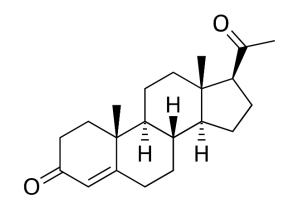
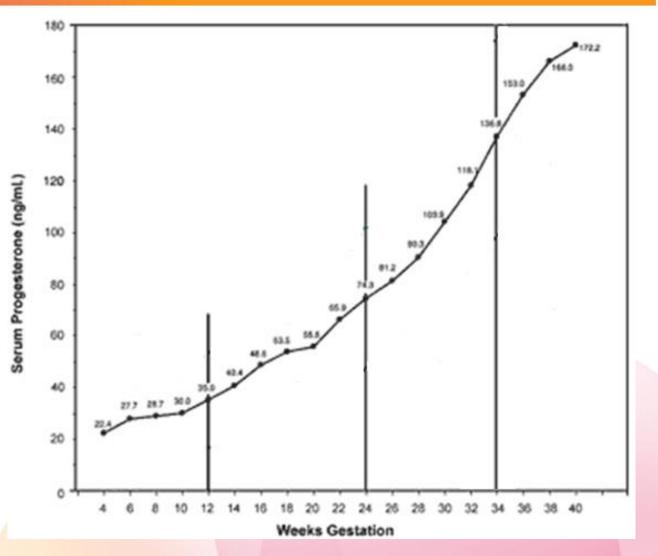
Vaginal Micronized Progesterone for Pregnancy Maintenance

dr. Hervi Wiranti, SpOG

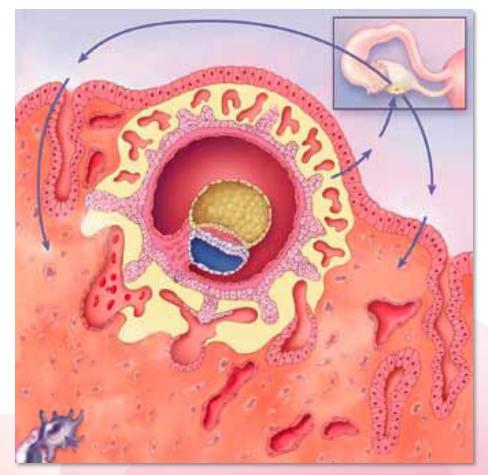

For Healthcare Professionals Only

Overview Progesterone in Pregnancy


For Healthcare Professionals Only

What is progesterone?

- Progesterone is an endogenous steroid hormone, produced by the adrenal cortex and the gonads (ovaries and testes)
- Secreted by the ovarian corpus luteum during the first ten weeks of pregnancy

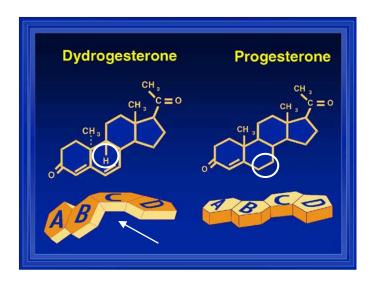

Low progesterone in early pregnancy is associated with threatened miscarriage

Ku et al. BMC Pregnancy and Childbirth 2018; 18(1): 360-366

Role of Physiological Progesterone

- Prepares endometrium for implantation
 - Promotes differentiation of endometrial stromal and epithelial cells → Endometrial differentiation & Uterus growth
 - Reduces physiological cell death occurring just before menstruation
- Maintains pregnancy
 - Modulates maternal immune responses
 - Reduces uterine contractility
 - Improves utero-placental circulation
 - Suppresses fetal inflammatory response

Characteristics of Micronized Progesterone vs Synthetic Progestins


Natural Micronized Progesterone (MP)

Exact chemical duplicate of the Progesterone produced by the human body ("bio- or body-identical")

≠

Synthetic analogues of Progesterone labeled *Progestogens* or *Progestins*

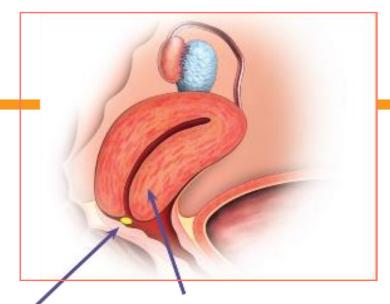
Different progestogens may differ in their hormonal activity depending on their structure

Micronized progesterone (Mic P4) has the same chemical formula and configuration as endogenous hormone produced by ovaries

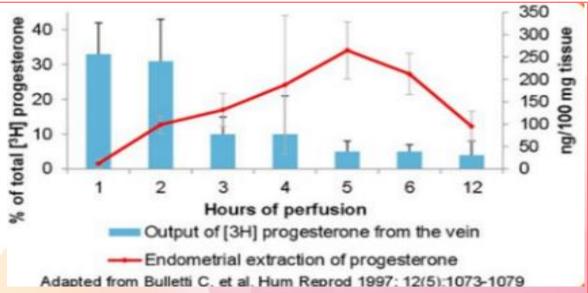
Dydrogesterone is chemically modified retroprogesterone*

«its hormonal pattern and metabolism differ largely from that of the natural P»

Retroprogesterone is characterized by a conspicuous change in the configuration of the steroid molecule.


