Penggunaan data seismik untuk upaya eksplorasi hidrokarbon pada dua dekade terakhir, telah menunjukkan perkembangan yang pesat. Kemajuan teknologi digital, telah mendorong kemajuan teknik komputasi numerik amplitudo sinyal seismik. Sehingga, data seismik tidak hanya digunakan untuk kepentingan pemodelan geometri struktur saja, namun dipakai pula untuk mengkarakterisasi reservoir.

Hal ini penting untuk dicatat, bahwa kemajuan ini perlu dipahami oleh para mahasiswa geologi, yang kelak akan mendalami suatu obyek reservoir hidrokarbon. Tidak berlebihan, jika dikatakan bahwa interpreter perlu pengetahuan yang cukup mengenai teknik rekayasa amplitudo sinyal seismik, serta perlu bekal yang cukup di dalam memasuki area irisan disiplin ilmu geologi, geofisika dan reservoir.

Buku ajar ini dirancang sesuai kebutuhan dari mahasiswa geologi dalam memahami karakter gelombang seismik, manakala merambat pada suatu medium, yang mana memberikan gambaran tentang keadaan reservoir, sehingga bisa melakukan evaluasi terhadap kemungkinan prospek dan resikonya. \$

PEMODELAN SEISMIK

Dr.Ir. Imam Setiaji Ronoatmojo, M.T. Dr.Ir. Muhammad Burhannudinnur, M.Sc

PEMODELAN SEISMIK

PEMODELAN SEISMIK

Hak Cipta dilindungi oleh Undang-Undang

Dilarang mengutip atau memperbanyak sebagian maupun keseluruhan isi buku ini dalam bentuk apapun, tanpa izin tertulis dari penerbit.

:	Pemodelan Seismik
:	Dr. Ir. Imam Setiaji Ronoatmojo, M.T
	Dr. Ir. Muhammad Burhannudinnur, M.Sc
:	Penerbit Universitas Trisakti, Jakarta
:	Agustus 2022
:	
	::

Sanksi Pelanggaran :

Pasal 72 Undang-Undang No. 19 Tahun 2002 Tentang Hak Cipta

- Barang siapa dengan sengaja dan tanpa hak melakukan perbuatan sebagaimana dimaksud dalam Pasal 2 ayat (1) atau Pasal 49 ayat (1) dan ayat (2) dipidana dengan pidana penjara masing-masing paling singkat 1 (satu) bulan dan atau denda paling sedikit Rp 1.000.000,- (satu juta rupiah) atau penjara paling lama 7 (tujuh) tahun dan atau denda paling banyak Rp. 5.000.000.000,- (lima miliar rupiah).
- 2. Barang siapa dengan sengaja menyiarkan, memamerkan, mengedarkan atau menjual kepada umum suatu ciptaan atau barang hasil pelanggaran Hak Cipta atau Hak terkait sebagaimana dimaksud dalam ayat (1), dipidana penjara paling lama 5 (lima) tahun dan atau denda paling banyak Rp 500.000.000,- (lima ratus juta rupiah).

Dr. Ir. Imam Setiaji Ronoatmojo, M.T Dr.Ir. Muhammad Burhannudinnur, M.Sc

PEMODELAN SEISMIK

Pemodelan Seismik

Dr. Ir. Imam Setiaji Ronoatmojo, MT Dr. Ir. Muhammad Burhannudinnur, M.Sc

Penerbit Universitas Trisakti Jl. Kyai Tapa No. 1 Grogol, Jakarta 11440

Cetakan Pertama

Perpustakaan Nasional : Katalog Dalam Terbitan (KDT)

Dr. Ir. Imam Setiaji Ronoatmojo, MT

Pemodelan Seismik / Dr. Ir. Imam Setiaji Ronoatmojo, Dr. Ir. Muhammad Burhannudinnur, M.Sc -- ed. rev. -- Jakarta : Penerbit Universitas Trisakti, xxxvi, 320 hlm. ; 15,5 x 23 cm

ISBN

1. Pemodelan Seismik. I. Judul. II.

268

PRAKATA

Penggunaan data seismik untuk upaya eksplorasi hidrokarbon pada dua dekade terakhir, telah menunjukkan perkembangan yang pesat. Kemajuan teknologi digital, telah mendorong kemajuan teknik komputasi numerik amplitudo sinyal seismik. Sehingga, data seismik tidak hanya digunakan untuk kepentingan pemodelan geometri struktur saja, namun dipakai pula untuk mengkarakterisasi reservoir. Hal ini penting untuk dicatat, bahwa kemajuan ini perlu dipahami oleh para mahasiswa geologi, yang kelak akan mendalami suatu obyek reservoir hidrokarbon. Tidak berlebihan, jika dikatakan bahwa interpreter perlu pengetahuan yang cukup mengenai teknik rekayasa amplitudo sinyal seismik, serta perlu bekal yang cukup di dalam memasuki area irisan disiplin ilmu geologi, geofisika dan reservoir.

Buku ajar ini dirancang sesuai kebutuhan dari mahasiswa geologi dalam memahami karakter gelombang seismik, manakala merambat pada suatu medium, yang mana memberikan gambaran tentang keadaan reservoir, sehingga bisa melakukan evaluasi terhadap kemungkinan prospek dan resikonya.

Sasaran utama dari buku ajar ini adalah para mahasiswa yang berminat pada pemelajaran potensi reservoir hidrokarbon. Oleh karena buku ajar ini juga memuat contoh-contoh nyata dari dunia industri, maka buku ajar ini juga bisa digunakan sebagai sarana berbagi ilmu yang bermanfaaf.

Adapun sebagai prasyarat untuk bisa memahami materi dalam buku ini adalah dasar-dasar ilmu geofisika eksplorasi yang telah diberikan pada semester sebelumnya. Alangkah baiknya pula, materi pemodelan geostatistik perlu dibuka kembali, agar materi yang akan disampaikan bisa dielaborasi dengan lebih baik.

Buku ajar ini akan mencakup materi mulai dari konsep dasar pemodelan geofisika reservoir, perambatan gelombang seismik, wavelet sebagai miniatur gelombang seismik, konsep dasar tpencocokan data sumur-seismik, peristiwa di bidang batas perlapisan, pesamaan pada bidang batas perlapisan beserta pengubahan model fluida reservoir Biot-Gassman, isu kendala pemrosesan data seismik pada saat pemodelan data seismik, konsep pemodelan AVO dari data sumur beserta dengan klas-klas AVO, analisis atribut AVO dari data seismik, pemodelan impedansi akustik dari data sumur, analisis atribut pemodelan inversi data seismik, integrasi pemodelan AVO dan inversi data seismik, serta konsep multiatribut.

Pemelajaran materi seismik reservoir akan efektif, jika contoh-contoh yang dibahas dalam buku ini, bisa disampaikan dengan metode collaborative learning, dimana mahasiswa diajak aktif untuk mengintegrasikan setiap materi dengan local wisdom sebagai seorang geologist, meskipun sedang memelajari data seismik.

Buku pendamping yang bermanfaat dalam memelajari materi yang ada dalam buku ini adalah buku karya penulis berjudul Pengantar Seismologi Eksplorasi (Penerbit Salemba Teknika, tahun 2021, ISBN: 978-979-9549-57-0). Buku tersebut dapat digunakan untuk membantu mahasiswa, apabila mahasiswa butuh penjelasan lebih lanjut tentang dasar-dasar akuisisi data seismik dan pengolahan data seismik, sehingga aspekaspek terkait dengan data seismik dapat diketahui lebih mendalam.

Akhirnya, dengan mengucap syukur ke hadirat Allah swt, semoga buku ajar ini bisa bermanfaat untuk mendukung kegiatan

pembelajaran siswa. Tak lupa, ucapan terimakasih disampaikan kepada Lembaga Penelitian Universitas Trisakti yang telah memfasilitasi dana hibah penulisan buku ajar ini, demikian pula kepada pihak Fakultas Teknologi Kebumian dan Energi (FTKE) Universitas Trisakti beserta jajaran DRPMF FTKE Universitas Trisakti.

Jakarta, 10 Januari 2022

Dr.Ir. Imam Setiaji Ronoatmojo, MT Dr.Ir. Muhammad Burhannudinnur, M.Sc

DAFTAR ISI

PRAKA	ΓΑ		V
DAFTAR	ISI .		ix
DAFTAR	GA	MBAR DAN SUMBERNYA	xiii
DAFTAR	TAE	BEL	xxxv
BAB I	KOI	NSEP DASAR	1
	Α.	Filosofi	1
	В.	Data Seismik	7
	C.	Data Sumur	14
	RAN	IGKUMAN	23
	UJI (CAPAIAN PEMBELAJARAN	23
	BA⊦	IAN DISKUSI	23
	PUS	ТАКА	23
BAB II	PEN	IODELAN DATA SEISMIK SINTETIK	
	Α.	Model Konvolusi, Wavelet dan Polaritas	25
	Β.	Sifat Elastisitas	
	C.	Reflektivitas Offset	39
	RAN	IGKUMAN	
	UJI (CAPAIAN PEMBELAJARAN	
	BA⊦	IAN DISKUSI	
	PUS	ТАКА	
BAB III	WA	VELET	
	Α.	Fase	
	Β.	Wavelet Fase Nol dan Fase Minimum	54
	C.	Kompensasi Q	57
	D.	Wavelet Ideal	61
	E.	Pemrosesan Wavelet	62
	F.	Resolusi	67

	RAN	NGKUMAN	79
	UJI	CAPAIAN PEMBELAJARAN	80
	BAł	HAN DISKUSI	80
	PUS	ТАКА	80
BAB IV	PEN	ICOCOKAN DATA SUMUR KE DATA SEISMIK	83
	Α.	Konversi Kedalaman ke Waktu	83
	Β.	Peranan Data VSP	91
	C.	Pengikatan Data Sumur	97
	D.	Problem Pengikatan	109
	RAN	NGKUMAN	119
	UJI	CAPAIAN PEMBELAJARAN	120
	BAł	HAN DISKUSI	120
	PUS	ТАКА	121
BAB V	AV	O DAN SIFAT FISIK	123
	Α.	Tanggapan AVO	123
	Β.	Kontrol Sifat Fisik	129
	RAN	NGKUMAN	167
	UJI	CAPAIAN PEMBELAJARAN	168
	BAł	HAN DISKUSI	168
	PUS	ТАКА	168
BAB VI	PEN	AFSIRAN ATRIBUT AVO	173
	Α.	Klas AVO	173
	Β.	Reservoir Multi Lapisan	196
	C.	Kontak Hidrokarbon	198
	D.	Batuan Karbonat	207
	Ε.	Reservoir Rekahan	214
	RAN	NGKUMAN	218
	UJI	CAPAIAN PEMBELAJARAN	219
	BAł	HAN DISKUSI	219
	PUS	ТАКА	219

