PAPER • OPEN ACCESS

2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017)

To cite this article: 2018 IOP Conf. Ser.: Earth Environ. Sci. 120 011001

View the article online for updates and enhancements.

You may also like

 Investigation of Source of Distraction among the intrastate bus driver: Focus Group Interview Muhammad Nur Annuar Mohd Yunos, Jalil Azlis-Sani, Musli Mohammad et al.

 Developing a novel indicator to estimate years of life lost attributable to temperature variability between neighboring days
 Siqi Chen, Jianxiong Hu, Weiwei Gong et al.

 Hydromorphology of coastal zone and structure of watershed agro-food system are main determinants of coastal eutrophication Josette Garnier, Gilles Billen, Luis Lassaletta et al.

This content was downloaded from IP address 103.49.68.13 on 15/08/2024 at 05:05

IOP Publishing

PREFACE

It is our great pleasure to welcome you to 2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017) which will be held in Singapore, 14-16 December, 2017. ICEPP 2017 is dedicated to issues related to Green Energy Technology.

The major goal and feature of the conference is to bring academic scientists, engineers, and industry researchers together to exchange and share their experiences and research results, and discuss the practical challenges encountered and the solutions adopted. Professors from Korea, Singapore and USA are invited to deliver keynote speeches regarding latest information in their respective expertise areas. It will be a golden opportunity for students, researchers and engineers to interact with the experts and specialists to get their advice or consultation on technical matters, sales and marketing strategies.

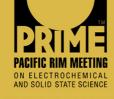
This proceeding present a selection from papers submitted to the conference from universities, research institutes and industries. All papers were subjected to peer-review by conference committee members and international reviewers. The papers selected depended on their quality and their relevancy to the conference. The volume tends to present to the readers the recent advances in the field of Environment Pollution and Prevention and various related areas, such as Energy Management, Environmental Risk Assessments, Environmental Sustainability and Development, Pollution and Health Issues, Water Pollution and Treatment, Wastewater Management and Treatment, Environmental Safety Regulations, Air pollution and treatment, Environmental Protection, etc.

We would like to thank all the authors who have contributed to this volume, and also the organizing committee, reviewers, speakers, chairpersons, sponsors and all the conference participants for their support to ICEPP 2017.

Nanyang Executive Centre in Nanyang Technological University, Singapore December 21, 2017

PAPER • OPEN ACCESS


Organizing Committee


To cite this article: 2018 IOP Conf. Ser.: Earth Environ. Sci. 120 011002

View the article online for updates and enhancements.

You may also like

- Organizing Committee
- Organizing Committee
- Organizing Committee

HONOLULU,HI October 6-11, 2024

Joint International Meeting of

The Electrochemical Society of Japan (ECSJ) The Korean Electrochemical Society (KECS) The Electrochemical Society (ECS)

Early Registration Deadline: September 3, 2024

MAKE YOUR PLANS

This content was downloaded from IP address 103.49.68.13 on 15/08/2024 at 05:07

IOP Conf. Series: Earth and Environmental Science **120** (2018) 011002

Organizing Committee

Conference Chair

Prof. James T. Anderson, West Virginia University, USA Prof. Young Sun Mok, Jeju National University, Jeju, Korea

Program Chair

Assoc. Prof. M. A. Qader Maraqa, United Arab Emirates University, UAE Assoc. Prof. Emmanuel Iyiegbuniwe, Department of Public Health, Western Kentucky University, USA

Organizing Chair

Ms Alice Lin, Hong Kong Chemical, Biological & Environmental Engineering Society, Hong Kong

International Technical Committee

Prof. AKBAR ESMAEILI, Islamic Azad University, Tehran, Iran Prof. Bharat Bhushan Gulyani, BITS Pilani, Dubai Campus (UAE) Prof. Catalina Iticescu,"Dunarea de Jos" University of Galati, Romania Prof. Hiroshi Uechi, Osaka Gakuin University, Japan Prof. Shankar Gargh, Environmental Disasters Research Institute, India Prof. Farid A. Badria, Mansoura University, Egypt Prof. Kyoungphile Nam, Seoul National University, Korea Assoc. Prof. Eiji HARAMOTO, University of Yamanashi, Japan Assoc. Prof Alaa El-Din Hamid Sayed, University of Tokyo, Japan Assoc. Prof. Seema Jilani, University of Karachi, Pakistan Assoc. Prof. Mehmet Burcin MUTLU, Anadolu University, Turkey Assoc. Prof. Neeru Bansal, CEPT University, India Assoc. Prof. Yubao Wang (Kevin Wong), Xi'an Jiaotong University, China Dr. Parnuch Hongsawat, King Mongkut's University of Technology North Bangkok, Thailand Dr. Susira Bootdee, King Mongkut's University of Technology North Bangkok, Thailand Dr. Rajeev Kumar Mishra, Delhi Technological University, India

PAPER • OPEN ACCESS

Peer review statement

To cite this article: 2018 IOP Conf. Ser.: Earth Environ. Sci. 120 011003

View the article online for updates and enhancements.