1. Kuhl H. Endokrinol 2011; 8 (Sonderheft 1), 157-177.

Vaginal route of administration

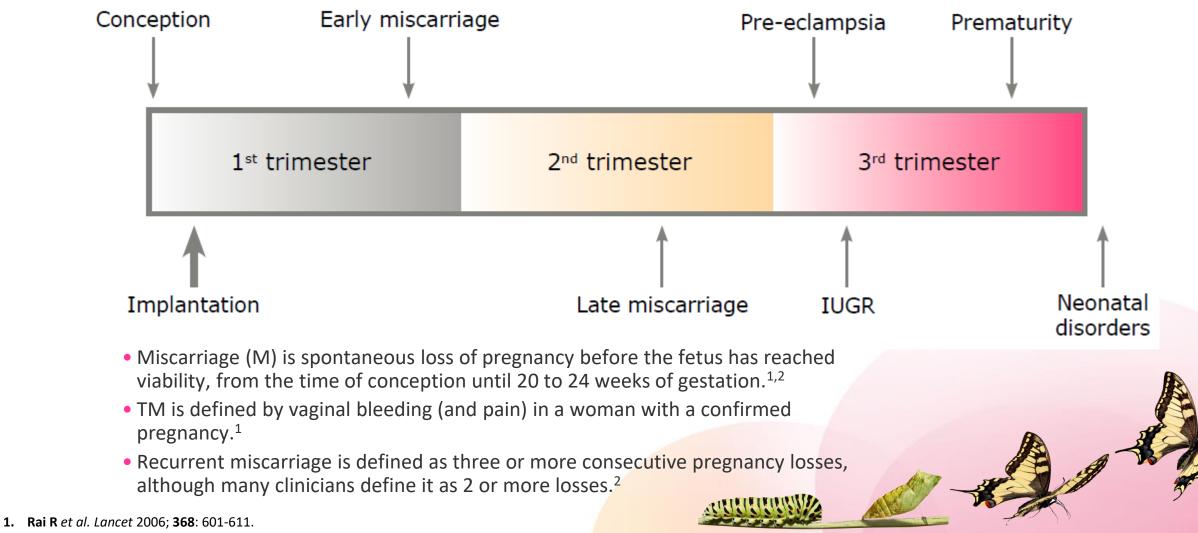

Different mechanisms can be advocated

- Direct diffusion through tissues: this "uterine first-pass effect" avoids first-pass liver metabolism with a potential for less stimulation of the liver proteins (*Bulletti et al*, 1997)
- Counter-current transfer between uterovaginal veins or lymph vessels and arteries (*Einer-Jensen et al*, 1993)
- Intraluminal passage from the vagina to the uterus (*Wildt et al,* 1998)
- Venous or lymphatic circulatory systems (*Magness et al,* 1983)

1. Cicinelli E, et al. *Hum Reprod Update* 1999; 5; 365–372 **2. Fanchin R**, *et al. Obstet Gynecol* 1997; **90**;396–401 **3. Cicinelli E**, *et al. Fertil Steril* 2000; 69, 471–3.

Vaginal application of progesterone Migration of progesterone through cervical tissue and lower segment of the uterus up to the fundus

t al. Obstet


USE OF EXOGENOUS PROGESTERONE (P4)

Pharmacokinetics data: vaginal route Plasma progesterone Progesterone concentrations in concentrations in steady state uterine tissue in steady state 80 12 70 protein 10 60 u 50 40 30 50 8 Pg/mg 6 4 20 2 ng 10 0 0 4x200 mg/d 2x50 mg/d 4x200 mg/d 2x50 mg/d Vaginal Pg Vaginal Pg IM Pq IM Pq

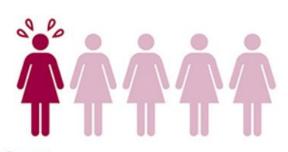
Indication for Progesterone in Pregnancy Maintenance

- Threaten and Recurrent Miscarriage
- Prevention of Preterm Birth

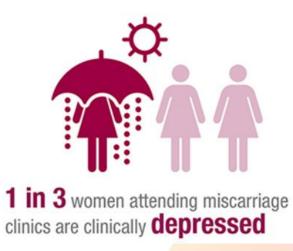
Why progesterone is so important during the all pregnancy?

Fo2. H Griebel CP et al. Am Fam Physician 2005 Oct 1; 72(7): 1243-1250.

Miscarriages



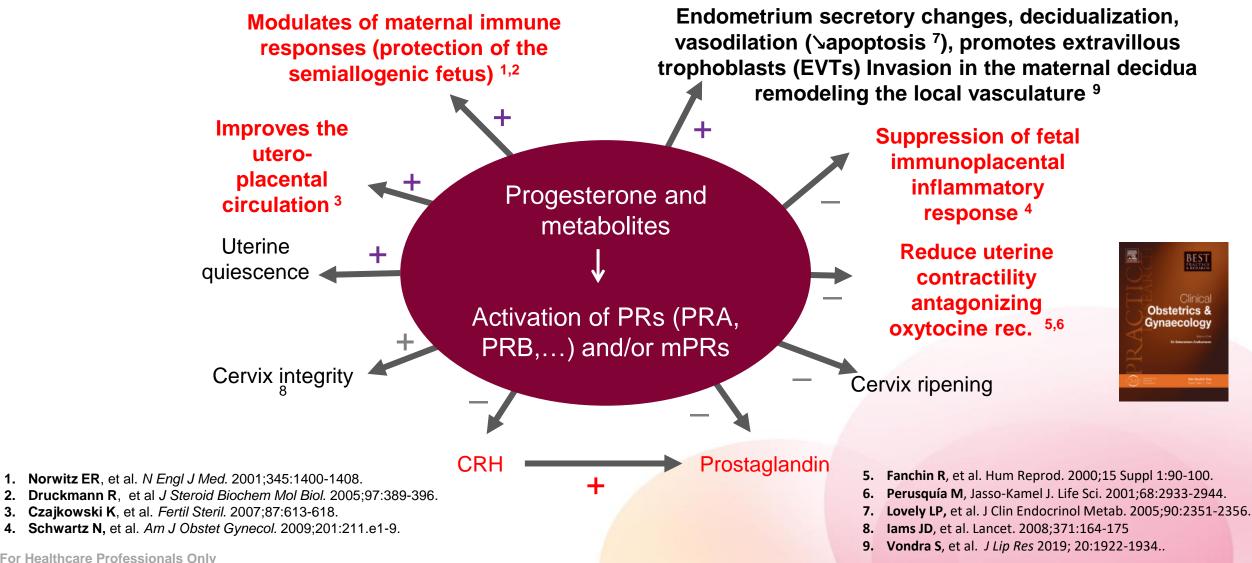
Miscarriage is the loss of pregnancy in the first 23 weeks


Around 1 in 6 pregnancies end in miscarriage

1/2 of early miscarriages have an underlying cause that could be prevented

1 in 5 women who miscarriage have **anxiety** levels similar to those seen in psychiatric outpatient services

Bleeding before 12 weeks can happen for about 20% of pregnant women.


Although women are often worried at the sight of blood, **it is not always a sign of a problem**.

However, bleeding in early pregnancy does increase the risk of miscarriage.