	А.	Relasi Sifat Fisik	225
	В.	Kendala Perekaman Data	258
	C.	Pengkondisian Data	264
	RAN	IGKUMAN	286
	UJI (CAPAIAN PEMBELAJARAN	287
	BAH	IAN DISKUSI	287
	PUS	ТАКА	287
BAB VIII	INV	ERSI DATA	291
	A.	Inversi Deterministik	293
	B.	Inversi Stokastik	305
	RAN	IGKUMAN	314
	UJI (CAPAIAN PEMBELAJARAN	314
	BAH	IAN DISKUSI	314
	PUS	ТАКА	314
BIODAT	A PE	NULIS	319

DAFTAR GAMBAR

Gambar 1.1	Skema pemodelan data seismik dengan
	menggunakan pengamatan sifat-sifat fisika
	reservoir dari data log 3
Gambar 1.2	Beberapa faktor yang perlu diperhatikan dalam
	pemodelan seismik 5
Gambar 1.3	Simulasi kolom litologi yang direkam oleh
	gelombang seismik7
Gambar 1.4	Skema akuisis data seismik pada survey laut 8
Gambar 1.5	Skema yang menggambarkan: a) titik pantul
	dan b) titik CMP 10
Gambar 1.6	Skema pemrosesan data seismik 11
Gambar 1.7	Penampang inversi seismik: a) near offset dan
	b) far offset 12
Gambar 1.8	Faktor-faktor yang memengaruhi propagasi
	gelombang seismik 13
Gambar 1.9	Skema lubang bor dan sekitarnya 18
Gambar 1.10	Jangkauan beberapa pengukuran data log 19
Gambar 1.11	Pengaruh zone invasi dari filtrate lumpur pada
	pengukuran data log densitas dan log sonic
	(Vp dan Vs) beserta koreksinya
Gambar 1.12	Pencocokan data seismik dan data sintetik:
	a) sebelum koreksi dan b) sesudah koreksi 21
Gambar 1.13	Skala sampling yang terjadi pada saat coring,
	loging, borehole seismic 22
Gambar 2.1	Koefisien refleksi seperti yang didefinisikan
	oleh diferensiasi log impedansi akustik
	(Anstey, 1982)

Gambar 2.2	eismogram sintetik menggunakan wavelet	
	kausal (yaitu direkam) dengan polaritas standar	
	SEG (Anstey, 1982)	28
Gambar 2.3	Polaritas rekaman seismik	29
Gambar 2.4	Seismogram sintetik menggunakan wavelet	
	simetris dengan polaritas standar positif	30
Gambar 2.5	Skema perambatan gelombang-P dan	
	gelombang-S	33
Gambar 2.6	Komponen densitas batuan dengan porositas	
	intergranular	34
Gambar 2.7	Perubahan akibat tegangan : a) perubahan	
	volume b) perubahan bentuk yang terkait	
	dengan tegangan geser	35
Gambar 2.8	Rasio Poisson	36
Gambar 2.9	Relasi rasio Poisson dengan VpVs	38
Gambar 2.10	Partisi energi gelombang P pada antarmuka	
	serpih/batugamping sebagai fungsi sudut	
	datang	40
Gambar 2.11	Hukum Snell	41
Gambar 2.12	Contoh energi sudut kritis pada gather yang	
	terkoreksi NMO	41
Gambar 2.13	Tiga komponen pendekatan Aki–Richards	
	(1980) untuk persamaan Zoeppritz	44
Gambar 2.14	Perbandingan persamaan dua suku dan tiga	
	suku Aki– Richards dan persamaan Hilterman	
	untuk contoh antarmuka serpih di atas	
	batupasir gas	45
Gambar 3.1	Elemen wavelet seismik; a) komponen frekuens	i
	sinusoidal, b) spektrum fase, c) spektrum	
	amplitudo (Simm dan White, 2002)	51

Gambar 3.2	Ilustrasi fase; menunjukkan beberapa bentuk gelombang dengan frekuensi yang sama tetapi fase yang berbeda	53
Gambar 3.3	Gelombang fase konstan (+90 °)	53
Gambar 3.4	Wavelet fase linier; menggambarkan bahwa	
	perilaku fase ini secara efektif dikaitkan dengan	
	pergeseran waktu	53
Gambar 3.5	Bandwidth seismik dan filter bumi	54
Gambar 3.6	Dua wavelet fase minimum dengan bandwidth yang sama tetapi respon low-cut yang sedikit	
	berbeda (Simm and White 2002)	56
Gambar 3.7	Rotasi fase yang konstan dari wavelet fase	
	nol — deskripsi yang berguna untuk bentuk	
	wavelet	56
Gambar 3.8	Efek model penyerapan pada bentuk wavelet	
	di atas zone 1,3 detik (Angeleri dan Loinger,	
	1984)	59
Gambar 3.9	Contoh wavelet ideal	61
Gambar 3.10	Contoh penapisan inversi Q ; (a) sebelum dan	
	(b) setelah penapisan inversi Q (Wang, 2006)	62
Gambar 3.11	Pentahapan nol melalui penerapan operator	
	inversi	63
Gambar 3.12	Contoh spektral blueing; (a) sebelum spektral	
	blueing, (b) setelah spektral blueing (Blache-	
	Fraser dan Neep, 2004)	65
Gambar 3.13	Penampang seismik (a) sebelum dan (b) setelah	
	pemrosesan dengan pemisahan frekuensi	
	berorientasi struktural penyaringan dan	_
	pemutihan traces (Helmore et al., 2007)	67

Gambar 3.14	Seismogram sintetik yang menggambarkan	
	bagaimana keadaan geologi berhubungan	
	dengan rekaman seismik	68
Gambar 3.15	Model interferensi sederhana: (a–c) model baji	
	dengan refleksi polaritas yang berlawanan dan	
	karakteristik ketebalan vs amplitudo, (d) wavelet	
	seismik, (e)–(g) model baji dengan refleksi	
	polaritas yang sama	69
Gambar 3.16	Estimasi periode dominan pada penampang	
	seismik	72
Gambar 3.17	Frekuensi, kecepatan, dan resolusi vertikal	73
Gambar 3.18	Slope penapisan dan bentuk gelombang	
	(Koefoed, 1981)	75
Gambar 3.19	Zone Fresnel (Sheriff, 1977)	75
Gambar 3.20	Pengaruh migrasi pada zone Fresnel untuk	
	garis 2D (Lindsey, 1989)	77
Gambar 3.21	Deteksi pada ; (a) Model 3D reservoir Oseberg	
	atas dan dasar dari kontak hidrokarbon,	
	(b) bagian perbedaan vertikal setelah model	
	pra-produksi dikurangi data monitoring, (c)	
	bagian perbedaan vertikal dengan tingkat	
	kebisingan, (d) irisan waktu melalui model	
	pada kedalaman kontak, (e) irisan waktu	
	melalui model dengan kebisingan. Perhatikan	
	bagaimana tanda selang waktu terlihat jelas	
	di peta rawan kebisingan (e) tetapi cukup	
	tidak jelas pada kebisingan bagian rawan (c)	
	(Archer et al., 1993)	78
Gambar 4.1	Proses pencocokan sumur	85

Gambar 4.2	Model yang menunjukkan efek rata-rata log
	Vp ; kurva abu-abu adalah model Vp , kurva
	biru adalah rata-rata waktu lebih dari jendela
	interval 7 m, dan kurva merah adalah rata-rata
	Backus lebih dari jendela interval 7 m
Gambar 4.3	Kalibrasi log (kedalaman–waktu)
Gambar 4.4	Skema geometri VSP 91
Gambar 4.5	Grafik skema waktu kedatangan VSP terhadap
	kedalaman geofon untuk data VSP 92
Gambar 4.6	Contoh gelombang naik VSP (Chopra et al.,
	2004)
Gambar 4.7	Contoh corridor stack VSP (Campbell et al.,
	2005)
Gambar 4.8	Contoh walk away VSP dari sumur miring
	(Kaderali et al., 2007) 95
Gambar 4.9	Ilustrasi skema penyaringan kuadrat terkecil
	untuk mendapatkan wavelet
Gambar 4.10	Segmen seismik (T) dan panjang gelombang
	(<i>L</i>)
Gambar 4.11	(a) data bandwidth tinggi dengan estimasi fase
	yang akurat, (b) data bandwidth rendah dengan
	ambiguitas fase yang cukup besar (White dan
	Simm, 2003) 101
Gambar 4.12	Ekstraksi wavelet dari survey seismik laut dengan
	panjang wavelet (L) yang bervariasi dari segmen
	waktu 500 ms 102
Gambar 4.13	Peta ikatan sumur; (a) peta PEP (%), (b) seismik
	crossline (garis hijau pada peta) melalui lokasi
	sumur dan lokasi yang paling cocok, (c) peta
	waktu tunda (ms) 104