You may also like

- Peer review declaration
- Peer review declaration
- Peer review declaration

Joint International Meeting of The Electrochemical Society of Japar (ECSJ) The Korean Electrochemical Society (KECS) The Electrochemical Society (ECS)

HONOLULU,HI October 6-11, 2024

Early Registration Deadline: **September 3, 2024**

MAKE YOUR PLANS

This content was downloaded from IP address 103.49.68.13 on 15/08/2024 at 05:07

IOP Conf. Series: Earth and Environmental Science **120** (2018) 011003 doi:10.1088/1755-1315/120/1/011003

Peer review statement

All papers published in this volume of *IOP Conference Series: Earth and Environmental Science* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

ICEPP 2017

2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017) Singapore 14-16 December, 2017

Proceedings of ICEPP 2017 are published in Volume 120 of IOP Conference Series: Earth and Environmental Science

(https://iopscience.iop.org/issue/1755-1315/120/1) (history/ICEPP%202017-PROCEEDING.pdf)| El Compendex (history/ICEPP2017El.png) | Scopus (history/ICEPP2017SCO.png)

Group Photo

Best Oral Presentations

Copyright © ICEPP 2024. All rights reserved. (http://sc.chinaz.com/moban/)

■ IOPSCIENCE Q Journals Books Publishing Support Login	
Table of contents	
Volume 120 2018	
← Previous issue Next issue →	
2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017) 14–16 December 2017, Singapore Accepted papers received: 07 February 2018 Published online: 12 March 2018	
Open all abstracts	
Preface	
OPEN ACCESS 2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017) ≣View article PDF	011001
OPEN ACCESS Organizing Committee	011002
View article PDF	
OPEN ACCESS Peer review statement	011003
Water Quality Assessment and Water Resource Management	
OPEN ACCESS Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India Neeru Bansal	012001
OPEN ACCESS Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia Eki Noerfitriyani, Djoko M. Hartono, Setyo S. Moersidik and Irma Gusniani ≣View article PDF	012002
OPEN ACCESS Characteristics of Leachate and Their Effect on Shallow Groundwater Quality (Case Study : TPA Cipayung, Depok) Atika Widiastuti, Djoko M. Hartono, Setyo S. Moersidik and Irma Gusniani Image: View article Image: PDF	012003

OPEN ACCESS

Detection of Waterborne Protozoa, Viruses, and Bacteria in Groundwater and Other Water Samples in the Kathmandu Valley, Nepal

E Haramoto

■View article

OPEN ACCESS

012005

Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

R Yanidar, D M Hartono and S S Moersidik

View article

OPEN ACCESS

012006

Integrity Model Application: A Quality Support System for Decision-makers on Water Quality Assessment and Improvement

D Mirauda, M Ostoich, F Di Maria, S Benacchio and I Saccardo

I≣IVIew article	PDF	
Pollution Monit	oring and Assessment	
OPEN ACCESS		012007
Indoor PM _{2.5} a	nd its Polycyclic Aromatic Hydrocarbons in Relation with Incense Burning	
Susira Bootdee,	Somporn Chantara and Tippawan Prapamontol	
View article		
OPEN ACCESS		012008
•	ssment of Polycyclic Aromatic Hydrocarbon (PAHs) in Childcare Centers of Muang, Nakhon Ratchasima	
C Jitlada and P F		
View article	PDF	
OPEN ACCESS		012009
	oduction of Air Pollutants from Fireworks During Diwali in Rural Palwal, Haryana, India: A Case Study	
S Gautam, A Yad	av, A Pillarisetti, K Smith and N Arora	
View article		
Environmental	Management and Sustainable Development	
OPEN ACCESS	ving Potential of Different Spent Mushroom Substrate Preparations as Soil Amendment in a Potting Media	012010
	Ong Sotto and MR Punzalan	
View article	PDF	
OPEN ACCESS	arban Coquestration	012011
•	arbon Sequestration	
Cai Haoyang		
View article		
OPEN ACCESS	re en Level Weste Management in Benvangkringen Village Weleri: en Identification	012012
•	rs on Local Waste Management in Penyangkringan Village, Weleri: an Identification	
	Iriyanti, Ova Candra Dewi, Ahmad Gamal, Mohammad Joko Romadhon and Raditya	
View article	PDF	
OPEN ACCESS		012013
	ical Models Based Analysis of Causative Factors and Loess Landslides in Tianshui City, China	
_	Meng, Weilin Ye, Weijiang Wu, Xingrong Liu and Wanhong Wei	
View article	PDF	
OPEN ACCESS	pace: Awareness for Health or Sustainability?	012014
	runnisa, T Hidayat, M Anggraini and A Napitupulu	
View article	PDF	

View article

PDF

The Costs of Climate Change

Jason Guo

View article 🔁 PDF

OPEN ACCESS

012016

Impact of Industrialization on Environment and Sustainable Solutions – Reflections from a South Indian Region

Rasmi Patnaik

View article PDF

OPEN ACCESS

012017

International Trade, Pollution Accumulation and Sustainable Growth: A VAR Estimation from the Pearl River Delta Region