Progesterone has a unique pharmacodynamics profile for preventing miscarriage

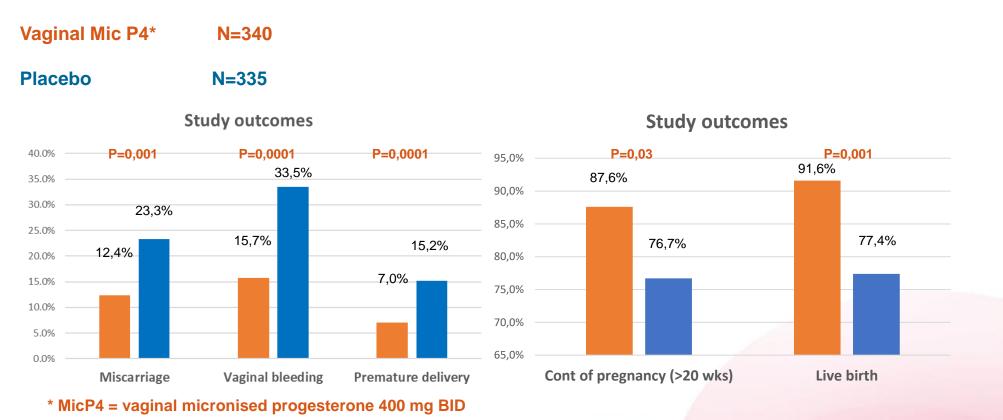
The pharmacodynamics and safety of progesterone Paul C.M. Piette, PharmD, Consultant

For Healthcare Professionals Only

Luteal start vaginal micronized progesterone improves pregnancy success in women with recurrent pregnancy loss

THE JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2017 http://dx.doi.org/10.1080/14767058.2017.1286315

ORIGINAL ARTICLE


Peri-conceptional progesterone treatment in women with unexplained recurrent miscarriage: a randomized double-blind placebo-controlled trial

Alaa M. Ismail, Ahmed M. Abbas, Mohammed K. Ali and Ahmed F. Amin

Department of Obstetrics and Gynecology, Women's Health Hospital, Assiut University, Assiut, Egypt

POPULATIONWomen with unexplained recurrent
miscarriagesINTERVENTION400 mg progesterone taken
daily, started in the luteal phase and
continued to 28 weeksCOMPARISONPlaceboOUTCOMESMiscarriage

Peri-conceptional progesterone treatment in women with unexplained recurrent miscarriage: a randomized double-blind placebo-controlled trial

Conclusion: Supplementation of vaginal micronized progesterone from the luteal phase and during

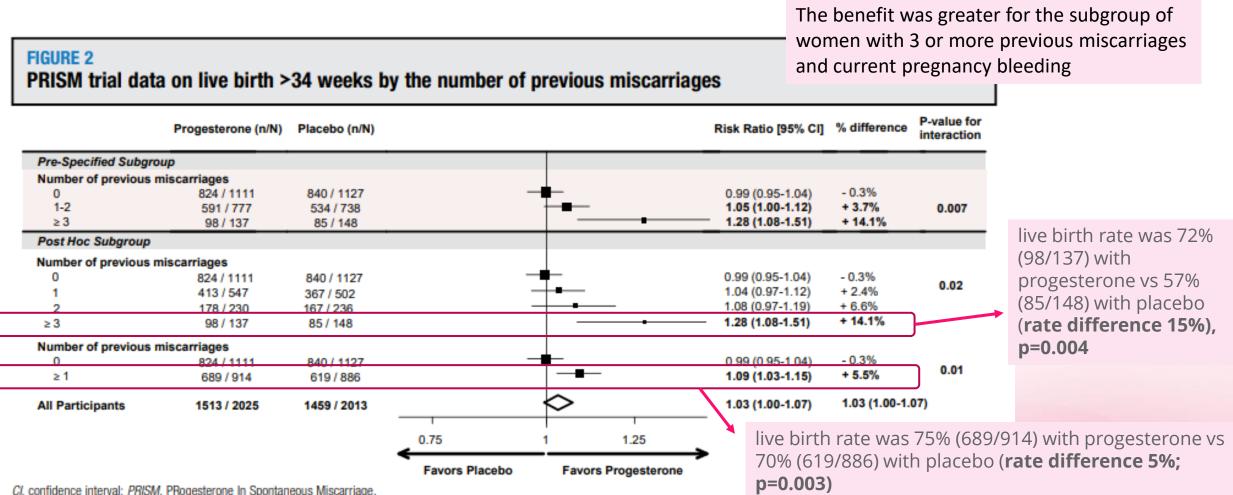
gestation significantly reduces the rate of miscarriages and increases the frequency of pregnancy in patients with recurrent miscarriage.

Latest update – based on findings in PROMISE & PRISM Trial

Expert Review

ajog.org

Micronized vaginal progesterone to prevent miscarriage: a critical evaluation of randomized evidence


Arri Coomarasamy, MD, MRCOG; Adam J. Devall, PhD; Jan J. Brosens, PhD; Siobhan Quenby, MD, FRCOG;
Mary D. Stephenson, MD; Sony Sierra, MD; Ole B. Christiansen, MD; Rachel Small, BSc; Jane Brewin, BSc;
Tracy E. Roberts, PhD; Rima Dhillon-Smith, PhD, MRCOG; Hoda Harb, PhD; Hannah Noordali, PhD;
Argyro Papadopoulou, BSc; Abey Eapen, PhD, MBBS; Matt Prior, MRCOG; Gian Carlo Di Renzo, MD;
Kim Hinshaw, MBBS, FRCOG; Ben W. Mol, MD, PhD; Mary Ann Lumsden, MD, FRCOG; Yacoub Khalaf, MD, FRCOG;
Andrew Shennan, MD, FRCOG; Mariette Goddijn, MD, PhD; Madelon van Wely, PhD; Maya Al-Memar, PhD, MRCOG;
Phil Bennett, PhD, FRCOG; Tom Bourne, PhD, FRCOG; Raj Rai, MD, MRCOG; Lesley Regan, MD, FRCOG;
Ioannis D. Gallos, MD, MRCOG

A key finding, first observed in the PROMISE trial, and then replicated in the PRISM trial, was that *treatment* with vaginal micronized progesterone 400 mg twice daily was associated with increasing live birth rates according to the number of previous miscarriages

Prespecified PRISM trial subgroup analysis in women with the dual risk factors of *previous miscarriage(s) and current pregnancy bleeding*

PRISM: Result of sub-analysis

CI, confidence interval; PRISM, PRogesterone In Spontaneous Miscarriage.