Gambar 4.14	Contoh well tie yang dihasilkan dari teknik well matching
Gambar 4.15	Contoh well tie yang dihasilkan mengguna- kan wavelet yang dimodifikasi (fase nol) pada data yang diputar fasenya dan waktu yang digeser
Gambar 4.16	Contoh well tie yang diaplikasikan dengan menggunakan 180° wavelet fase konstan berdasarkan spektrum amplitudo yang
	diperoleh dari data 108
Gambar 4.17	Contoh well tie yang dihasilkan dengan
	menggunakan wavelet fase konstan 50°
	berdasarkan spektrum amplitudo yang
	diperoleh dari data 109
Gambar 4.18	Ikatan sumur yang sangat baik dari urutan
	dengan karakter seismik yang baik 110
Gambar 4.19	Ambiguitas wavelet dengan data bandwidth
	yang buruk (White dan Simm, 2003) 111
Gambar 4.20	Sebuah ikatan sumur dimana model sintetik
	perlu diregangkan (garis waktu seismik
	memiliki jarak 100 ms) 113
Gambar 4. 21	Peregangan atau etek migrasi sisa 114
Gambar 4.22	Dua wavelet dari kedalaman yang berbeda
	dalam VSP, disejajarkan pada jeda pertama 115
Gambar 4.23	lkatan sumur I yang dibuat dengan wavelet fase
	nol yang didominasi puncak (garis waktu seismik
	memiliki pemisahan 100 ms) 116
Gambar 4.24	lkatan sumur yang sama seperti Gambar 4.23
	tetapi dengan wavelet dominasi palung (garis
	waktu seismik memiliki pemisahan 100 ms) 117

Gambar 4.25	Model baji batupasir berisi gas dengan
	berbagai rotasi fase konstan 117
Gambar 4.26	Metode penentuan fase melalui rotasi fase dan
	pengukuran amplitudo (Roden dan Sepulveda,
	1999) 118
Gambar 5.1	Beberapa fungsi AVO 124
Gambar 5.2	Kelas AVO 125
Gambar 5.3	Plot silang intersep dan gradien AVO 126
Gambar 5.4	Beberapa contoh respons AVO yang berbeda 127
Gambar 5.5	Contoh (a) kontak hidrokarbon dan
	(b) tanggapan AVO dasar batupasir 128
Gambar 5.6	Kelas AVO tambahan untuk respons dengan
	gradien positif (seperti dasar batupasir dan
	kontak hidrokarbon) 129
Gambar 5.7	Rentang parameter untuk batuan sedimen
	umum (brine-bearing), (Castagna et al. 1993) 130
Gambar 5.8	Tren kecepatan-kedalaman umum untuk
	batupasir dan serpih (Avsethh, 2000) 133
Gambar 5.9	Pengaruh kompaksi pada batupasir dan
	serpih berisi air garam, (a) kedalaman vs Al,
	(b) porositas pasir vs AI, (c) plot AVO
	menunjukkan respons AVO serpih/pasir,
	(d) impedansi akustik vs rasio Poisson 134
Gambar 5.10	Pengaruh pengisian fluida pada porositas yang
	berbeda pada batupasir, (a) impedansi akustik
	vs rasio Poisson, (b) porositas vs Al 136
Gambar 5.11	Pengaruh porositas dan pengisian fluida pada
	batupasir 138
Gambar 5.12	Sebuah anomali AVO ditunjukkan pada plot
	silang AVO 139

Gambar 5.13	Pengaruh saturasi gas pada sifat elastis
	batupasir tak terkonsolidasi porositas tinggi 140
Gambar 5.14	Model AVO North Sea Chalk dengan porositas
	berbeda: (a) serpih di atas 18% kapur porositas
	dengan air garam dan gas, (b) serpih di atas
	34% porositas kapur dengan air garam dan
	gas, (c) AVO crossplot menunjukkan data dari
	refleksi pra-kritis dalam (a) dan (b) 142
Gambar 5.15	Model AVO sederhana dari serpih menumpangi
	dolomit dengan porositas 20%: (a) AVO plot,
	(b) AVO crossplot menunjukkan respon AVO
	untuk sudut pra-kritis 143
Gambar 5.16	Kekakuan relatif dan pengaruhnya terhadap
	impedansi akustik dan rasio Poisson 144
Gambar 5.17	Karakteristik kecepatan-porositas sedimen
	silisiklastik yang mengandung air asin 145
Gambar 5.18	Data log berporositas tinggi dan pasir jenuh
	air asin – lepas pantai Norwegia; (a) porositas
	vs Vp, (b) AI vs PR, (c) plot AVO menunjukkan
	respons bagian atas dari pasi air asin (biru) dan
	pengisian gas (merah) pada pasir yang
	tersemen, (d) plot AVO menunjukkan respons
	bagian atas pasir dengan kandungan air asin
	(biru) dan pasir tidak disemen berisi gas
	(merah) 148
Gambar 5.19	Kecepatan kompresi vs porositas untuk kayu
	dari 12 sumur di lepas pantai Afrika Barat dan
	Teluk Meksiko (Vernik dan Kachanov, 2010) 149
Gambar 5.20	Pengaruh serpih tersebar pada sifat batupasir;
	(a) ilustrasi skema campuran pasir/serpih,

	(b) porositas vs plot AI, (c) porositas vs plot	
	et al., 1992)1	50
Gambar 5.21	Contoh pengaruh serpih terdispersi padat delta	- 4
Gambar 5.22	Jurassic	51
Gambar 5.23	Al vs PR yang dimodelkan dan intersep vs gradien untuk data pasir/serpih laminasi;	52
Gambar 5 4	(a) plot rasio AI vs Poisson, (b) plot silang AVO 1. Data laboratorium dari batupasir konsolidasi	53
Gumbur 9.4	(Vernik, 1994) 1	53
Gambar 5.25	Respons seismik batupasir gas dengan signature amplitudo bervariasi dengan ketebalan	54
Gambar 5.26	Signature AVO yang diidealkan dari pantulan atas dari irisan batupasir impedansi rendah, dimodelkan menggunakan model reflektifitas satu dimensi yang sederhana	55
Gambar 5.27	Data model menunjukkan efek penyetelan pada respons AVO; (a) dua penampang stack sudut dari model, 10° dan 30° dan (b) plot silang	
Gambar 5.28	intersep/gradient1 Ketebalan dan impedansi yang tidak unik di	56
	bawah tuning1	57
Gambar 5.29	Model pasir/serpih dengan ketebalan konstan (tuning)	58
Gambar 5.30	Model seismik sub-tuning menempatkan data sumur dalam konteks ketidakpastian	59

Gambar 5.31	Pengukuran laboratorium dari dua inti batupasir
	menunjukkan kecepatan sebagai fungsi dari
	tekanan diferensial (Hicks dan Berry, 1956) 161
Gambar 5.32	Hubungan tekanan-kedalaman 162
Gambar 5.33	Contoh log sonic diplot pada skala log untuk
	menyoroti tren pemadatan serpih 'normal' dan
	timbulnya tekanan berlebih 162
Gambar 5.34	Pengaruh tekanan pada AVO. Pasir 1 dan 3
	biasanya mengalami tekanan sementara pasir 2
	mengalami overpressure sekitar 500 psi 165
Gambar 5.35	Efek produksi yang dimodelkan pada reservoir
	yang awalnya bertekanan berlebih 167
Gambar 6.1	Bright spot pada penampang stack migrasi
	terkait dengan keberadaan gas; (a) penampang
	stack yang sudah migrasi (polaritas Eropa), milik
	Rashid Petroleum Company, (b) model fisika
	batuan skematik (Simm dan Bacon) 175
Gambar 6.2	Indikator produk AVO (intersep × gradien)
	menampakkan pasir gas Kelas III dengan
	amplitudo yang meningkat dengan offset
	(merah) berbeda dengan pasir air Kelas I
	dengan amplitudo yang menurun dengan
	offset (biru) (Bacon et al., 2003) 177
Gambar 6.3	Akumulasi gas dengan AVO Kelas III diidentifikasi
	dengan atribut ERG (enhanced limited gradient).
	Warna merah mewakili AVO positif dan warna
	biru mewakili AVO negatif 178
Gambar 6.4	Contoh plot silang berkode warna yang
	menandai Kelas III 'anomali' yang terkait
	dengan keberadaan gas: (a) plot silang AVO,

	(b) bagian intersep dengan data dari zone
	kuning dan biru
Gambar 6.5	Respons AVO Kelas III yang disebabkan oleh
	pasir serpihan yang mengandung air 180
Gambar 6.6	Tuning dan AVO; (a) gather menunjukkan
	respons AVO Kelas II/III dari zone gas produktif,
	(b) gather menunjukkan respons serupa dari
	pasir basah air akibat efek tuning (Allen dan
	Peddy, 1993) 181
Gambar 6.7	Pengaruh variasi litologi terhadap AVO;
	(a) bagian skema dengan interpretasi puncak
	reservoir, (b) plot silang AVO yang menunjukkan
	bentuk cluster dari segmen yang ditunjukkan
	pada (a), (c) skema faktor fluida (Sams, 1998) 182
Gambar 6.8	Amplitudo lunak terkait dengan variabel
	saturasi gas; (a) penampang seismik (O'Brien,
	2004) tidak menunjukkan perbedaan yang
	signifikan antara sumur penemuan dan sumur
	dengan saturasi gas rendah, (b) plot AVO pasir
	atas yang dihasilkan dari data log 184
Gambar 6.9	Model reservoir sederhana dengan respons
	AVO Kelas IV; (a) plot AVO menunjukkan
	respon basah dan pasir hidrokarbon, (b) plot
	silang AVO, (c) model seismik dari dua sumur
	semu, menunjukkan penggunaan proyeksi AVO
	dan impedansi bandlimited dalam menyoroti
	kontak air gas (Simm, 2009) 185
Gambar 6.10	Contoh model signature AVO pasir atas yang
	bervariasi karena ada atau tidak adanya unit
	lanau impedansi tinggi di atas pasir; (a) sintetis