Hui Zuo and Lu Tian

View article PDF

OPEN ACCESS		012018
	ak, Stock Prices of Clean Energy Firms and Carbon Market	
Yubao Wang and	•	
View article		
Environmental	and Chemical Engineering	
OPEN ACCESS		012019
	OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor	
Yu Fang, Sayaka	a Shimizu, Takuya Yamamoto and Sergey Komarov	
View article		
OPEN ACCESS		012020
Optimization o	f Lead Removal via Napier Grass in Synthetic Brackish Water using Response Surface Model	
P Hongsawat, P	Suttiarporn, K Wutsanthia and G Kongsiri	
View article		
OPEN ACCESS		01202
Effect of Stage System	d Dissolved Oxygen Optimization on In-situ sludge Reduction and Enhanced Nutrient Removal in an A ² MMBR-M	
Shan-Shan Yang	, Ji-Wei Pang, Xiao-Man Jin, Zhong-Yang Wu, Xiao-Yin Yang, Wan-Qian Guo, Zhi-Qing Zhao and Nan-Qi Ren	
View article		
OPEN ACCESS		012022
The Removal of	of Cu (II) from Aqueous Solution using Sodium Borohydride as a Reducing Agent	
N T Sithole, F Nt	uli and T Mashifana	
View article		
OPEN ACCESS		012023
Removal of Ma	anganese from Solution using Polyamide Membrane	
M Mathaba, N S	thole and T Mashifana	
View article		
OPEN ACCESS		012024
Heavy Metals	and Radioactivity Reduction from Acid Mine Drainage Lime Neutralized Sludge	
T Mashifana and	N Sithole	
■View article		
OPEN ACCESS		012025
	on the Removal of Iron from Gold Mine Tailings by Citric Acid	
T Mashifana, N N	Avimbela and N Sithole	
View article		
Development a	nd Utilization of Solar Energy	
OPEN ACCESS		012026

Modification of Indirect Solar Dryer for Simplicia Production

C W Purnomo and S Indarti

View article PDF

JOURNAL LINKS

Journal home			
Journal scope			
Information for organizers			
Information for authors			
Contact us			

Reprint services from Curran Associates

IOPSCIENCE	IOP PUBLISHING	PUBLISHING SUPPORT
Journals	Copyright 2024 IOP Publishing	Authors
Books	Terms and Conditions	Reviewers
IOP Conference Series	Disclaimer	Conference Organisers
About IOPscience	Privacy and Cookie Policy	
Contact Us		
Developing countries access		
IOP Publishing open access policy		
Accessibility		

This site uses cookies. By continuing to use this site you agree to our use of cookies.

IOP

PAPER • OPEN ACCESS

Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

To cite this article: R Yanidar et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 120 012005

View the article online for updates and enhancements.

You may also like

- Study of Leachate Penetration in Shallow Groundwater Around Jabon Landfill <u>Sidoarjo</u> S M P Marendra and B V Tangahu

- Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia Eki Noerfitriyani, Djoko M. Hartono, Setyo S. Moersidik et al.

- A Preliminary Study on Application of MBR + NF/RO (Membrane Bio-Reactor + Nanofiltration/Reverse Osmosis) Combination Process for Landfill Leachate Treatment in China Yuhao Wu

Joint International Meeting of

HONOLULU, HI October 6-11, 2024

Early Registration Deadline: September 3, 2024

MAKE YOUR PLANS NOV

This content was downloaded from IP address 103.49.68.13 on 15/08/2024 at 06:06

IOP Publishing

Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

R Yanidar^{1*}, D M Hartono², S S Moersidik²

1 Environmental Engineering Department, Trisakti University, as a Doctoral Student, Department of Civil Engineering, Faculty of Engineering, University of Indonesia, Depok 16242, Indonesia.

2 Environmental Engineering Departement, Faculty of Engineering, University of Indonesia, Depok 16242, Indonesia

E-mail: ramadhani@trisakti.ac.id

Abstract. Cipayung Landfill takes waste generation from Depok City approximately \pm 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

1. Introduction

Population increase and urbanization are challenging municipal authorities to manage solid waste. Landfill, one of several components of the waste management chain that needs more attention to reduce its environmental impact. Eventhough landfill is less expensive than other forms of waste treatment but it has make environmental problems. [1]. The leachate that produced by solid waste landfilling can caused surface water pollution because of the organic concentration.

Pesanggrahan River is a strategic river which 7.7 km length for Banten Province, DKI Jakarta, and also West Java Province in Indonesia. It is located within Kabupaten Bogor, Depok City, and Tangerang City in west Java Province, flow to South Jakarta, West Jakarta, and to the North Jakarta in DKI Jakarta Province, and flows to the estuary.

Depok City, West Java Province, Indonesia extends from longitude $106^{\circ}43'00"-106^{\circ}55'30"$ E and latitude $6^{\circ}19'00"$ $6^{\circ}28'00"S$ has an solid waste final disposal landfill (6'25'19.08"S' 106'47'16.48"E) with an area of 11.6 Ha, which located in the sub-district of Cipayung. Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. It has been operationalized since 1992. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

ICEPP 2017	IOP Publishing
IOP Conf. Series: Earth and Environmental Science 120 (2018) 012005	doi:10.1088/1755-1315/120/1/012005

Based on those condition above, it need a identification the parameter which has a negative impact on the water quality of river pesanggrahan.

The objectives of this study are: (1) identification an important parameter which greatly affects the water quality of Pesanggrahan River (2) purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river.