Coomarasamy et al. Micronized vaginal progesterone to prevent miscarriage: a critical evaluation of randomized evidence. Am J Obstet Gynecol 2020.

For Healthcare Professionals Only

Meta-analysis of all studies for the outcome of live birth or ongoing pregnancy

	Progeste	rone	Placebo or no treat			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Threatened miscarriage							
Akhtar 2012 (a)	16	30	11	30	0.3%	1.45 [0.82, 2.59]	
Alimohamadi 2013 (b)	47	72	47	73	1.5%	1.01 [0.80, 1.29]	2
Coomarasamy 2019 (c)	1513	2025	1459	2013	61.3%	1.03 [1.00, 1.07]	+=-
El-Zibdeh 2009 (d)	65	86	40	60	1.8%	1.13 [0.91, 1.41]	
Gerhard 1987 (b)	23	26	19	26	1.1%	1.21 [0.92, 1.59]	
Palagiano 2004 (e)	21	25	17	25	0.8%	1.24 [0.90, 1.70]	
Pandian 2009 (b)	78	96	64	95	2.9%	1.21 [1.02, 1.43]	······································
Turgal 2017 (f)	26	32	26	35	1.3%	1.09 [0.85, 1.41]	
Yassaee 2014 (b)	24	30	20	30	0.9%	1.20 [0.88, 1.64]	
Subtotal (95% CI)		2422		2387	71.8%	1.06 [1.01, 1.10]	\bullet
Total events	1813		1703				
Heterogeneity: Tau ² = 0.0	0; Chi ² = 8.1	16, df = 8	8 (P = 0.42); I ² = 2%				
Test for overall effect: Z =	2.62 (P = 0	.009)					
Recurrent miscarriage							
Coomarasamy 2015 (g)	262	398	271	428	8.2%	1.04 [0.94, 1.15]	
El-Zibdeh 2005 (d)	64	82	30	48	1.4%	1.25 [0.98, 1.60]	· · · · · · · · · · · · · · · · · · ·
Goldzieher 1964 (h)	18	23	26	31	1.2%	0.93 [0.72, 1.22]	
Klopper 1965 (i)	10	18	10	15	0.3%	0.83 [0.48, 1.44]	←
Kumar 2014 (e)	163	175	144	173	13.8%	1.12 [1.04, 1.21]	· · · · · · · · · · · · · · · · · · ·
Le Vine 1964 (j)	11	15	7	15	0.2%	1.57 [0.84, 2.92]	
MacDonald 1972 (e)	17	20	17	20	1.2%	1.00 [0.77, 1.30]	
Swyer 1953 (b)	47	60	39	53	1.9%	1.06 [0.86, 1.31]	
Subtotal (95% CI)		791		783	28.2%	1.08 [1.03, 1.14]	\bullet
Total events	592		544				
Heterogeneity: Tau ² = 0.0	0; Chi ² = 6.5	53, df = 7	7 (P = 0.48); l ² = 0%				
Test for overall effect: Z =							
Total (95% CI)		3213		3170	100.0%	1.06 [1.03, 1.09]	•
Total events	2405		2247				
Heterogeneity: Tau ² = 0.0	0; Chi ² = 15	.61, df =	16 (P = 0.48); I ² = 0%	D			
Test for overall effect: Z =			a manufactory with the state of the state				0.7 0.85 1 1.2 1.5
Test for subaroup differen			- 1 (D - 0 10) 12 - 00				Favors Placebo Favors Progesterone

Synthesis of external evidence: The studies were broadly consistent in showing a benefit on live birth or ongoing pregnancy rate from the firsttrimester use of progesterone or progestogens

Coomarasamy et al, *Am J Obstet Gynecol* 2020;223(2): 167 For Healthcare Professionals Only

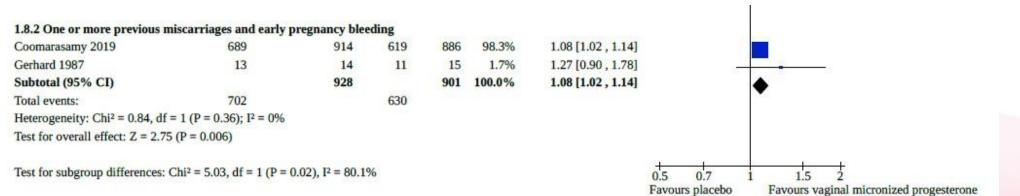
Drug Safety

The NEW ENGLAND JOURNAL of MEDICINE

Level 1 of evidence

- The use of micronized progesterone until 16th week of gestation at a dose of 800 mg / day confirmed its safety for mother, including obese women and for fetus
- The incidence of congenital anomalies was not different in the vaginal progesterone group and placebo
- No short-term safety concerns were identified from the PROMISE and PRISM trials. Therefore, women with a history of miscarriage who present with bleeding in early pregnancy may benefit from the use of vaginal micronized progesterone.

PROMISE					
	Progesterone	Placebo	RR (95% CI)		
Congenital abnormalities	8/266	11/276	0.75 (0.31, 1.85) p=0.54		
Coomarasamy et al, PROMISE trial N Engl J Med 2015;373:2141-2148					
	Progesterone	Placebo	RR (95% CI)		
Termination of pregnancy	34/2025	36/2013	0.94 (0.59, 1.50) p=0.81		
Congenital abnormalities	53/1574	51/1551	1.00 (0.69, 1.47) p=0.99		
	Coomarasamy et a N Engl J Med 2019 1824				


Cochrane: Vaginal micronized progesterone

Cochrane Database of Systematic Reviews

Progestogens for preventing miscarriage: a network meta-analysis (Review)

Devall AJ, Papadopoulou A, Podesek M, Haas DM, Price MJ, Coomarasamy A, Gallos ID

For women with one or more previous miscarriages and early pregnancy bleeding, vaginal micronized progesterone increases the live birth rate compared to placebo: RR 1.08, 95% CI 1.02 to 1.15, high-certainty evidence

NICE Guideline NG126: 24 November 2021

November 2021, 24th

BBC	0 5	gn in		Homa		News	Sp	ort	Real	Worklife	Travel
NEWS											
Home Cor	onavirus	Climate	Video	World	UK	Business	Tech	Science	Stories	Entertainme	nt & Arts
Health Co	ronavirus										

Progesterone recommended to prevent early miscarriage

By Thilp Maximudar Global health correspondent.