Gambar 6.11	dengan lanau di atas pasir, (b) sintetis dengan lanau dihilangkan, (c) plot silang data AVO puncak pasir (a), (d) plot silang data AVO pasir atas (b) Pasir gas Kelas IIp; (a) penampang full stack yang telah dimigrasi Butherford dan Williams	187
	1989), (b) model AVO nosional menjelaskan puncak terang yang terkait dengan kontak air gas dan kurangnya refleksi di bagian atas	
	pasır	189
Gambar 6.12	Pasir minyak Kelas IIp; (a) penampang near	
	stack, (b) penampang far stack, (c) penampang	
	menunjukkan pembalikan fase pada bagian	100
Campbar (12	Puncak reservoir	190
Gallibar 6.15	menggambarkan pasir minyak kelas lip dengar	1
		101
Gambar 6 1/	Proveksi fluida dan litologi dalam skenario nasi	r r
	minyak Kelas IIn (Whitcombe et al. 2002)	191
Gambar 6 15	Contoh (a) fluida dan (b) kubus litologi	121
Gambar 0.15	bersama-sama dengan interpretasi yang	
	sesuai crossplots (c) dan (d). Kurva log vang	
	dituniukkan pada (a) dan (b) adalah sinar	
	gamma (Apache Corporation)	193
Gambar 6.16	Woodbine Sands, Texas Timur, skenario pasir	
	gas Kelas I (setelah Peddy et al., 1995);	
	(a) penampang full stack yang dimigrasikan	
	menunjukkan peredupan reflektor pasir	
	Woodbine saat gas diisi, (b) penampang yang	
	menunjukkan reflektor basah air terang, (c)	

	signature AVO gas dan air yang kontras 194
Gambar 6.17	Model pasir minyak Kelas I; (a) penampang
	sudut dekat menunjukkan peredupan terkait
	dengan keberadaan minyak, (b) model sudut
	jauh menunjukkan reflektifitas pada reservoir
	atas dan terminasi palung pada kontak, (c) plot
	silang AVO, (d) penampang proyeksi
	(persamaan Shuey digunakan dengan 41°) 195
Gambar 6.18	Penampang stack migrasi dari penemuan gas
	di cekungan Otway, lepas pantai Australia
	(Cliff et al., 2004)
Gambar 6.19	Model sintetis dari reservoir dalam sekuen batu
	pasir berlapis. Diagnostik hidrokarbon hanyalah
	kecerahan reflektifitas yang terkait dengan
	kontras dalam porositas 197
Gambar 6.20	Peningkatan efek hidrokarbon pada reservoir
	dengan lapisan tipis menggunakan teknik
	optical stacking (Cliff et al., 2004) 198
Gambar 6.21	Bright spot medan gas Troll terkait dengan
	kontak air gas (polaritas standar positif dengan
	warna hitam mewakili puncak) 199
Gambar 6.22	(a) Bright spot hidrokarbon (~1070 ms)
	menunjukkan (b) konsistensi amplitudo RMS
	dengan struktur (polaritas: hitam peningkatan
	impedansi ke bawah) (Western Geco) 200
Gambar 6.23	Struktur, amplitudo seismik dan kontak miring;
	(a) peta relief struktural berbayang 3D dengan
	penutup miring yang digariskan dalam warna
	putih; (b) impedansi bandwidth yang diekstraksi
	dekat dengan reservoir atas (warna merah

	menunjukkan impedansi yang relatif rendah
	terkait dengan pengisian minyak pada batupasir
	yang berorientasi NW–SE). Perhatikan bahwa
	garis amplitudo bergeser ke barat laut dari
	penutupan struktural karena efek gradien
	hidrodinamik (Dennis et al., 2005) 201
Gambar 6.24	DHI yang terkait dengan reservoir yang
	mengandung minyak 201
Gambar 6.25	Model kontak air-minyak pada bagian lapisan
	tipis pasir dan serpih; (a) angle stack ($\theta \approx 30^{\circ}$)
	menunjukkan kontak rangkaian segmen refleksi
	dengan sedikit kemiringan, (b) bagian porositas
	– warna jingga menunjukkan lapisan pasir
	dengan porositas lebih dari 20% 202
Gambar 6.26	Model kontak hidrokarbon dalam reservoir
	karbonat grainstone. Efek kontak relatif halus,
	dengan DHI utama menjadi peredupan reflektor
	reservoir atas 203
Gambar 6.27	Gather seismik nyata vs model. Kecerahan
	sudut jauh yang diprediksi oleh model (b) tidak
	direplikasi oleh gather nyata (a) (Drivenes) 205
Gambar 6.28	Hidrokarbon dan model kontak relik
	(berdasarkan data dari Francis et al., 1997) 207
Gambar 6.29	Fylla flat spot– terkait dengan transisi opal/
	Cristobalite (Isaacson dan Neff, 1999) 207
Gambar 6.30	Peredupan amplitudo pada puncak Chalk
	terkait dengan perkembangan porositas
	(d'Angelo et al., 1997) 208
Gambar 6.31	Pembalikan polaritas pada Chalk dengan
	porositas tinggi di Lapangan Hod, lepas pantai

	Norwegia (Pearse dan Ozdemir, 1994) 209
Gambar 6.32	ubungan antara porositas dan impedansi
	akustik di East Hod Field (Campbell dan
	Gravdal, 1995) 210
Gambar 6.33	Model gather yang menunjukkan efek substitusi
	fluida dalam dolomit (porositas 14–20%) yang
	terbungkus dalam batugamping yang padat,
	berdasarkan data dari cekungan sedimen
	Kanada Barat (Li et al., 2003)
Gambar 6.34	Deteksi zone porous dolomit menggunakan
	analisis AVO (Eissa et al., 2003) 212
Gambar 6.35	Teknik 'relatif AVO' Chiburis membedakan
	pasir hidrokarbon dalam urutan platform
	karbonat; (a) full stack menunjukkan reflektor
	target dan referensi, (b) rasio target/referensi
	AVO menunjukkan AVO positif terkait dengan
	minyak dalam kalkarenit, (c) rasio target/
	referensi AVO menunjukkan AVO negatif
	pada kalkarenit basah (Chiburis, 1993) 212
Gambar 6.36	Gather dari lintasan seismik 2D yang sejajar
	dengan sekumpulan rekahan di Chalk of the
	Fife Field, Laut Utara Inggris (Macbeth et al.,
	1999) 215
Gambar 6.37	Perbedaan waktu tempuh gelombang geser
	cepat (S1) (bagian kiri) dan gelombang geser
	lambat (S2) (bagian kanan) merupakan bukti
	adanya rekahan di Formasi Green River, NE
	Utah (setelah Lynn et al., 1995) 216
Gambar 6.38	Bagian gelombang geser cepat (S1) dan lambat
	(S2) di Austin Chalk (Mueller, 1992) 217

Gambar 7.1	Analisis litologi dari data log 227
Gambar 7.2	Kurva batas pada modulus bulk batupasir
	berisi air asin (Nur et al. 1998). Dalam hal ini
	konstituennya adalah kuarsa dan air garam.
	Kurva yang ditampilkan adalah (1) Rata-rata
	Voigt, (2) Rata-rata Reuss, (3) Hashin–Shtrikman
	atas, (4) Hashin–Shtrikman bawah, dan
	(5) Batas Voigt yang dimodifikasi 230
Gambar 7.3	Relasi kecepatan-densitas dalam batuan dari
	litologi yang berbeda (Gardner et al., 1974) 231
Gambar 7.4	Plot silang porositas vs kecepatan kompresi
	untuk berbagai dataset batu pasir: titik ungu —
	data dari Han et al. (1986), titik biru tua –
	dataset batupasir tersier dari Laut Utara, garis
	merah putus-putus – Campuran air dan kuarsa
	Reuss, garis merah dan kuning – tren dari data
	porositas tinggi Oseberg (Dvorkin dan Nur,
	1996), garis biru – tren dari data porositas
	tinggi Troll (Dvorkin dan Nur, 1996) dengan
	tekanan efektif garis atas 20 MPa dan tekanan
	efektif garis bawah 5 MPa, titik merah – data
	pasir tidak terkonsolidasi yang dipilih 234
Gambar 7.5	Plot silang kecepatan (pada tekanan efektif
	8 MPa) versus porositas berbagai jenis pori
	karbonat (diisi air garam) dengan kurva
	eksponensial paling sesuai melalui data untuk
	referensi (digambar ulang setelah Eberli et al.,
	2003) 235
Gambar 7.6	Relasi Han (1986) menunjukkan garis lempung
	yang konstan, dengan subset data Han (1986)

	(Avsethh et al., 2005)	238
Gambar 7.7	Perbandingan dataset batupasir serpihan Laut	
	Utara dan garis pasir Castagna, hubungan	
	Vp-Vs empiris berdasarkan dataset batupasir	
	dari Teluk Meksiko dan onshore di Amerika	
	Serikat	239
Gambar 7.8	Plot silang yang menunjukkan relasi Greenberg	J—
	Castagna $Vp - Vs$	240
Gambar 7.9	Plot silang $Vp-Vs$ dari ladang minyak Laut	
	Utara, menunjukkan perbedaan signifikan	
	antara data log dan tren empiris Castagna	
	et al. (1985). Titik hijau — pasir minyak, titik	
	biru – pasir air asin dan titik hitam – serpih	242
Gambar 7.10	Plot silang $Vp-Vs$ menunjukkan data dari	
	serpih organik yang diplot di atas tren empiris	
_	batupasir Castagna et al. (1985).	243
Gambar 7.11	Contoh tren $Vp - Vs$ dalam karbonat (data da	'i
	Rafavich et al. (1984) dan data Kapur dari Laut	
	Utara)	244
Gambar 7.12	Contoh penggunaan hubungan $Vp - Vs$ untuk	
	menentukan pay zone (Williams, 1990)	245
Gambar 7.13	Plot silang resistivitas–sonic interval pasir/	
	serpin Miosen di pantai Texas (Smith, 2007)	
	menunjukkan perbedaan litologi antara log	
	resistivitas sonic dan SFL dangkai (a) dan ILD	
	dalam (b). Tampak pada log ILD pasir dan	247
Combox 714	Serpin terpisan	247
Gambar 7.14		
		20 I

Gambar 7.15	Tinjauan tentang penerapan model Gassmann
	pada frekuensi yang berbeda 252
Gambar 7.16	Persamaan praktis untuk penerapan relasi
	Gassmann ke data log 254
Gambar 7.17	Substitusi fluida dan kekakuan pada batupasir.
	Dua batupasir dengan porositas 30%
	diperlihatkan, pasir lunak tanpa semen pada
	(a) dan (b) dan pasir tersementasi lebih kaku
	pada (c) dan (d). Untuk porositas yang sama,
	pasir yang lebih lembut menunjukkan efek
	substitusi fluida yang lebih besar dalam hal
	kecepatan kompresi 258
Gambar 7.18	Perekaman densitas; (a) konfigurasi pahat di
	lubang bor (Tittman dan Wahl, 1965),
	(b) contoh kompensasi pada lubang yang
	rusak 259
Gambar 7.19	Elemen dasar dari perekaman gelombang
	sonic
Gambar 7.20	Pemrosesan koherensi waktu lambat dari
	bentuk gelombang sonic 262
Gambar 7.21	Contoh template fisika batuan; a) plot silang;
	b) contoh data log yang diplot dari zona
	litofasies yang berbeda, bersama dengan tren
	kalibrasi model fisika batuan 265
Gambar 7.22	Contoh zona 'pencucian' serpih pada log
	densitas dan sonic. Log densitas yang diprediksi
	ditampilkan dalam warna merah pada kolom 4.
	Perhatikan bagaimana log sonic kompresional
	dipol (DTCO) kurang terpengaruh washout
	daripada sonic konvensional (DT) 267