2. Method

2.1 Study area

Pesanggrahan river in Depok City, West Java Province, Indonesia extends from longitude 106°43'00" - 106°55'30" E and latitude 6°19'00" - 6°28'00". To identify the water quality parameter, water samples were taken at 1 point before the landfill location and 3 points after the landfill location which is still within the administration area of Depok city. They are sampling location (SL) H which has 848 m before landfill area, SL B before the leachate outlet and SL_X and SL_W which located after landfill location, and the distance around 0.53 and 5.792 km from landfill location. (see figure 1).

Selected sampling stations located in Depok City, Indonesia. The water samplings were conducted in April and May 2017 by analyzing in situ for the parameter of DO, pH and temperature, and 23 parameters that are in accordance with raw water standards, by ex situ analysis to determine whether the Pesanggrahan River can still be used as a raw drinking water. The parameters analyzed are all physical and chemical parameters in raw water standard are color odor, taste turbidity and conductivity and TDS, TSS organic permangant, alkalinity, hardness, COD, BOD, Ca, Mg, CO2, Fe, Mn, Nitrat, Nitrit, Sulfat, BOD and COD.

Figure 1 Water quality sampling location in Depok City Area

2.2 Statistical data analysis for proposing mechanistic water-quality model.

The data processing and statistical analysis for the parameters which exceed the class II standard were conducted using SPSS (ver. 23.0). Multivariate Analysis of Variance (Manova) analyzed the significance water quality parameters differences between four (4) sampling locations. Before running the Manova, the multivariate data must be normally distributed assumptions and independently sampled recommendation. The Kolmogorov-Smirnov and Levene's Test was applied to check the

ICEPP 2017	IOP Publishing
IOP Conf. Series: Earth and Environmental Science 120 (2018) 012005	doi:10.1088/1755-1315/120/1/012005

normality and verify homogeneity of variance across samples which explain the suitability and validity of the parameters being addressed through the Manova. The null hypothesis (Ho) of the Manova is the equality of variation mean for each parameter.

The results of Manova are presented as a basic to propose mechanistic water-quality model. To recognize the effects of leachate discharge into the river, the principle of mass balance was used because it is basic principle of water quality models [2]. It suggests using different loads from natural and anthropogenic pollutant that are contributed by the area between the upstream and downstream of the landfill location to build the water quality model.

3. Results and discussion

The results of the discharge and velocity measurements in sampling locations can be seen in Table 1 and the illustration of the transfer of water carrying leachate is illustrated in the chart in figure 2. Furthermore, the discharge measurements at the time showed a value of 3,59-3,95m³/sec (Table 1). This is not a measurement that can show the amount of real discharge, because the discharge will be affected by the rain fall. Moreover, it need time series data debit to further analyze in detail.

		kp Bulak barat Depok	•	Outlet Leachate Treatment Landfill		Jl Alief		Jl Muchtar, Sawangan		Venus Cinere	Jakarta
SL N	lumber	SL_H		SL_B		SL_X		SL_W		SL_W_JKT	
Distance fro	om Landfill (m)		848		532		5,792		20,124		
	v (m/seconds)	0.67		0.68		0.68		1.08		1.09	
Cummulative	T=(Seconds)			1,264.96		782.19		8,517.49		18,462.26	
Time	(minutes)			21.08		13.04		141.96		307.70	
Tille	(hours)			0.35		0.22		2.37		5.13	

Figure 2. Distance and velocity sampling location pesanggrahan river from Cipayung landfill in
Depok City

Sampling Location (SL)	GPS	River's Width (cm)	Distance between SL (m)	Velocity (m/s)	Debit (m3/s)
Kampung Bulak barat Depok	6 25'32.10"S 106 47'20.1"E	8.2	850	0.67	3.59
Outlet Leachate Treatment	6 25'19.08"S 106 47'16.48"E		-	0.68	3.95
Jl Alief	6 25'01.20"S 106 47'10.8"E	11	540	0.68	3.6
Jl Muchtar, Sawangan	6°23'50.1"S; 106°46'18.4"E	8.2	5,260	1.08	

Table 1. The results of the river's discharge and velocity measurement

The water quality in table 2 shows almost all parameter meet the standards class II for raw drinking water standard, unless total suspended solid (TSS), and the organic parameters; BOD, COD and organic permanganate exceed the standards, therefore that 4 parameters can be regarded as an important parameter. The excessive BOD and COD loads indicate the level of water pollution which could damage the quality of river water. It causes low DO (dissolved oxygen) concentration and unsuitable life conditions in the river. Water quality assessments generally use the Biochemical Oxygen Demand (BOD) which is one of the most widely used criteria because it delivers information about the fraction of the organic load which is ready biodegraded in water. Especially, it indicates as

IOP Conf. Series: Earth and Environmental Science **120** (2018) 012005 doi:10.1088/1755-1315/120/1/012005

the biodegradable fraction of an effluent as the ratio between BOD_5 and COD (chemical oxygen demand) in the water treatment plant [3].