<

NICE National Institute for Health and Care Excellence

Ectopic pregnancy and miscarriage: diagnosis and initial management

NICE guideline Published: 17 April 2019 www.nice.org.uk/guidance/ng126

NICE guideline

1.5 Management of miscarriage

Threatened miscarriage

- 1.5.1 Advise a woman with a confirmed intrauterine pregnancy with a fetal heartbeat who presents with vaginal bleeding, but has no history of previous miscarriage, that:
 - if her bleeding gets worse, or persists beyond 14 days, she should return for further assessment
 - if the bleeding stops, she should start or continue routine antenatal care. [2012, amended 2021]

Offer vaginal micronised progesterone 400 mg twice daily to women with an intrauterine pregnancy confirmed by a scan, if they have vaginal bleeding and have previously had a miscarriage. **[2021]**

1.5.3

If a fetal heartbeat is confirmed, continue progesterone until 16 completed weeks of pregnancy. [2021]

In November 2021, this was an off-label use of vaginal micronised progesterone. See <u>NICE's information on prescribing medicines</u>.

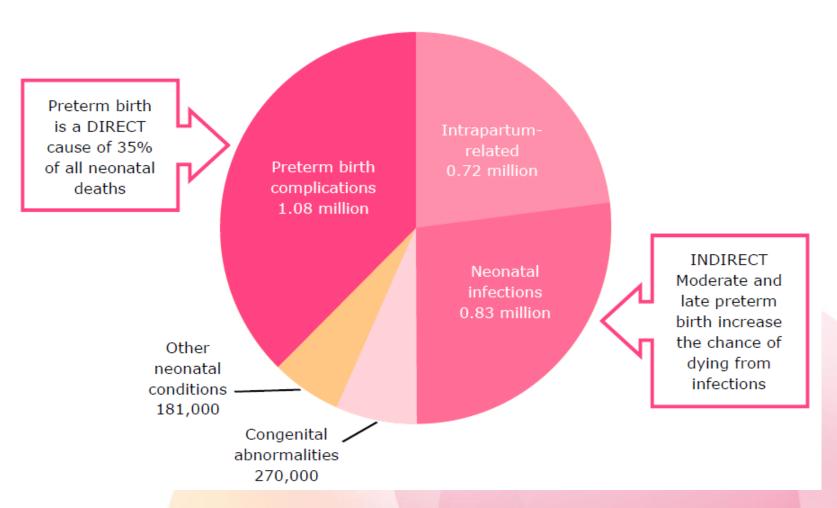
ESHRE Recommendation 2022 on Recurrent Pregnancy Lost

_	Vaginal progesterone may improve live birth rate in women with 3 or more pregnancy losses and vaginal blood loss in a subsequent	Conditional	⊕⊕⊕∎	Vaginal progesterone during early pregnancy may have UPDATED beneficial effects in women with unexplained RPL with (2022)
	pregnancy			vaginal bleeding. There is some evidence that oral dydrogesterone initiated when fetal heart action can be confirmed may be effective, but more trials are needed.
	Only vaginal micronized recommended for RPL	l is		Dydrogesterone is not recommended, more trials are needed to confirm the efficacy

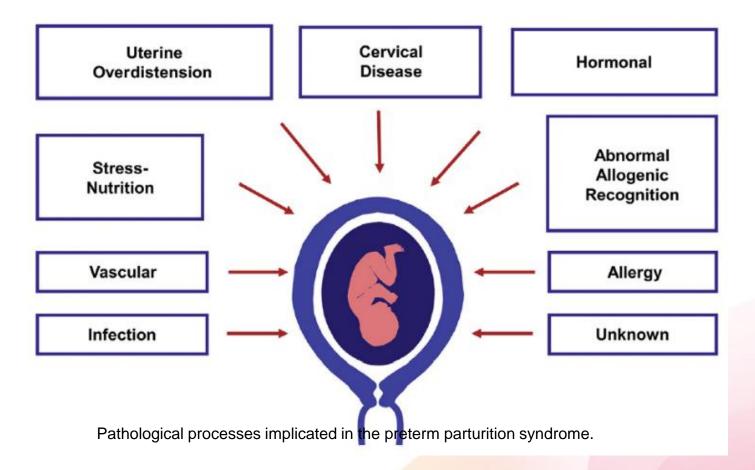
Why Dydrogestrogesterone is not recommended?

- EI-Zibdeh study does not meet standard criteria for valid RCT study (the treatments were not blinded, no placebo was given → introduce performance bias
- *Kumar study is retracted* > due to late inclusion of patients in the study
- Meta-analysis by Howard Carp is just combined analysis of EI-Zibdeh study & Kumar study + 1 very small non-RCT -> adds nothing to literature
- Other publication of Dydrogesterone for RPL: Haas 2019, Saccone 2017, are *flawed by the quality of* older included study

ESHRE Recurrent Pregnancy Loss Guideline Development Group. Recurrent Pregnancy Loss: Guideline of European Society of Human Reproduction and Embryology. 2022. <u>https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss</u>


Indication for Progesterone in Pregnancy Maintenance

- Threaten and Recurrent Miscarriage
- Prevention of Preterm Birth


Preterm Birth and Mortality

- Leading cause of child death in high- and middle income countries.¹
- Risk factor for neonatal and post-neonatal deaths in at least 50% of all neonatal deaths.²
- Economic costs of about \$5-6 billion annually in the United States.³

Liu L et al. , *Lancet* 2012; 379(9832):2151-2161.
 Lawn JE, et al. *Semin Perinatol* 2010; 34(6): 371–386.
 Challis JRG. *Obstet Gynecol Surv.* 2000;55(10):650-660.