Gambar 7.23	Pengaruh cycl skip pada log sonic konvensional (Burch, 2002)
Gambar 7.24	Plot silang kecepatan gelombang sonic;
	(a) contoh awal data sonic dipol dalam serpih
	dengan kecepatan geser lebih rendah dari
	kecepatan kompresional lumpur. Perhatikan
	adanya beberapa energi kedatangan lumpur
	di sekitar 4500 ft/s, (b) contoh data sonic
	dipol dari batupasir yang menunjukkan energi
	kedatangan lumpur dan kebisingan yang
	signifikan 270
Gambar 7.25	Contoh interferensi gelombang Stoneley, bisa
	mengakibatkan kecepatan gelombang geser
	bias ke nilai yang lebih rendah 271
Gambar 7.26	Hasil regresi multilinier untuk memprediksi
	kelambatan kompresi (hitam log sonic asli,
	ungu prediksi) 272
Gambar 7.27	Prediksi log sonic dan QC menggunakan ikatan
	yang baik 273
Gambar 7.28	Penggunaan model porositas kritis untuk
	substitusi fluida tanpa Vs (Mavko et al., 1995) 275
Gambar 7.29	Invasi lubang bor ditunjukkan oleh perbedaan
	pembacaan resistivitas log dalam, sedang dan
	dangkal 276
Gambar 7.30	llustrasi grafis penentuan densitas fluida
	menggunakan log densitas dan pengukuran
	porositas inti 278
Gambar 7.31	Pengaruh saturasi skala pori pada kecepatan
	ultrasonik (Knight dan Nolen-Hoeksema,
	1990)

Gambar 7.32	Ilustrasi skema deviasi lubang bor dan
	kelambatan sonik pada serpih; (a) beberapa
	sumur dengan sudut lubang yang berbeda
	melalui formasi serpih yang sama (oranye),
	(b) penurunan kelambatan serpih (yaitu
	peningkatan kecepatan) dengan meningkatnya
	deviasi, (c) kelambatan horizontal vs vertikal
	(Horne et al., 2012)
Gambar 7.33	Data kecepatan log sumur dari serpih pada
	sepuluh formasi serpih pada dua lapangan di
	Laut Utara (Brevik et al., 2007)
Gambar 8.1	Penampang seismik dan ekuivalen inversi
	impedansi akustiknya (Latimer et al., 2000) 293
Gambar 8.2	Konsep inversi tracessss seismik ke impedansi 294
Gambar 8.3	Contoh data model yang menggambarkan
	inversi sparse spike (Oldenburg et al., 1983).
	Perhatikan bagaimana tracessss inversi Al
	adalah penyederhanaan blok dari impedansi
	sumur
Gambar 8.4	Diagram alir umum untuk inversi berbasis
	model
Gambar 8.5	Contoh inversi berbasis model; pengambilan
	horizon pada data reflektifitas yang digunakan
	untuk membangun model awal (setelah Pharez
	et al., 1998)
Gambar 8.6	Contoh inversi berbasis model; impedansi sumur
	(hitam) dan model awal pelapisan makro untuk
	inversi (merah)
Gambar 8.7	Contoh inversi berbasis model; lapisan mikro
	keluaran dari inversi (merah), impedansi sumur
	(hitam) 301

Gambar 8.8	Contoh inversi berbasis model; bagian
	impedansi akhir, menunjukkan tight sand
	(Impedansi tinggi) berwarna jingga dan porous
	sand (impedansi rendah) berwarna hijau
	(Pharez et al., 1998) 302
Gambar 8.9	Perbandingan hasil impedansi terbalik dengan
	impedansi yang dihitung dari log sumur
	(Bach et al., 2000) 302
Gambar 8.10	(a) seismik input, (b) sintetik yang dihasilkan
	dari inversi, (c) selisih antara (a) dan (b) 304
Gambar 8.11	Realisasi terpisah dari inversi geostatistik
	(Francis, 2006)
Gambar 8.12	Contoh produk inversi geostatistik; (a) realisasi
	tunggal, (b) rata-rata realisasi dan (c) standar
	deviasi realisasi (Lamy et al., 1999)
Gambar 8.13	Simulasi Gaussian sekuensial dibatasi oleh data
	seismik (Haas dan Dubrule, 1994)
Gambar 8.14	Variogram untuk input ke inversi stokastik;
	(a) Variogram vertikal dari impedansi sumur,
	(b) skala lateral ditentukan dari peta amplitudo
	seismik dengan anisotropi, (c) variogram
	horizontal untuk sumbu utama anisotropi
	yang diidentifikasi dalam (b), (d) yariogram
	lateral akhir (Haas dan Dubrule, 1994)
Gambar 8.15	Alur keria inversi geostatistik yang
	menggabungkan inferensi Bayesian (Sams et al
	2011) 313
Gambar 8 16	Volume keluaran dari realisasi inversi
	geostatistik tunggal meliputi fasies, parameter
	netrofisika (Saussus and Sams 2012) 313

DAFTAR TABEL

Tabel 3.1	Nilai Q dari beberapa litologi (Sheriff dan Geldart,		
	1995)	. 60	
Tabel 7.1	Koefisien untuk Relasi Gardner	232	
Tabel 7.2	Nilai t dan nilai x untuk Persamaan. (7.9)		
	(Raiga-Clemenceau et al., 1988)	236	
Tabel 7.3	Nilai khas untuk koefisien Archie 'a' dan 'm'		
	(Hacikoylu et al, 2006)	237	

BAB I KONSEP DASAR

Capaian Pembelajaran :

Mahasiswa dapat memahami filosofi pemodelan data seismik untuk karakterisasi sifat fisik reservoir dalam kerangka eksplorasi hidrokarbon.

Deskripsi:

Dalam bab ini mahasiswa akan diajak untuk memahami pengertian konsep dasar pemodelan data seismik dengan mengintegrasikannya terlebih dahulu dengan data log sumur beserta ruang lingkupnya.

A. Filosofi

Filosofi dari pemodelan data seismik dalam kegiatan eksplorasi adalah memodelkan respons amplitudo seismik untuk mengkarakterisasi sifat fisik reservoir, di dalam kerangka suatu *petroleum system*. Hal ini biasanya melibatkan pembuatan model seismik sintetis untuk berbagai skenario kandungan fluida tertentu berdasarkan data log sumur yang tersedia. Pada tahapan eksplorasi, umumnya hal ini mengandung tingkat ketidakpastian sedemikian rupa. Namun demikian, pada tahapan pengembangan lapangan di mana telah cukup banyak data tersedia, pemodelan fisik mulai mengarah pada tingkat kepastian kuantifikasi properti reservoir.

Pemodelan data seismik pada dasarnya merupakan integrasi dari berbagai disiplin ilmu mencakup geologi, geofisika, petrofisika, dan teknik reservoir. Inti dari integrasi tersebut adalah fisika batuan, yang dapat didefinisikan sebagai studi tentang hubungan antara

pengukuran parameter elastis dari data permukaan, sumur dan laboratorium; sifat intrinsik batuan seperti mineralogi, porositas (bentuk pori, cairan pori, tekanan pori), permeabilitas, viskositas, sensitivitas tegangan dan arsitektur batuan secara keseluruhan (seperti laminasi dan rekahan)' (Sayers dan Chopra, 2009). Fisika batuan secara efektif menyiapkan parameter batuan dan fluida untuk pemodelan seismik. Pennington (1997) menguraikan penggunaan yang cermat dan terarah dari data dan teori fisika batuan dalam interpretasi seismik dan menyebut pendekatan ini sebagai 'Petrofisika Seismik'. Ahli lain menyebut hal tersebut sebagai 'Fisika Batuan'. 'Fisika Batuan Seismik' (Wang, 2001) atau Interpretasi Kuantitatif (QI). Pola pikir yang mendorong pendekatan ini tentu saja bukan hal baru, tetapi memberikan konteks yang baru terhadap visualiasasi dan kuntifikasi sifat fisik reservoir. Praktik simulasi beberapa skenario sifat fisik batuan dengan menggunakan data seismik sangat bergantung pada aplikasinya. Misalnya, dalam beberapa kasus, simulasi penggantian fluida dengan menggunakan data log pada sumur yang kering, menghasilkan model sintetis untuk berbagai skenario pengisian hidrokarbon yang memungkinkan identifikasi respons seismik diagnostik keberadaan hidrokarbon. Di sisi lain, inversi stokastik untuk prediksi reservoir dan penilaian ketidakpastian akan memerlukan database fisika batuan yang lengkap di mana sifat elastis dari berbagai litofasies dan distribusinya ditentukan dalam konteks tekanan efektif. Oleh karena cakupan subjek yang luas, maka seorang ahli geofisika perlu bekerja sama dengan ahli petrofisika, ahli geologi, dan ahli reservoir. Menurut Crain (2013), ahli geofisika yang terlibat dalam interpretasi seismik jarang menggunakan data log secara maksimal. Hal ini disebabkan oleh kenyataan bahwa kebanyakan ahli geofisika bukanlah ahli dalam analisis log. Seorang ahli petrofisika dibutuhkan untuk mengedit data log dan melakukan analisis petrofisika. Namun demikian, banyak ahli petrofisika tidak tahu apa yang diperlukan dari data log untuk pemodelan data seismik. Secara efektif, penggunaan sifat fisik batuan dalam interpretasi seismik mengaburkan perbedaan antara disiplin ilmu geofisika, petrofisika, geologi dan reservoir. Buku ini mengetengahkan subjek dari sudut pandang praktis dengan deskripsi cara kerjanya dan bagaimana hubungan dibuat antara berbagai disiplin ilmu, sebagai pengantar terhadap dasar ilmu geofisika dari eksplorasi dengan menggunakan data seismik, maka dianjurkan untuk membaca buku Pengantar Seismologi Eksplorasi karangan penulis. Maka, diharapkan perspektif yang disajikan di sini akan menjadi motivasi untuk pembelajaran lebih lanjut mengenai teknik karakterisasi reservoir hidrokarbon.