			STANDARD	Mean	Mean	Mean	Mean
No	PARAMETE	Unit	Raw water	SL_H	SL_B	SL_X	SL_W
110	R R		Class II	Kp.Bula k	Landfil l Loc.	Jl.Alief	Jl.Sawanga n
Phisic	s Parameter						
1	Color	Pt-Co	50	5.0	5.0	4.7	5.0
2	Odor	-	-				
3	Taste	-	-				
4	Turbidity	NTU	25	15.5	20.0	15.4	14.6
5	Conductivity	μS/cm	-	107.0	195.4	168.4	137.2
Chem	istry Parameter						
6	pH	-	6,5 - 9,0	8.2	7.7	7.7	7.7
7	TDS	mg/L	1000	51.5	97.7	83.7	66.3
8	Organic Permanganat	mg/L KMnO4	10	91.7	58.4	86.5	103.2
9	CO_2	CO_2	-	0.0	0.0	0.0	0.0
10	Alkalinity	mg/L CaCO ₃	-	85.3	137.6	103.5	129.1
11	Hardness	mg/L CaCO ₃	500	136.0	117.3	174.7	130.7
12	Ca	mg/L Ca ²⁺	-	38.4	32.0	36.3	29.9
13	Mg	mg/L Mg ²⁺	-	9.5	9.1	20.4	13.6
14	Cl	mg/L Cl ⁻	600	10.5	36.0	54.1	14.0
15	Fe	mg/L Fe	1.00	0.6	0.4	0.4	0.5
16	Mn	mg/L Mn	0.50	0.0	0.1	0.0	3.0
17	Nitrat	mg/L NO ₃	10.0	0.1	0.1	0.1	0.2
18	Nitrit	mg/L NO ₂	1.00	0.1	0.1	0.1	0.2
19	Sulfat	mg/L SO4 ²⁻	400	29.1	31.8	28.8	30.6
20	TSS	mg/L	50	78.0	72.3	69.7	90.3
21	BOD	mg/L	3	78.1	65.3	87.2	54.9
22	COD	mg/L	25	111.6	93.7	133.5	170.0
Insitu	Parameter						
23	pН	-	6,5 - 9,0	7.6	6.7	6.7	6.7
24	DO	mg/L	4	6.9	6.2	4.8	5.4
25	Temperatur		-	27.0	25.3	27.4	26.6

It needs to detect a main or interaction effect significantly for each concentration of parameters among sampling locations. The probabilities from the kolmogorov-smirnov test (table 3) below are greater than 0.05 (the typical alpha level) except the DO (see table 3). They indicate that the data are multivariate normally distributed. The results of Levene's Test also show homogeneity of variance across samples (table 4). Because of their cause, the Manova is suitable to check differences mean significantly for each parameter among sampling locations.

IOP Conf. Series: Earth and Environmental Science 120 (2018) 012005 doi:10.1088/1755-1315/120/1/012005

		Organic permanganat (mg/L)	TSS (mg/L)	BOD (mg/L)	COD (mg/L)	DO (mg/L)
Ν		12	12	12	12	12
Normal	Mean	84.955	77.583	85.074	127.201	6.915
Parameters ^{a,b}	Std. Deviation	43.077	37.366	43.784	68.462	.438
Most Extreme	Absolute	.138	.132	.155	.164	.353
Differences	Positive	.130	.132	.105	.140	.353
	Negative	138	097	155	164	170
Test Statistic		.138	.132	.155	.164	.353
Asymp. Sig. (2-tailed)		.200 ^{c,d}	.200 ^{c,d}	.200 ^{c,d}	.200 ^{c,d}	.000 ^c

Table 3. The Kolmogorov-Sminorv Test for normality	Table 3. The	Kolmogorov-	Sminorv	Test for	normality
---	--------------	-------------	---------	----------	-----------

Table 4. Lavene's Test of homogeneity of varia	nce across samples
--	--------------------

	F	df1	df2	Sig.
BOD (mg/L)	3.358	3	8	.076
COD (mg/L)	4.538	3	8	.039
Organic permanganat (mg/L)	.741	3	8	.557
TSS (mg/L)	2.520	3	8	.132
DO (mg/L)	3.223	3	8	.082

Effect		Value	F	Hypo- thesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Obser- ved Power ^d
Intercept	Pillai's Trace	1.00	2881.63 ^b	5.0	4.0	0.00	1.000	14408.13	1.000
	Wilks' Lambda	.00	2881.63 ^b	5.0	4.0	0.00	1.000	14408.13	1.000
	Hotelling's Trace	3602.03	2881.63 ^b	5.0	4.0	0.00	1.000	14408.13	1.000
	Roy's Largest Root	3602.03	2881.63 ^b	5.0	4.0	0.00	1.000	14408.13	1.000
SL	Pillai's Trace	1.57	1.32	15.0	18.0	0.28	.524	19.83	.528
	Wilks' Lambda	.03	2.05	15.0	11.4	0.11	.699	26.55	.554
	Hotelling's Trace	16.69	2.97	15.0	8.0	0.06	.848	44.52	.690
	Roy's Largest Root	15.70	18.84 ^c	5.0	6.0	0.00	.940	94.19	.999

Table 5. The output of Manova Tes

a. Design: Intercept + SL

b. Exact statistic

c. The statistic is an upper bound on F that yields a lower bound on the significance level.