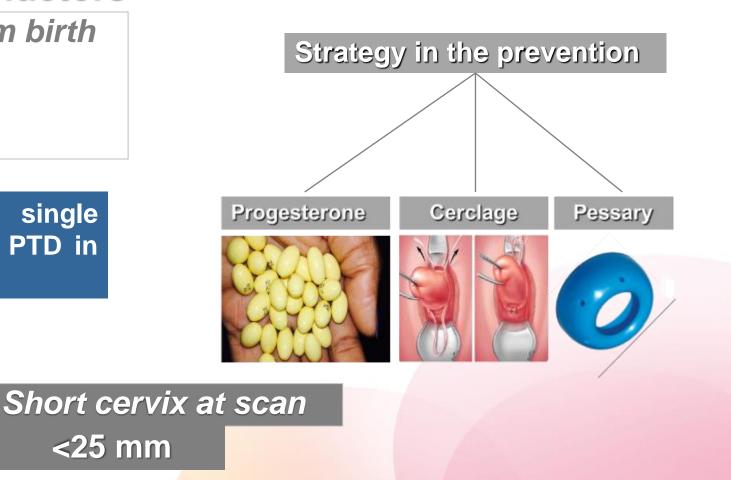
Preterm Parturition Syndrome

Romero R, Espinoza J, Mazor M, Chaiworapongsa T. The preterm parturition syndrome. In: Critchely H, Bennett P, Thornton S, editors. Preterm Birth. London: RCOG Press; 2004.

Challenges in preterm delivery prevention and management

<25 mm

Identification of risk factors


Prior history of preterm birth

Twin pregnancy

Short cervix at scan

TVS-cervical length is the single most powerful predictor for PTD in the index pregnancy.

Prevention of Preterm Birth

Women with history of preterm delivery Women with short cervical length on transvaginal sonography

Prophylactic use of progesterone

Incidence of preterm delivery significantly reduced

For Healthcare Professionals Only

Effect of vaginal progesterone on preterm birth ≤ 33 weeks of gestation

Reports of Major Impact

Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: a meta-analysis of individual patient data

Roberto Romero, MD, DMedSci; Agustin Conde-Agudelo, MD, MPH, PhD; Eduardo Da Fonseca, MD; John M. O'Brie Elcin Cetingoz, MD; George W. Creasy, MD; Sonia S. Hassan, MD; Kypros H. Nicolaides, MD

Meta-analysis of 5 RCTs

to determine whether vaginal progesterone prevents preterm birth and improves perinatal outcomes in asymptomatic women with a singleton gestation and a midtrimester sonographic short cervix (≤ 25 mm) TABLE 2 Studies in

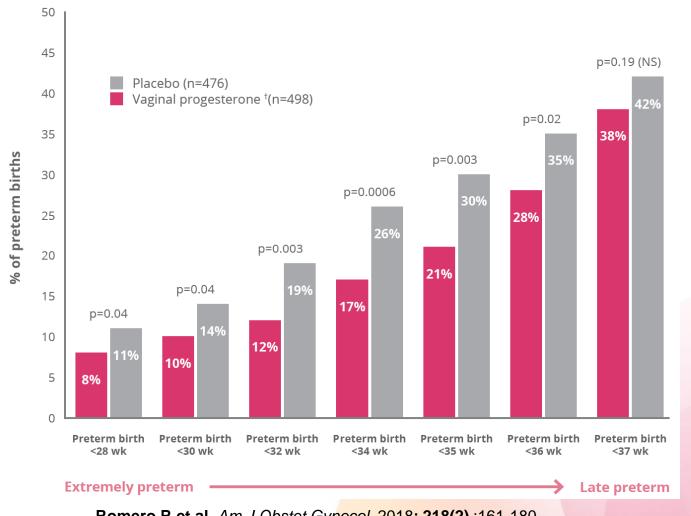
Total: 97

Studies included in the meta-analysis of individual patient data

Study	Trial enrollment	Participants randomly assigned in original trial	Participants eligible for IPDMA	Treatment groups	Compliance \geq 80%
Fonseca et al, ⁶⁹ 2007	8 Centers in United Kingdom, Chile, Brazil, and Greece	250 with singleton or twin gestation and cervical length \leq 15 mm	226	Vaginal progesterone 200 mg/d or placebo from 24–33 6/7 wk of gestation	92% for vaginal progesterone group and 94% for placebo group
D'Brien et al, ⁷⁰ 2007	53 Centers in United States, South Africa, India, Czech Republic, Chile, and El Salvador	659 with singleton gestation and previous spontaneous preterm birth	31	Vaginal progesterone 90 mg/d or placebo from 18–22 to 37 0/7 wk of gestation, rupture of membranes or preterm delivery, whichever occurred first	100% for vaginal progesterone group and 95% for placebo group
Cetingoz et al, ⁷¹ 2011	Single Center in Turkey	160 with twin gestation, or singleton gestation with previous spontaneous preterm birth, or uterine malformation	8	Vaginal progesterone suppository 100 mg/d or placebo from 24–34 wk of gestation	100% for both study groups
Hassan et al, ⁷² 2011	44 Centers in United States, Belarus, Chile, Czech Republic, India, Israel, Italy, Russia, South Africa, and Ukraine	465 with singleton gestation and cervical length between 10—20 mm	458	Vaginal progesterone 90 mg/d or placebo from 20–23 6/7 to 36 6/7 wk of gestation, rupture of membranes or preterm delivery, whichever occurred first	89% for vaginal progesterone group and 93% for placebo group
Norman et al, ⁵⁴ 2016	66 Centers in United Kingdom and Sweden	1228 with singleton gestation and previous spontaneous preterm birth, or cervical length ≤25 mm, or positive fetal fibronectin test combined with other clinical risk factors for preterm birth	251	Vaginal progesterone 200 mg/d or placebo from 22—24 to 34 wk of gestation or preterm delivery, whichever occurred first	63% for vaginal progesterone group and 69% for placebo group

Romero R et al. Am J Obstet Gynecol. 2018; 218(2) :161-180.

Romero et al. Vaginal progesterone to prevent preterm birth in singleton gestations with a short cervix. Am J Obstet Gynecol 2018.