Pencocokan data sumur dan data seismik

Gambar 1.1 Skema pemodelan data seismik dengan menggunakan pengamatan sifat-sifat fisika reservoir dari data log

Gambar di atas mengilustrasikan suatu bentuk integrasi data sumur dan data seismik, dimana proses yang bekerja menghasilkan suatu data seismik sintetik, atau biasa disebut dengan data sintetik seismogram, merupakan proses pemodelan ke depan, yakni berupa penentuan kontras impedansi akustik, yang diperoleh dari penghitungan nilai beda impedansi akustik antara dua lapisan, dimana masing-masing lapisan dipengaruhi oleh densitas dan velositas. Sedangkan, proses penurunan data seismik menjadi impedansi akustik, disebut proses inversi atau pemodelan ke belakang. Sasaran dari masing-masing pemodelan tersebut adalah untuk mengetahui pelamparan properti reservoir yang teramati pada data sumur, secara lataran seluas area yang dipelajari. Terdapat beberapa hal yang perlu diperhatikan, sebagaimana yang diringkaskan pada skema berikutnya (Gambar 1.2), yakni apakah data velositas baik Vp atau Vs dan densitas mempunyai nilai yang konsisten, serta bisa menggambarkan perubahan properti reservoir? Kemudian, apakah bisa cocok nilai kontraks impedansi antara data sumur dan seismik? Akhirnya, bagaimana respons model AVO atau impedansi akustik serta bagaimana kuantifikasinya? Beberapa persoalan tersebut merupakan halhal kunci yang menentukan keberhasilan dari pemodelan data seismik untuk keperluan karakterisasi suatu reservoir. Suatu studi pemodelan dengan menggunakan data seismik sering kali bisa berhasil dengan baik, serta menunjukkan kesesuaian antara data sumur dan data seismik. Namun demikian, kadang kala hal itu tidak bisa menunjukkan hal yang memuaskan.

Gambar 1.2 Beberapa faktor yang perlu diperhatikan dalam pemodelan seismik

Salah satu isu penting dalam keberhasilan pemodelan seismik adalah isu keterbatasan resolusi vertikal dari data seismik, dimana data seismik mempunyai skala yang tidak sama atau tidak sesuai dengan data sumur. Dalam hal ini, data seismik mempunyai resolusi yang jauh lebih rendah daripada data sumur, artinya suatu lapisan reservoir yang teramati pada data sumur, gagal teramati pada data seismik. Hal ini terjadi sebagai akibat keterbatasan gelombang seismik, di dalam menanggapi ketebalan lapisan tipis. Pada umumnya gelombang seismik hanya mampu merepresentasikan ketebalan lapisan batuan tidak bisa lebih tipis dari 20 meter, rata-rata masih bisa menggambarkan lapisan setebal 25 meter. Sebagai contohnya, pada Gambar 1.3a ditunjukkan beberapa contoh kolom litologi dengan ketebalan dari kiri ke kanan masing-masing 2,5 meter, 5 meter, 10 meter, 15 meter, 20 meter, 25 meter, 50 meter dan 100 meter, ternyata apabila direkam dengan data seismik, maka kecocokan dari banyaknya bidang batas perlapisan ditentukan dari jumahnya puncak dan palung dari suatu gelombang. Dari perhitungan banyaknya bidang lapisan yang muncul yang bisa direpresentasikan oleh banyaknya puncak dan palung, maka diperoleh nilai minimal 25 meter. Untuk nilai ketebalan yang kurang dari 25 meter maka jumlah puncak dan palung sudah tidak sesuai dengan jumlah bidang batas perlapisan (Gambar 1.3b).

(a)

seismik

B. Data Seismik

Sebelum menafsirkan tanggapan amplitudo seismik dibutuhkan pemahaman tentang akuisisi dan pemrosesan data seismik. Buku terpisah telah ditulis tentang hal ini. Namun, secara ringkas tinjauan tentang hal tersebut akan diuraikan pada bab ini. Data seismik diperoleh dari sumber dan penerima akustik. Ada banyak jenis geometri seismik tergantung pada persyaratan survei dan lingkungan operasi. Baik di darat atau di laut, data yang diperlukan untuk analisis amplitudo seismik biasanya memerlukan sejumlah *traces* untuk setiap titik di bawah permukaan, yang secara efektif menggambarkan sejumlah pengukuran di berbagai sudut datang. Pada survei laut, pasangan sumber dan penerima diatur sedemikian rupa, ditujukan untuk memperoleh data tersebut, misalnya pengaturan *gun* dan *streamer* seperti diilustrasikan pada Gambar 1.4. Setiap tembakan mengirimkan gelombang energi suara ke bawah permukaan, dan setiap penerima pada *streamer* merekam energi yang telah dipantulkan dari bidang kontras beda kekerasan litologi bawah permukaan (atau impedansi akustik) yang terkait dengan bidang antarmuka geologis. Untuk mempermudah maka jalur energi digambarkan dengan sinar yang ditarik tegak lurus terhadap muka gelombang seismik; hal ini menjelaskan pula tentang sudut datang (θ pada Gambar. 1.4a). Biasanya, pantulan yang direkam pada penerima yang paling dekat dengan sumber, memiliki sudut datang yang paling rendah, dan untuk penerima yang lebih jauh mempunyai sudut yang lebih tinggi.

Gambar 1.4 Skema akuisis data seismik pada survey laut

Gambar 1.4b mengilustrasikan sinyal yang direkam dari jalur sinar biru dan merah yang ditunjukkan pada Gambar 1.4a. Sinyal yang direkam pada setiap penerima diplot terhadap waktu (yaitu waktu perjalanan dari sumber ke penerima), dan traces penerima diurutkan seiring dengan meningkatnya jarak sumber-penerima, biasa disebut sebagai offset. Pada Gambar 1.4b energi yang dipantulkan ditampilkan sebagai bentuk pulsa seismik (wavelet) pada bidang batas. Karena perbedaan jalur perjalanan, waktu datang refleksi dari batas geologi meningkat dengan offset dan, biasanya, fungsi hubungan antara waktu tempuh dan offset kirakira berbentuk hiperbolik. Amplitudo pantulan dari bidang batas, tidak hanya terkait dengan kontras impedansi akustik, tetapi dipengaruhi juga oleh jarak yang ditempuh, terutama karena energi menjadi tersebar pada area muka gelombang yang lebih besar. Fenomena ini sering disebut sebagai divergensi bola, meskipun sebenarnya terbukti bahwa muka gelombang memiliki bentuk antara bola dan elips. Tujuan pemrosesan seismik adalah untuk menghasilkan tampilan traces di mana amplitudo hanya terkait dengan kontras pada batas pemantulan, dan semua efek lain di sepanjang jalur propagasi dihilangkan (ini sering disebut sebagai pemrosesan amplitudo sebenarnya). Hal ini dapat problematik, ketika mungkin ada perbedaan yang cukup besar dari satu tracessss ke tracessss berikutnya, terkait dengan efektivitas koneksi sumber dan penerima ke permukaan, serta variasi lateral karakteristik sifatsifat zone dangkal di bawah permukaan.

Gambar 1.5 Skema yang menggambarkan: a) titik pantul dan b) titik CMP

Selama akuisisi seismik, setiap tembakan direkam oleh banyak penerima. Gambar 1.5a mengilustrasikan bahwa setiap penerima merekam pantulan dari lokasi bawah permukaan yang berbeda untuk setiap tembakan yang diberikan. Oleh karena itu, kumpulan tembakan menggabungkan energi dari lokasi bawah permukaan yang berbeda, dan tidak banyak digunakan secara langsung untuk interpretasi. Jika bumi terdiri dari lapisan yang relatif datar maka berbagai traces yang berkaitan dengan pasangan sumber-penerima yang berbagi titik tengah yang sama (CMP) juga akan berbagi titik refleksi bawah permukaan yang sama. Ini biasanya disatukan untuk membentuk kumpulan CMP (Gambar 1.5b) dan membentuk dasar untuk analisis lebih lanjut. Jika bawah permukaan bukan merupakan gather sederhana dari lapisan-lapisan bidang, masih dimungkinkan untuk membuat kumpulan untuk titik refleksi umum asalkan geometri bawah permukaan dan kecepatan seismik dapat ditentukan dengan cukup akurat dari data. Hal ini adalah aspek migrasi seismik, yang mencoba memposisikan reflektor bawah permukaan di lokasi spasial yang sebenarnya. Ada beberapa pendekatan berbeda untuk migrasi, dan ada banyak literatur tentang masalah ini. Jones (2010) memberikan gambaran yang berguna. Untuk tujuan ini, diasumsikan bahwa *gather* diperoleh dari semua *traces* terkait dengan titik bawah permukaan yang sama pada waktu refleksi tertentu.

Gambar 1.6 Skema pemrosesan data seismik

Agar *gather* dapat ditafsirkan, hal tersebut perlu diproses. Gambar 1.6 memberikan gambaran umum dari beberapa langkah yang terlibat. Penguatan yang bervariasi diterapkan untuk menghilangkan efek divergensi muka gelombang, diterapkan untuk menghilangkan sinyal yang tidak diinginkan (biasanya amplitudo tinggi dekat-permukaan), dan *gather* sebelum migrasi diterapkan untuk membawa *traces* ke lokasi bawah permukaan geometris yang benar. Seperti yang ditunjukkan pada sisi kiri Gambar 1.6, waktu refleksi dari antarmuka tertentu pada *gather* menjadi lebih lambat dengan peningkatan offset, seiring peningkatan panjang jalur. Langkah penting adalah penerapan pergeseran waktu yang berubah-ubah waktu ke setiap *traces* sehingga setiap refleksi berbaris secara horisontal, seperti yang ditunjukkan di sisi kanan Gambar 1.6. Hal ini diperlukan dalam pemrosesan konvensional karena langkah selanjutnya adalah menumpuk data dengan menjumlahkan traces-traces kumpulan sepanjang garis waktu yang konstan, yaitu sepanjang garis horisontal pada tampilan Gambar 1.6. Pendataran fungsi yang akurat pada seluruh gather punya peran penting untuk studi variasi amplitudo dengan offset (AVO). Proses pergeseran waktu untuk meratakan refleksi disebut koreksi *moveout.* Istilah yang umum digunakan adalah *normal moveout* (NMO). Gambar 1.7 mengilustrasikan metodologi *stacking* yang biasanya dipakai untuk analisis AVO, dimana bagian seismik telah dibuat dengan menumpuk data *near offset* dan data *far offset* secara terpisah. Hal ini memberikan kesan visual langsung dari efek AVO, demikian juga memberikan informasi yang dapat dianalisis secara kuantitatif.