d. Computed using alpha = .05

Table 5 indicate that p > 0.0005, therefore, It accepts Hnull, that the means are equal for each response variable. It means there are not interaction effect of TSS and organic pollutant concentration (Organis Permanganate, BOD and COD) and sampling locations or differences of the concentration of parameters significantly among sampling location. This results describe that high concentrations of BOD and COD from leachate treatment plant from landfill are not the only cause significantly affect the quality of the pesanggrahan water. The BOD and COD concentration in LS before the landfill location showed a high value of 78.1 mg/L BOD and 111.6 mg/L COD. BOD mixture between BOD leachate and BOD river based on the mas balance principle is 78,5 mg/litre. Since the leachate discharge (0,35 litre/seconds) is not significant compared to the large river flow (3,7m/seconds). Pollution occurs not only because of the leachate, but the river has been contaminated with garbage in the upstream area. Besides when water sampling was conducted, there were many garbage on the river that also play a role in pollution water of Pesanggrahan River.

ICEPP 2017	IOP Publishing
IOP Conf. Series: Earth and Environmental Science 120 (2018) 012005	doi:10.1088/1755-1315/120/1/012005

Reaeration is the major source of oxygen supply for BOD assimilation in streams, and assuming a balance of other sources (of oxygen supply) and decline (for oxygen demand) [4] [5]. This manova result, which there are not significant differences between the upstream and downstream points, leads to conjecture an indication that there is no self-purification process or the incidence of pollutant loads along the Pesanggrahan River, and another contaminant besides treated leachate landfill.

To know the effect of BOD leachate load on Pesanggrahan River is need model for developing understanding of the dynamic behaviour BOD dan DO parameter in River. The Biological Oxygen Demand (BOD) parameter is generally used to indicate the level of waste water pollution. BOD is quantified using dissolved oxygen (DO) (in mg/L) as the common, but it is not a constituent. Instead, it is a surrogate considered to quantify the potential of oxygen consumption by bacteria to break down organic carbon in the water. [6]. Therefore the Biochemical Oxygen Demand (BOD) typifies more precisely water and the biodegradable organic quality of the hydro system. Determination of BOD concentration is significant to trace the pollution flow from the upper to lower reach in the river [7]

Effluent dischargers from leachate landfill is an important issue in river water quality management. It is considering the role played in the decision-making process and in the implementation of any proposed waste load allocation program in Depok and DKI Jakarta region therefore Environmental management need model to predict the fluctuations river water quality.

The population growth and their activities makes the threat solid waste and leachate that related with polluted water more and more serious. A proper water resources management is important because water is a transportation medium for many pathogens that can make health risk seriously. Consequently, it needs a tool to simulate the temporal and spatial progress of pollutant concentrations in the surface water. The water quality model supports to calculate the effectiveness of activities to prevent a selected the pollutant sources, not only in defining the necessities for meeting the water quality standards [8]

There are various water quality models which use reaeration as the major source of oxygen supply for BOD assimilation in streams, and assuming a balance of oxygen supply and decline (for oxygen demand) enthusiastically, which the rate of DO deficit expressed as dD/dt. Water quality data can be projected by modeling which were simulated to understanding of the dynamic behavior the BOD and DO concentration as an impact of solid waste landfill to pesanggrahan River as the equation (1) and (2) following :

$$\frac{dBOD}{dt} = A - k_1 . BOD(t) \dots (1)$$
[4]

 $\begin{array}{ll} BOD_{out}(t) & = the rate of BOD decrease (mg/litre /days) \\ k_1 & = deoxygenation coefficient (/days) \\ & BOD (t) & = BOD concentration at time t (mg/litre) \end{array}$

$$\frac{dDO}{dt} = k_r \left[DO_{sat} - DO(t) \right] - k_1 \cdot BOD(t) \dots (2)$$
[4]

Every model has its boundaries and advantages for detailed conditions. The data availability for the accurate model application as well as research goal are basic to choose the appropriate modelling approach [9]. It will proposed conceptual river water quality system dynamics model System dynamics modelling (SDM) is a computer-based method which is well balanced and sensible in the modern theory of non-linear dynamics and feedback control concept. [10]. This model starts with the development of a dynamic hypothesis which will build qualitative and quantitative model, generally mentioned as a Causal Loop Diagram (CLDs) (see figure 3), nonlinear systems and analyst the internal relation of systems [11]. The discrete concept of time is based upon the discrepancy between

IOP Conf. Series: Earth and Environmental Science 120 (2018) 012005 doi:10.1088/1755-1315/120/1/012005

time-points and fixed time intervals, while the continuous concept deals with changes over time, based on infinitesimal mathematics [12].

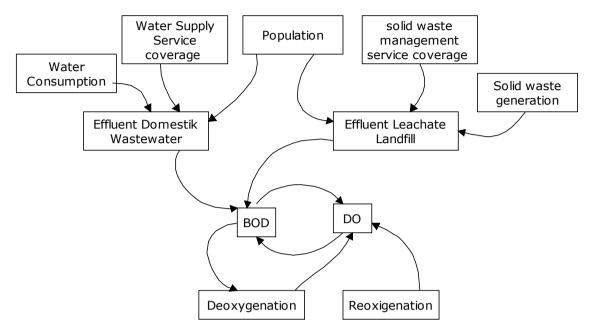


Figure 3. Causal Loop Diagram BOD and DO model.