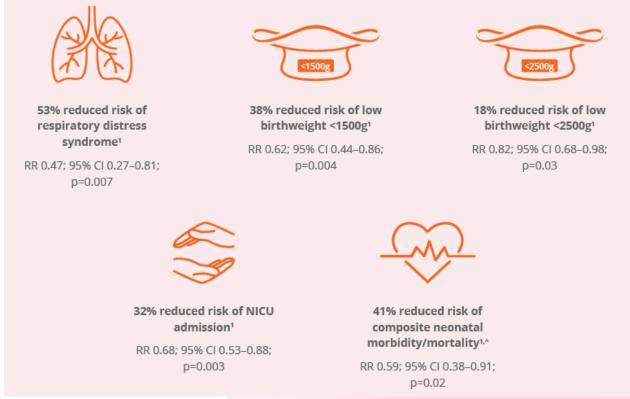

Effect of vaginal progesterone on preterm birth ≤ 33 weeks of gestation

Study	Relative risk (fixed) (95% Cl)	Vaginal progesterone⁺n/	Placebo 'N n/N	Weight (%)	Relative risk (95% Cl)
Fonseca 2007		19/114	31/112	28.5	0.60 (0.36-1.00)
O'Brien 2007		1/12	4/19	2.8	0.40 (0.05-3.13)
Hassan 2011		21/235	36/223	33.6	0.55 (0.33-0.92)
Cetingoz 2011		→ 0/4	1/4	1.4	0.33 (0.02-6.37)
Norman 2016		29/133	35/118	33.7	0.74 (0.48-1.12)
Combined	•	70/498	107/476	100.0	0.62 (0.47-0.81)
	avours vaginal progesterone	3 5			p=0.0006

CONCLUSION: Vaginal progesterone administration to asymptomatic women with singleton gestation and a sonographic short cervix decreases the risk of preterm birth \leq 33 weeks of gestation, and improves perinatal outcomes, without any demonstrable deleterious effects on childhood neurodevelopment.

Romero R et al. Am J Obstet Gynecol. 2018; 218(2) :161-180.

Vaginal Progesterone's Effect from Extremely Preterm To Late Preterm


For Healthcare Professionals Only

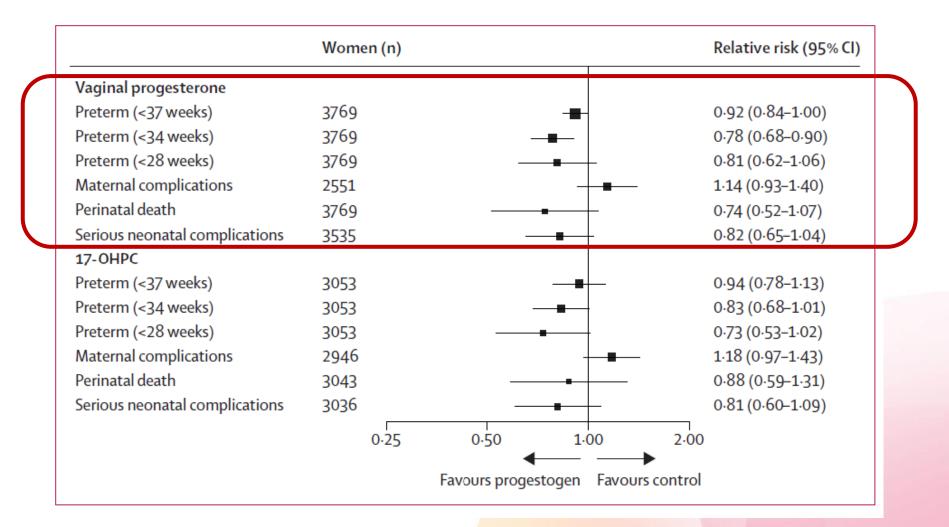
Romero R et al. Am J Obstet Gynecol. 2018; 218(2) :161-180.

Effect of vaginal progesterone on adverse perinatal and neurodevelopmental outcomes

Treatment with vaginal progesterone was also associated with a significant reduction in the risk of

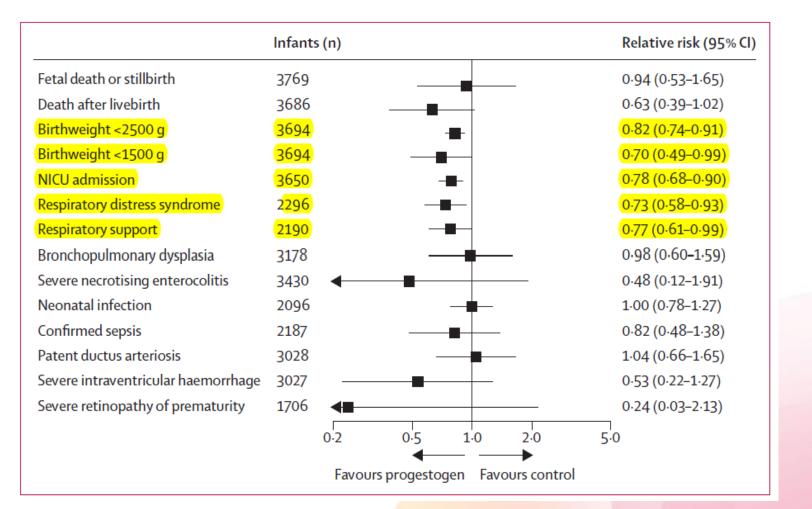
- RDS,
- composite neonatal morbidity and mortality,
- birthweight <1500 and <2500 g, and
- admission to the NICU (RRs from 0.47 to 0.82; I2 = 0 for all; high-quality evidence for all).
- The frequency of neonatal death was 1.4% (7/498) in the vaginal progesterone group and 3.2% (15/476) in the placebo group.

Latest study of vaginal progesterone & preterm birth : meta-analysis of Individual Patient Data

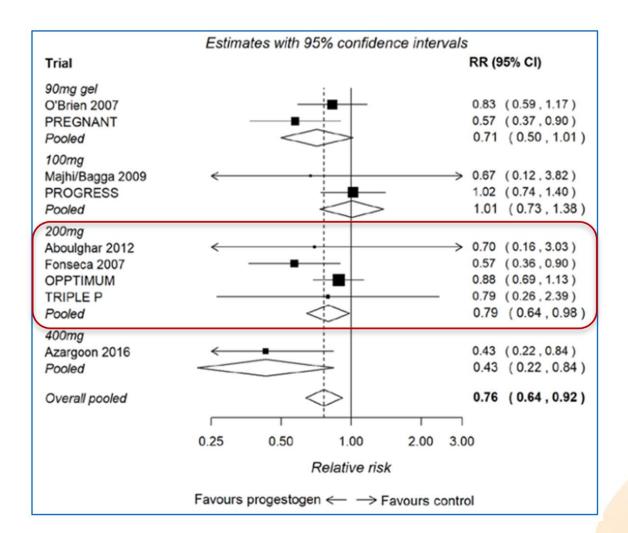

Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials

The EPPPIC Group*

Interpretation Vaginal progesterone and 17-OHPC both reduced birth before 34 weeks' gestation in high-risk singleton pregnancies. Given increased underlying risk, absolute risk reduction is greater for women with a short cervix, hence treatment might be most useful for these women. Evidence for oral progesterone is insufficient to support its use. Shared decision making with woman with high-risk singleton pregnancies should discuss an individual's risk, potential benefits, harms and practicalities of intervention. Treatment of unselected multifetal pregnancies with a progestogen is not supported by the evidence.