Gambar 1.7 Penampang inversi seismik: a) near offset dan b) far offset

Gambar 1.8 Faktor-faktor yang memengaruhi propagasi gelombang seismik

Propagasi energi seismik di bumi adalah fenomena yang kompleks. Gambar 1.8 menunjukkan beberapa faktor yang berhubungan dengan kondisi geologi dan akuisisi data seismik. Maksudnya adalah untuk menghubungkan amplitudo seismik dengan kontras properti batuan melintasi batas pemantulan, tetapi ada beberapa faktor lain selain geologi yang juga memengaruhi amplitudo. Beberapa di antaranya terkait dengan peralatan yang digunakan untuk survey, variabilitas kekuatan sumber dan kopling dari tembakan ke tembakan, variabilitas sensitivitas dan kopling dari satu penerima ke yang lain, arah dari *array* penerima. Survey seismik laut memiliki keuntungan bahwa medium sumber dan penerima sangat karakteristiknya hamper sama. Hal ini berbeda untuk srvey darat, di mana kondisi sekitar sumber dan penerima lebih bervariasi, dari satu tembakan ke tembakan lainnya, tergantung pada kondisi

permukaan. Namun, efek ini dapat diperkirakan dan diperbaiki pada saat pemrosesan data seismik.

C. Data Sumur

Fluida hidrokarbon berupa minyak dan gas, terkandung dalam pori-pori batuan reservoir seperti karbonat dan batupasir. Untuk menilai kemungkinan suatu reservoir hidrokarbon, perlu diketahui porositas dan saturasi hidrokarbon, yang bersamasama menentukan jumlah hidrokarbon per satuan volume batuan. Data log sumur secara substansial memberikan kontribusi terhadap evaluasi kedua kuantitas tersebut. Cadangan struktur geologi tertentu juga dikendalikan oleh geometri reservoir, vaitu ketebalan dan luas lateralnya, serta oleh bagian volume hidrokarbon yang dapat diproduksi atau dipindahkan. Untuk mengevaluasi kemampuan produksi reservoir, maka sifat dinamis seperti permeabilitas batuan reservoir, viskositas fluida dan tekanan perlu juga diketahui. Keseluruhan ini dikenal sebagai petrofisika. Istilah "evaluasi formasi" digunakan secara kontekstual dengan hal tersebut, meskipun umumnya mencakup topik yang jauh lebih luas. Perhatikan bahwa istilah "formasi" untuk seorang ahli petrofisika sama dengan "batuan", sebuah kebiasaan yang terkadang membingungkan bagi seorang ahli geologi. Petrofisika, dalam bentuknya yang paling sederhana, adalah perhitungan porositas dan saturasi fluida sebagai fungsi kedalaman di dalam Archie (1942) mengamati hubungan porositas dan sumur. saturasi fluida. Ia menemukan bahwa pada batuan yang jenuh air, resistivitas batuan R_0 proporsional dengan resistivitas jenuh air asin R_w melalui faktor formasi bebas resistivitas F dalam bentuk sederhana[.]

Konsep Dasar

$$R_0 = F \cdot R_w \tag{1.1}$$

F tetap konstan tidak hanya untuk satu spesimen batuan yang diukur pada resistivitas air yang berbeda, selama $R_w < 1\Omega m$ (di mana konduktansi permukaan menjadi penting), tetapi juga sama untuk batuan dengan porositas yang sama dan dengan struktur pori yang serupa. Jadi, F ditentukan oleh porositas (dinyatakan sebagai satuan) dan struktur pori. Secara umum, ditemukan bahwa:

$$F = a.\phi^{-m}.R_w \tag{1.2}$$

Sehingga,

$$R_0 = a.\phi^{-m}.R_w$$
(1.3)

di mana m dikenal sebagai eksponen sementasi dan ditemukan dalam kisaran antara 1,5 (kebanyakan untuk batupasir) dan sekitar 3 (untuk batuan karbonat). Eksponen sementasi, pada kenyataannya, mencerminkan konektivitas dari sistem pori: Untuk geometri berupa tabung lurus sempurna secara teoritis ditunjukkan bahwa m = 1. Nilai sekitar 2 khas untuk batuan dengan porositas intergranular dan interkristalin, sedangkan nilai yang lebih tinggi ditemukan untuk karbonat dengan pori-pori *vuggy*, intergranular atau *moldic*. Koefisien umumnya sekitar 1 (dalam hal ini persamaan disebut sebagai Hukum Archie), dengan batupasir menunjukkan nilai serendah 0,6. Dalam industri minyak, kegunaan Persamaan 1.3 terbatas karena hanya berlaku untuk batuan jenuh air. Misalnya, dapat digunakan untuk menentukan porositas jika resistivitas air diketahui dan tergantung dari nilai perkiraan yang baik dari a dan m yang dapat dibuat. Aplikasi praktis pengukuran resistivitas muncul setelah Archie oleh Leverett, yakni pada batuan jenuh air sebagian. Ia memplot resistivitas relatifnya $\frac{R_t}{R_0}$ terhadap saturasi air S_w pada skala log-log dan memperoleh garis lurus, menunjukkan relasi:

$$S_w^{-n} = \frac{R_t}{R_0}$$
(1.4)

Di sini, R_t adalah resistivitas "sebenarnya" dari batuan pada saturasi air S_w . Eksponen saturasi n umumnya ditemukan sekitar 2. Oleh karena itu, resistivitas batuan jenuh sebagian dapat digambarkan lewat persamaan:

$$R_t = a.\phi^{-m}.S_w.R_w \tag{1.5}$$

Persamaan ini banyak digunakan karena memungkinkan kita menentukan S_w , jika resistivitas formasi yang sebenarnya diketahui serta ada pengukuran porositas yang independen; R_w , a, m dan n juga diketahui. Sehingga, persyaratannya banyak, tetapi Persamaan 1.5 menggambarkan relevansi hubungan resistivitas dan porositas. Jika kita asumsikan $m \sim 2$, $a \sim 1$ dan $n \sim 2$ kita peroleh:

$$R_t \approx \left(S_w.\phi\right)^{-2} R_w \tag{1.6}$$

Dengan membandingkan hal ini dengan persamaan Archie yang jenuh air, kita melihat bahwa bagian ruang pori yang mengandung hidrokarbon diperlakukan sebagai bagian dari matriks batuan. Karena m dan n biasanya tidak persis sama, ekivalensi tentu saja tidak sempurna, mungkin karena distribusi minyak dalam pori-pori mengubah tortuositas untuk air penghantar yang tersisa. Maka solusi untuk saturasi air:

$$S_w = \frac{1}{\phi} \sqrt{\frac{R_w}{R_t}} \tag{1.7}$$

yang merupakan persamaan sederhana dan banyak digunakan untuk memperkirakan saturasi hidrokarbon $S_0 = (1 - S_w)$. Solusi lengkap untuk saturasi air menggunakan persamaan Archie adalah:

$$S_w^n = \frac{a}{\phi m} \frac{R_w}{R_t} \tag{1.8}$$

Persamaan tersebut adalah persamaan yang membutuhkan penentuan m, a dan n, biasanya melalui pengukuran laboratorium pada inti atau pengetahuan lokal. Selain itu, porositas dan resistivitas "sesungguhnya" atau tidak terinvasi harus diketahui. Kedua parameter ini biasanya diukur atau diturunkan dari log sumur. Porositas dapat ditentukan dengan cukup akurat dari log nuklir atau akustik. Jika dibandingkan dengan porositas yang diukur pada inti, umumnya hanya ada perbedaan kecil yang terkait dengan dekompaksi inti, jenis pengukuran yang berbeda, atau koreksi yang tidak lengkap dari efek litologi pada data log. Sangat sering, kombinasi neutron, densitas, dan log akustik digunakan untuk menghitung porositas formasi, karena ini memungkinkan koreksi untuk efek litologi.

Gambar 1.9 Skema lubang bor dan sekitarnya

Demikian pula proses invasi menghambat proses mendapatkan resistivitas formasi yang benar dan tak terinvasi, tetapi dapat kita manfaatkan untuk memisahkan hidrokarbon yang digelontorkan oleh filtrat lumpur yang menginvasi dan yang tidak bergerak atau residu (Gambar 1.9). Gambar yang disederhanakan ini memungkinkan untuk menyatakan resistivitas zone yang diinvasi R_{xo} yang analog dengan Persamaan 1.1:

$$R_{xo} = F.R_{mf} \tag{1.8}$$

di mana R_{mf} adalah resistivitas fluida yang menginvasi (filtrat lumpur). Karena S_w adalah saturasi air sebelum invasi dan S_{xo} saturasi setelah invasi, $S_{xo} - S_w$ adalah saturasi minyak yang dapat dipindahkan atau diproduksi. Dengan cara yang analog dengan persamaan 1.7 kita dapat nyatakan:

$$S_{xo} \approx \frac{1}{\varnothing} \sqrt{\frac{R_{mf}}{R_{xo}}}$$
(1.9)

dan kita bisa peroleh besarnya minyak bergerak relatif terhadap satuan volume batuan:

$$\emptyset \left(S_{xo} - S_{w} \right) \approx \sqrt{\frac{R_{mf}}{R_{xo}}} - \sqrt{\frac{R_{w}}{R_{t}}}$$
(1.10)

dimana asumsi yang sama seperti untuk Persamaan 1.7 dibuat. Persamaan 1.11 berisi tiga besaran yang dapat diukur dengan log sumur (R_t , R_{xo} dan \emptyset), dan dua yang paling baik diukur dari sampel fluida (R_w dan R_{mf})' Dengan persamaan tersebut, perkiraan saturasi minyak yang dapat dipindahkan atau diproduksi dapat dibuat.