The assumption of a river is made up by sequence of several reaches, according to scheme originally proposed by Thommann (1963), which the differential equations can be transformed into finite expressions [5]. To simplify the problem, it could be approached by developing a one-dimensional BOD-DO model with cross-sectional averaged and time-dependent assumption. The dynamic and quality terms are assumed to be constant over the entire cross section. It is only the longitudinal side is importance [5]. It is assumed sufficient because the river's lateral and vertical scale is much smaller than longitudinal ones [8]. The BOD and COD modeling can be disregarding some other aspects that can be pertinent to the problem of the approximating the river behavior. This assumption may be inconsistent with the natural behavior of the river and does not consider that pollutant concentration can vary within the length of each reach. Nevertheless, the approach of modelling can adopt for a first-glance estimation through considering the time effortlessly as a sequence of several steady state situation. It can simulate to describe any possibility how the pollutant behaves after being discharged in the stream

4. Conclusions

The high concentrations of TSS and Organic parameters occur not only because of the leachate, it also because the river has been contaminated by garbage in the upstream area. It needs the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources. The future study will build the BOD-DO system dynamics model. It should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

5. References

- S. P. T. P. B. M. J. S. M. J. &. K. V. T. S. 3. Gbanie, "Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): case study Bo, Southern Sierra Leone. Applied Geography," *Applied Geography*, vol. 36, pp. 3-12., 2013.
- [2] S. C. Chapra, Surface water-quality modeling, Singapore: Waveland press, 2008.

IOP Conf. Series: Earth and Environmental Science **120** (2018) 012005 doi:10.1088/1755-1315/120/1/012005

- [3] Jouanneau, S., et al, "Methods for assessing biochemical oxygen demand (BOD): A review," *Water research 49*, pp. 62-82, 2014.
- [4] M. a. J. J. W. Deaton, Dynamic modeling of environmental systems, Springer Science & Business Media, 2000.
- [5] M. a. G. T. Benedini, Water quality modelling for rivers and streams, Springer Science & Business Media, 2013.
- [6] C. H. L. W. S. L. S. W. &. L. C. F. Chen, "Technical challenges with BOD/DO modeling of rivers in Taiwan.," *Journal of Hydro-environment Research*, 6(1), pp. 3-8, 2012
- [7] G. N. T. &. F. S. Ajeagah, "Monitoring of organic load in a tropical urban river basin (Cameroon) by means of BOD and oxydability measurements," *Ecohydrology & Hydrobiology*, 10(1), pp. 71-80, 2010.
- [8] C. H. Y. H. L. &. M. X. I. E. XUE, "Development of integrated catchment and water quality model for urban rivers," *Journal of Hydrodynamics, Ser. B, 27(4),* pp. 593-603, 2015.
- [9] I. &. W. P. Keupers, "Development and testing of a fast conceptual river water quality model.," *Water Research 113*,, pp. 62-71, 2017.
- [10] J. Sterman, Business dynamics, system thinking and modeling for a complex world., Boston: McGraw-Hill, 2000.
- [11] Z. &. W. S. Chen, "Application of system dynamics to water security research.," *Water Resources Management 28* (2), pp. 287-300, 2014.
- [12] O. S. R. A. &. P. M. G. Sahin, "Water security through scarcity pricing and reverse osmosis: a system dynamics approach," *Journal of cleaner production*, 88, pp. 160-171, 2015.

Acknowledgment

The authors gratefully thanked to University of Indonesia as the sponsor for this research under the project of PITTA 2017 funding scheme.

Unit B, 6/F, Dragon Industrial Building, 93 King Lam Street, Lai Chi Kok, Kowloon, Hong Kong, Email: admin@cbees.org Tel: +852-3500-0137(HK), +86-28-86528465(CN Branch), +1-206-456-6022 (USA)

Notification of Acceptance of the ICEPP 2017

Singapore, December 14-16, 2017

http://www.icepp.org/

- Paper ID : P0044
- Paper Title : Identification important parameter from leachate solid waste landfill on water quality, case study of Pesanggrahan River

Dear Ramadhani Yanidar, Djoko Mulyo Hartono and Setyo Sarwanto Moersidik,

First of all, thank you for your concern. 2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017) review procedure has been finished. We are delighted to inform you that your manuscript has been accepted for presentation at 2017 5th International Conference on Environment Pollution and Prevention (ICEPP 2017), Singapore, 14-16 December, 2017. Your paper was tripling blind-reviewed and, based on the evaluations. The reviewers' comments are enclosed.

The conference received papers from about 12 different countries and regions during the submission period. And there are about 70 papers accepted by our reviewers who are the international experts from all over the world. The selected papers could be published in the international conference proceeding with high quality. According to the recommendations from reviewers and technical program committees, we are glad to infrom you that your paper identified above have been selected for publication and oral presentation. You are invited to present your paper and studies during our ICEPP conference that would be held on December 14-16, 2017.

The ICEPP 2017 is co-sponsored by Hong Kong Chemical, Biological & Environmental Engineering Society (HKCBEES).

