. Lee, S. K., Song, D. G., & Choy, W. S. (2015). Anatomical double-bundle coracoclavicular reconstruction in chronic acromioclavicular dislocation. *Orthopedics*. <https://doi.org/10.3928/0147-447-20150804-50>
30. Struhal, S., & Wolfson, T. S. (2015). Continuous loop double endobutton reconstruction for acromioclavicular joint dislocation. *American Journal of Sports Medicine*. <https://doi.org/10.1177/0363546515596409>
31. Marcheggiani Muccoli, G. M., Manning, C., Wright, P., et al. (2016). Acromioclavicular joint reconstruction with the LARS ligament in professional versus non-professional athletes. *Knee Surgery, Sports Traumatology, Arthroscopy*. <https://doi.org/10.1007/s00167-014-3231-y>
32. Spencer, H. T., Hsu, L., Sodl, J., et al. (2016). Radiographic failure and rates of re-operation after acromioclavicular joint reconstruction: A comparison of surgical techniques. *Bone and Joint Journal*. <https://doi.org/10.1302/0301-620X.9884.35935>
33. Kocaoglu, B., Ulku, T. K., Gereli, A., et al. (2017). Palmaris longus tendon graft versus modified Weaver-Dunn procedure via dynamic button system for acromioclavicular joint reconstruction in chronic cases. *Journal of Shoulder Elbow Surgery*. <https://doi.org/10.1016/j.jse.2017.01.024>
34. Kapil-Mani, K. C., & Niroula, A. (2018). Acromio-clavicular joint dislocation types IV to VI: Does the outcome with the modified weaver-dunn procedure justify the treatment? *Malaysian Orthopaedic Journal*. <https://doi.org/10.5704/MOJ.1807.006>
35. López-Alameda, S., Fernández-Santos, T., García-Villanueva, A., et al. (2018). Results of surgical treatment of acromioclavicular dislocations type III using modified Weaver Dunn technique. *Revista Española de Cirugía Ortopédica y Traumatología (English Edition)*. <https://doi.org/10.1016/j.recote.2018.02.003>
36. Boileau, P., Gastaud, O., Wilson, A., et al. (2019). All-arthroscopic reconstruction of severe chronic acromioclavicular joint dislocations. *Arthroscopy Journal of Arthroscopic and Related Surgery*. <https://doi.org/10.1016/j.arthro.2018.11.058>
37. Galasso, O., Tarducci, L., De Benedetto, M., et al. (2020). Modified Weaver-Dunn procedure for type 3 acromioclavicular joint dislocation: functional and radiological outcomes. *Orthopaedic*.

Journal of Sports Medicine. <https://doi.org/10.1177/2325967120905022>

38. Cano-Martinez, J. A., Nicolás-Serrano, G., Bento-Gerard, J., et al. (2020). Chronic acromioclavicular dislocations: Multidirectional stabilization without grafting. *JSES International*. <https://doi.org/10.1016/j.jseint.2020.04.014>

39. Ranne, J. O., Kainonen, T. U., Lehtinen, J. T., et al. (2020). Arthroscopic coracoclavicular ligament reconstruction of chronic acromioclavicular dislocations using autogenous semitendinosus graft: A two-year follow-up study of 58 patients. *Arthroscopy, Sports Medicine, and Rehabilitation*. <https://doi.org/10.1016/j.asmr.2019.10.003>

40. Motta, P., Marra, F., Maderni, A., et al. (2020). The long-term efficacy of the GraftRope technique. *Journal of Shoulder Elbow Surgery*. <https://doi.org/10.1016/j.jse.2020.02.014>

41. Berthold, D. P., Muench, L. N., Dynia, F., et al. (2021). Radiographic alterations in clavicular bone tunnel width following anatomic coracoclavicular ligament reconstruction (ACCR) for chronic acromioclavicular joint injuries. *Knee Surgery, Sports Traumatology, Arthroscopy*. <https://doi.org/10.1007/s00167-020-05980-z>

42. Huang, F. T., Lin, K. C., Lin, C. Y., et al. (2021). Concomitant acromioclavicular and coracoclavicular ligament reconstruction with a duo-figure-8 autogenous graft wrapping technique for treating chronic acromioclavicular separation. *CiOS Clinics in Orthopedic Surgery*. <https://doi.org/10.4055/cios20194>

43. Saccocciano, M. F., Marchi, G., Mocini, F., et al. (2021). Anatomic reconstruction of the coracoclavicular and acromioclavicular ligaments with semitendinosus tendon graft for the treatment of chronic acromioclavicular joint dislocation provides good clinical and radiological results. *Knee Surgery, Sports Traumatology, Arthroscopy*. <https://doi.org/10.1007/s00167-020-06285-x>

44. Cerciello, S., Corona, K., Morris, B. J., et al. (2022). Hybrid coracoclavicular and acromioclavicular reconstruction in chronic acromioclavicular joint dislocations yields good functional and radiographic results. *Knee Surgery, Sports Traumatology, Arthroscopy*. <https://doi.org/10.1007/s00167-021-0790-7>

45. Jensen, G., Kathagen, J. C., Alvarado, L., et al. (2013). Arthroscopically assisted stabilization of chronic AC-joint instabilities in GraftRope™ technique with an additive horizontal tendon augmentation. *Archives of Orthopaedic and Trauma Surgery*. <https://doi.org/10.1007/s00402-013-1745-2>

46. Mori, D., Nishiyama, H., Haku, S., et al. (2024). Coracoclavicular and acromioclavicular ligament reconstruction with a double-bundle semitendinosus autograft and cortical buttons for chronic acromioclavicular joint dislocations: Clinical and imaging outcomes. *Journal of Shoulder Elbow Surgery*. <https://doi.org/10.1016/j.jse.2024.01.019>