> **The EPPPIC Group**. Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): metaanalysis of individual participant data from randomised controlled trials. **Lancet 2021; 397: 1183–94.**

Main outcomes of prevention of preterm birth for vaginal progesterone in singleton pregnancies



The EPPPIC Group. Lancet 2021; 397: 1183–94.

Safety outcome of prevention of preterm birth for vaginal progesterone in singleton pregnancies

Comparison of Different Vaginal Progesterone Preparations

 Subgroup analysis by planned vaginal progesterone dose in singleton pregnancies, preterm birth before 34 weeks show significant reduced risk with 200mg with 4 supportive trials compared to only one for 400mg and two with 90mg gel or 100mg which crossed the line of no effect.

Guideline Recommendations

- Asymptomatic women with a sonographically short cervix (≤25 mm) regardless of their obstetrical history should be offered vaginal progesterone treatment for the prevention of preterm birth and neonatal morbidity.
- Although there is a clear benefit on neonatal outcome, more RCTs are needed before recommending vaginal P4 in twins pregnant women with a sonographically short cervix
- SMFM continues to affirm the use of vaginal progesterone to prevent PTB in women with a sonographically short cervix of 20 mm without a history of a prior spontaneous PTB

EUROPEAN ASSOCIATION OF

PERINATAL MEDICINE

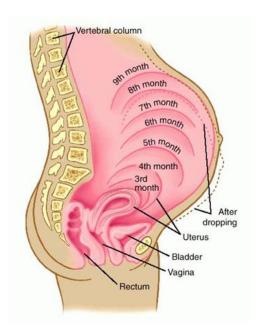
Medicine

Guideline Recommendations

 Women at high risk of preterm birth (either a previous spontaneous preterm birth and/or sonographic short cervix) with a singleton gestation should be offered daily vaginal progesterone or weekly 17-OHPC treatment to prevent preterm birth.

Consider prophylactic **vaginal progesterone** for women who have either:

- a history of spontaneous preterm birth (up to 34+0 weeks of pregnancy) or mid-trimester loss (from 16+0 weeks of pregnancy onwards) or
- results from a transvaginal ultrasound scan carried out between 16+0 and 24+0 weeks of pregnancy that show a cervical length of 25 mm or less.



Shennan A, Suff N, Leigh Simpson J, Jacobsson B, Mol BW, Grobman WA; the FIGO Working Group for Preterm Birth. FIGO good practice recommendations on progestogens for prevention of preterm delivery. Int J Gynecol Obstet. 2021;155:16–18. <u>https://doi.org/10.1002/ijgo.13852</u> National Institute for Health and Care Excellence. Preterm labour and birth. 2015. (last updated 2-Aug-2019)Available at: https://www.nice.org.uk

Other effects of progesterone

- Effect
- on uterine
- contractility

 Allopregnanolone (5α pregnane 3 α ol 20 one)
 = neuroactive steroid

Neuroprotection of fetal brain?

- Modulates GABAergic
 inbibition
- Control balance fetal

behaviour

- Protection of fetal brain
 - from
 - hypoxia
 - <u>- isch</u>emia
- (Hirst JJ et al J Ster Biochem 2014)

Why should vaginal progesterone be the treatment of choice?

- First uterine pass effect: high local uterine concentration with targeted action (available where it is needed) ¹⁻³
- Induces optimal endometrial late secretory transformation (in phase endometrium)⁴
- **Optimal bioavailability** with stable (versus IM or sub cut) and higher plasmatic levels at steady state compared to oral route
- Convenient and user-friendly (easy to administrate and provide a scope of self administration) ⁵
- Supported by clinical evidence of high live birth rates ⁶
- Avoidance of first liver and fast pass metabolism with no side effect or irritation at gastrointestinal tract.⁷

Vaginal micronized progesterone capsules PharmTec

> International Journal of PharmTech Research CODEN (USA): UPRIF ISSN : 0974-4304 Vol. 3, No.3, pp 1033-1044, April-June 2011

A Review on Novelty and Potentiality of Vaginal Drug Delivery

Ananta Choudhury*, Sujoy Das, Mousumi Kar

1. Devroey P, et al. Int J Fertil 1989; **34**: 188-193 2. **Tavaniotou A**, et al. Hum Reprod Update 2000; **6**: 139-148 3. **Cicinelli E**, et al. Obstet Gynecol 2000; **95**: 403–406 4. **Bourgain C**, et al. Human Reprod 1990 **5**: 537-543 5. **Bergh C**, et al. Hum Reprod 2012; **27**: 3467-76 6. **van der Linden MA**, et al. Cochrane Database Syst Rev 2015;7:CD009154 7. **Choudhury A**, et al. Int J Pharmtech Res 2011; 3(2): 1033-1044

Originator/Innovator product vs copy product

	Originator/Innovator product	Copy product
Authorization	A pharmaceutical product, which was first authorized for marketing (normally as a patented product) with complete evaluation of clinical non- clinical data	A pharmaceutical product, usually intended to be interchangeable with the innovator product, marketed after expiry of the patent or other exclusivity rights
Authorization base	Use clinical and non-clinical studies of the said product to get approval	Use innovator product as standard comparator to get approval
Study & clinical experience	supported by many years of evidence from RCTs and extensive clinical experience in different regions of the world	Usually no RCT, and short clinical experience
	No bioequivalence study required, since it has been supported by clinical studies	Need bioequivalence study as copy product to ensure the quality
Market	Marketed worldwide	Marketed in certain country only
Shelf life	Long shelf-life	Newly approved copy product has shorter shelf life

Conclusion

Progesterone for Pregnancy Maintenance

- Efficiency: YES
- Safety for mother: YES
 - Side effects
 - Absence of influence on hemostasis
 - Metabolic neutrality
- Safety for a fetus: YES