IOP Conference Series: Earth and Environmental Science (EES)(ISSN: 1755-1315), which is indexed by EI Compendex, Scopus, Thomson Reuters (WoS), Inspec, et al.

(Important Steps for your registration): Please do finish all the 6 steps on time to guarantee the paper published in the proceeding successfully:

1. Revise your paper according to the Review Comments in the attachment carefully. (Five authors at most each paper)

Unit B, 6/F, Dragon Industrial Building, 93 King Lam Street, Lai Chi Kok, Kowloon, Hong Kong, Email: admin@cbees.org Tel: +852-3500-0137(HK), +86-28-86528465(CN Branch), +1-206-456-6022 (USA)

2. Format your paper according to the Template carefully. http://www.icepp.org/ExampleWordDocument.docx

3. Download and complete the Registration Form.

http://www.icepp.org/reg.doc (English)

4. Finish the payment of Registration fee by Credit Card. (The information can be found in the Registration form)

http://www.icepp.org/reg.doc (English)

5. Finish the Copyright Form www.icepp.org/ICEPP2017-copyright.pdf

6. Send your final papers (both .doc and .pdf format), filled registration form (.doc format), copyright form (.jpg format) and the scanned payment (in .jpg format) to us at icepp@cbees.net. (Before November 15, 2017) (Very important)

ICEPP 2017 will check the format of all the registered papers first, so the authors don't need to upload the paper to the system. After the registration, we will send all qualified papers to the publish house and index organization for publishing directly.

We are looking forward to meeting all the authors in our conference.But if you and your co-author(s) could not attend ICEPP 2017 to present your paper for some reasons, please inform us. And we will send you the official receipt of registration fee, journal and/or other materials after ICEPP 2017 free of charge.

Please strictly adhere to the format specified in the conference template while preparing your final paper. If you have any problem, please feel free to contact us via icepp@cbees.net. For the most updated information on the conference, please check the conference website at http://www.icepp.org/. The Conference Program will be available at the website in middle November, 2017.

Again, congratulations. I look forward to seeing you in Singapore.

Yours sincerely,

ICEPP 2017 Organizing Committees

http://www.icepp.org/ ICEPP

Unit B, 6/F, Dragon Industrial Building, 93 King Lam Street, Lai Chi Kok, Kowloon, Hong Kong , Email:admin@cbees.org Tel: +852-3500-0137(HK), +86-28-86528465(CN Branch), +1-206-456-6022 (USA)

Review Form of ICEPP 2017

http://www.icepp.org/

Paper ID : P0044

Paper Title : Identification important parameter from leachate solid waste landfill on water quality, case study of Pesanggrahan River

	The Evalue	tion of the nener				
		tion of the paper				
	The Tenie's Conformity	$\sqrt{-M}$ Match to the conference topic very well;				
	The Topic's Conformity	 Match to the conference topic fairly; Match to the conference topic poorly; 				
Торіс		$\sqrt{\Box}$ Sufficiently comprehensive and balanced				
	The Coverage of the Topic	□Important Information is missing or superficially treated				
		Certain parts significantly overstressed				
	Innovation	\Box Highly Innovate $\sqrt{\Box}$ Sufficiently Innovate				
		□Slightly Innovate □Not Novel				
	Integrality	□Poor □Fair √□Good □Outstanding				
	The "literary"	□Totally Accessible √□Mostly Accessible				
Contents	presentation	□Partially Accessible □Inaccessible				
		□Superficial □Suitable for the non-specialist				
	The technical depth	Appropriate for the generally knowledgeable individual				
	The teenheur depth	working in the field				
	□Suitable only for an expert					
Presentation	□Satisfactory √□Needs improvement □Poor					
& English	Usaustactory VillNeeds improvement ilPoor					
Overall	√⊡Satisfac	tory □Could be improved □Poor				
organization						
Recon	nmendation for Pub	olication& Detailed Suggestions				
	□Strongly Accept;	$\sqrt{\Box}$ Accept; \Box weakly Accept				
	Comments (Please prepare	the final version of the paper as per review instructions):				
	1. The paper matches the topic very well which is appropriate to publish in EES.					
	2. Readers can easily catch the theme of the paper through the clear and logic					
□Accepted	presentation of the abstract.					
(please chose one)	 Please delete all keywords in your paper as the template. You show figure 1 in page 2 and you show another figure 1 in page 3. Please check 					
		confusion, all figures appear one time with own name.				
	 5. Please enrich the content of Method to state it more in detail. 					
		your future study in conclusion part.				

Unit B, 6/F, Dragon Industrial Building, 93 King Lam Street, Lai Chi Kok, Kowloon, Hong Kong , Email:admin@cbees.org Tel: +852-3500-0137(HK), +86-28-86528465(CN Branch), +1-206-456-6022 (USA)

	□ Strongly Reject	🗆 Reject	weakly Reject			
□Rejected	\Box Paper is not of sufficient quality or novelty to be published in the Journal).					
(please chose	\Box A major rewrite is required, encourage resubmission.					
one)	\Box The topic of the paper does not matches to the conference topic, encourage to submit to another					
	conference: http://www.cbees.org/e	vents/)				