47. Vansie, W., & Buddy Savoie, F. H. (2008). Arthroscopic reconstruction of the acromioclavicular joint using semitendinosus allograft: Technique and preliminary results. *Technique Shoulder Elbow Surgery*. <https://doi.org/10.1097/BTE.0b013e318181da68>

48. Wang, G., Xie, R., Mao, T., et al. (2018). Treatment of AC dislocation by reconstructing CC and AC ligaments with allogenic tendon compared with hook plates. *Journal of Orthopaedic Surgery Research*. <https://doi.org/10.1186/s13018-018-0879-x>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Erica Kholinne^{1,2} · Karina Sylvana Gani² · Mitchel² · Claudia Santosa³ · Erick Wonggokusuma² · Jae-Man Kwak⁴ · In-Ho Jeon⁵

 Erica Kholinne
erica@trisakti.ac.id

Karina Sylvana Gani
karina.sylvana@yahoo.com

Mitchel
mitchelx42@gmail.com

Claudia Santosa
csantosa.md@gmail.com

Erick Wonggokusuma
erick.wonggo@yahoo.com

Jae-Man Kwak
jman.kwak@gmail.com

In-Ho Jeon
jeonchoi@gmail.com

² Department of Orthopedic Surgery, Gatan Institute, Eka Hospital, Central Business District, Jl. Boulevard BSD Tim. Lot IX, Lengkong Gudang, Kec. Serpong, Kota Tangerang Selatan, Banten 15321, Indonesia
³ Hand, Upper Limb and Microsurgery Department, Hasan Sadikin Hospital, Padjadjaran University, Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, Jawa Barat, Bandung 45363, Indonesia
⁴ Department of Orthopedic Surgery, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, Uijeongbu-si Dongil-ro, 712 을지대 학교 병원, Uijeongbu, Republic of Korea
⁵ Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa District, Seoul, Republic of Korea

¹ Faculty of Medicine, Universitas Trisakti, Jl. Kyai Tapa No.1, RT.5/RW.9, Tomang, Kec. Grogol Petamburan, Kota Jakarta Barat, Daerah Khusus Ibukota Jakarta 11440, Indonesia

Reconstruction

ORIGINALITY REPORT

PRIMARY SOURCES

1	Ravi Gupta, Anil Kapoor. "Management of Elderly Elbow Fractures", Indian Journal of Orthopaedics, 2025 Publication	1 %
2	www.hindawi.com Internet Source	1 %
3	Hong-bo Li, Si Nie, Zhi-ming Tang, Xin-gen Liao, Min Lan. "Comparative study of arthroscopically assisted Tight-Rope technique and clavicular hook plate fixation treatment in acute high grade acromioclavicular joint separations", Research Square, 2020 Publication	1 %
4	Helena A. Boström Windhamre, Johan P. von Heideken, Viveka E. Une-Larsson, Anders L. Ekelund. "Surgical treatment of chronic acromioclavicular dislocations: A comparative study of Weaver-Dunn augmented with PDS-braid or hook plate", Journal of Shoulder and Elbow Surgery, 2010 Publication	1 %
5	bmccancer.biomedcentral.com Internet Source	1 %
6	gosu-wot.com Internet Source	1 %
7	Chaoqun Wang, Xugui Li, Shengnan Dong, Wei Xie, Zexi Ling, Chengfei Meng, Ulrich Stöckle. "Midshaft clavicle fractures with associated	1 %

ipsilateral acromioclavicular joint injuries: a systematic review", BMC Surgery, 2025

Publication

8 H. T. Spencer, L. Hsu, J. Sodl, A. Arianjam, E. H. Yian. "Radiographic failure and rates of re-operation after acromioclavicular joint reconstruction", The Bone & Joint Journal, 2016 1 %

Publication

9 i-jmr.org 1 %

Internet Source

10 Simone Cerciello, Daniel P. Berthold, Colin Uyeki, Cameron Kia et al. "Anatomic coracoclavicular ligament reconstruction (ACCR) using free tendon allograft is effective for chronic acromioclavicular joint injuries at mid-term follow-up", Knee Surgery, Sports Traumatology, Arthroscopy, 2020 1 %

Publication

11 Yassine Ochen, Reinier B. Beks, Benjamin L. Emmink, Philippe Wittich, Detlef van der Velde, R. Marijn Houwert, Jort Keizer. "Surgical treatment of acute and chronic AC joint dislocations: Five-year experience with conventional and modified LARS fixation by a single surgeon", Journal of Orthopaedics, 2020 1 %

Publication

12 docksci.com 1 %

Internet Source

13 moam.info <1 %

Internet Source

14 www.pubfacts.com <1 %

Internet Source

15	Internet Source	<1 %
16	Hamid Rahmatullah Bin Abd Razak, Eng-Meng Nicholas Yeo, William Yeo, Tijauw-Tjoen Denny Lie. "Short-term outcomes of arthroscopic TightRope® fixation are better than hook plate fixation in acute unstable acromioclavicular joint dislocations", European Journal of Orthopaedic Surgery & Traumatology, 2017 Publication	<1 %
17	online.boneandjoint.org.uk Internet Source	<1 %
18	pure.eur.nl Internet Source	<1 %
19	coek.info Internet Source	<1 %
20	www.degruyterbrill.com Internet Source	<1 %
21	Prabhu Ethiraj, Sagar Venkataraman, Karthik S J, Arun H Shanthappa, Sandesh Agarawal. "Does Proximal Humerus Inter Locking System (PHILOS) Plating Provide a Good Functional Outcome in Proximal Humerus Fractures?", Cureus, 2022 Publication	<1 %

Exclude quotes On
Exclude bibliography On

Exclude matches < 15 words