Gambar 1.10 Jangkauan beberapa pengukuran data log

Selain daripada itu yang penting diperhatikan oleh para ahli petrofisika adalah pengaruh dari zone invasi pada pengukuran data log sendiri, dimana akibat dari perbedaan kemampuan dari jangkauan masing-masing pengukuran maka pengaruh dari zone filtrate lumpur pemboran tidak bisa diabaikan. Gambar 1.10 mengilustrasikan beberapa variasi jangkauan pengukuran dari data log, tampak jangkauan terpanjang pada pengukuran data

log deep resistivity yakni 60 inci, sedangkan jangkauan terpendek pada pengukuran data log densitas yakni 6 inci, sehingga jika ada suatu zone invasi melebihi jangkauan tersebut maka datanya harus dikoreksi. Dalam hal ini, misalnya zone invasi memengaruhi pengukuran data log densitas dan *sonic* (Vp dan Vs). Maka, seperti tampak pada Gambar 1.11 nilai densitas, Vp dan Vs yang pada saat masuk interval dimana zone invasi berpengaruh, nilai dari variabel tersebut menjadi lebih tinggi, harus dikoreksi menjadi nilai yang lebih rendah. Zone yang mudah terinvasi biasanya adalah zone yang *permeable*, biasanya adalah suatu lapisan batupasir dan kadang-kadang berperan sebagai zone reservoir.

Gambar 1.11 Pengaruh zone invasi dari filtrate lumpur pada pengukuran data log densitas dan log sonic (V_p dan V_s) beserta koreksinya

Koreksi terhadap data log tersebut sangat membantu dalam proses pencocokan antara data seismik dan data sumur melalui penghitungan sintetik seismogram. Pada saat data belum dikoreksi, tampak bahwa data seismik dan data sintetik kurang cocok, namun setelah adanya koreksi sebagaimana dilakukan pada Gambar 1.11, maka data seismik dan data sintetik menjadi lebih cocok (Gambar 1.12). Proses pencocokannya akan lebih lanjut dibahas pada Bab IV>

Gambar 1.12 Pencocokan data seismik dan data sintetik: a) sebelum koreksi dan b) sesudah koreksi

Dari penjelasan yang telah disampaikan di muka, dapat disimpulkan bahwa data seismik dapat diintegrasikan dengan data sumur, melalui banyak pertimbangan serta melalui banyak pengkondisian data terlebih dahulu. Hal ini terjadi terutama karena faktor skala yang berbeda antara data sumur dan data seismik. Hal ini dapat diilustrasikan sebagaimana yang tampak pada Gambar 1.13, dimana data core (inti) merupakan data yang paling nyata, merupakan sampel litologi reservoir yang bisa diamati secara langsung sifat fsikanya, termasuk parameter porositas dan kandungan fluidanya, namun yang harus disadari hal tersebut hanya merupakan sampel dari suatu titik dari serangkaian coring yang dilakukan pada suatu zone prospek yang ditunjukkan oleh hasil evaluasi formasi berdasarkan data log. Harapannya suatu interval yang mengandung prospek berada pada jangkauan resolusi dari data seismik. Namun kenyataannya seperti yang ditunjukkan pada Gambar 1.3, bahwa resolusi seismik rata-rata terbatas hanya untuk merefleksikan ketebalan lebih dari 20 meter, sehingga pada saat pembahasan selanjutnya asumsi tersebut senantiasa akan dijadikan pertimbangan dalam pemodelan AVO maupun inversi data seismik.

Gambar 1.13 Skala sampling yang terjadi pada saat coring, loging, borehole seismic

RANGKUMAN

- 1. Konsep dasar dari pemodelan seismik adalah melakukan karakterisasi reservoir, untuk mengetahui pelamparan properti reservoir secara lateral, yang diketahui dari data log dari sumur.
- 2. Pada saat pencocokan antara data seismik dan data sumur, ditemukan adanya perbedaan skala pengamatan, yang terkendala oleh keterbatasan resolusi dari data seismik.
- 3. Sebelum dilakukan pencocokan antara data seismik dan data sumur dibutuhkan adanya pengkondisian data dari masing-masing data.

UJI CAPAIAN PEMBELAJARAN

- 1. Apakah tujuan daripada karakterisasi reservoir?
- 2. Kenapa kemampuan resolusi dari data seismik bisa terbatas, tidak mampu merefleksikan seluruh kemampuan dari data log?
- 3. Apa dasar daripada evaluasi formasi dengan menggunakan data log?

BAHAN DISKUSI

Diskusikan dalam kelompok kondisi geologi yang bagaimana yang memengaruhi propagasi gelombang seismik.

PUSTAKA

- Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoircharacteristics. Petr Trans AIME, 146: p. 54 62
- Crain, E. R. , 2013, Crain's Petrophysical Handbook. <u>www.</u> <u>spec2000.net</u>.

- Leverett, M.C., 1938, Flow of oil-water mixtures through unconsolidated sands. Petro Trans AI ME p. 132
- Luthi, S.M., 2001, Geological well logs : use in reservoir modelling, Springer-Verlag Berlin Heidelberg, 381 p.
- Pennington, W., 1997, Seismic petrophysics: an applied science for reservoir geophysics. The Leading Edge, 16(3), p.241–244
- Ronoatmojo, I.S. and Burhannudinnur, M., 2021, Pengantar Seismologi Eksplorasi, Penerbit Salemba Teknika, ISBN: 978-979-9549-57-0, 158 p.
- Sayers, C. and Chopra, S., 2009, Introduction to this special section – Rock physics. The Leading Edge, 28(1), p. 15–16
- Simm, R., and Bacon, M., 2014, Seismic Amplitude: An Interpreter's Handbook, Cambridge University Press, 283 pp

Wang, Z., 2001, Fundamentals of seismic rock physics. Geophysics, 66, p. 398–412

BIODATA PENULIS

Dr.Ir. Imam Setiaji Ronoatmojo, M.T lahir di Cilacap, 1 Juli 1960. Meraih gelar Doktor dari Institut Teknologi Bandung pada tahun 2011 dengan disertasi "Estimasi Tetapan Anisotropi Medium Isotrop Transversal Tegak dari Difraksi Gelombang Seismik-P dengan Pendekatan Polinomial Orde-3", mempunyai kebaruan berupa penurunan persamaan anisotropi dari

fungsi difraksi, sebelumnya berupa penurunan persamaan dari fungsi refleksi. Beliau juga aktif sebagai instruktur di bidang Desain Parameter Seismik 3-D dan Geomekanika. Selama hampir 3 dekade mengabdikan diri pada sebuah perusahaan jasa minyak PT. Elnusa Tbk dengan jabatan akhir sebagai Principal of Elnusa Petroleum School. Setelah pensiun dari PT.Elnusa Tbk pada tahun 2015, penulis menjadi tenaga pengajar tetap di Universitas Trisakti dengan mata kuliah Geofisika Hidrokarbon, Pemodelan Geostatistik dan Mekanika Batuan. Disamping itu sebagai pengajar tidak tetap pada Program Magister F-MIPA Universitas Indonesia pada mata kuliah Seismologi Eksplorasi dan Geofisika Instrumentasi. Beberapa karya terkait adalah buku Mekanika Batuan (Penerbit Universitas Trisakti. 2019), Pemodelan Geostatistik (Penerbit Universitas Trisakti, 2020), Pengantar Seismologi Eksplorasi (Penerbit Salemba Teknika, 2021), Geomekanika Reservoir (Penerbit Universitas Trisakti, 2022) dan penemuan metode baru berupa penurunan persamaan tetapan anisotropi berdasarkan fungsi difraksi Gelombang Seismik-P serta memperoleh Hak Cipta pada tahun 2019 HAKI No:EC0020191775, 29 Mei 2019.

Dr. Ir. Muhammad Burhannudinnur, M.Sc , lahir di Bantul, 10 Oktober 1967. Sarjana stata-1 Teknik Geologi ditempuh di Universitas Gadajah Mada Yogyakarta, Master Petroleum Geosxience diselesai-kan Univeristi Brunei Darussalam, Lulus program Doktor Geologi di Institut Teknologi Bandung. Riwayat pekerjaan: sejak 1992 mengabdi

sebagai dosen di Teknik Geologi Universitas Trisakti dengan pengalaman lain sebagai senior konsultan di Schlumberger dari tahun 1996 sampai 2002, Pengajar internasional pada insituitur antatanarivo, Sekretaris Prodi Teknik Geologi FTKE Usakti. Direktur Badan Afiliasi Teknologi Mineral Usakti. Terlibat aktif dalam kegiatan industri dan masyarakat sebagai konsultan GGR kegiatan Migas, instruktur fieldtrip, pengajar kursus sejak 1996. Organisasi: Ketua Assosiasi Prodi Teknik Geologi Indonesia, Pengurus IAGI, anggota aktif AAPG, SEG dan EAGE.

Pemodelan_Seismik.docx

ORIGINALITY REPORT

SIMILA	3% ARITY INDEX	13% INTERNET SOURCES	7% PUBLICATIONS	8% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	WWW.gec	okniga.org		3%
2	repositor	y.ub.ac.id		1 %
3	www.kar	yailmiah.trisak	ti.ac.id	1 %
4	idoc.pub	2		1 %
5	WWW.COL	irsehero.com		1 %
6	repositor	y.its.ac.id		<1 %
7	id.123do	k.com		<1 %
8	Submitte Student Paper	ed to University	of Leeds	<1 %
9	fr.scribd.	com		<1 %
10	Submitte Technolc Student Paper	ed to Imperial C ogy and Medici	College of Science ne	ce, <1%
11	what-who Internet Source	en-how.com		<1 %
12	WWW.Can	nbridge.org		<1 %

Submitted to University of Aberdeen

Student Paper

13		< %
14	repository.unpar.ac.id	<1%
15	repository.tudelft.nl Internet Source	<1%
16	www.penerbitan.trisakti.ac.id	<1%
17	Crewes.org Internet Source	<1%
18	www.agl.uh.edu Internet Source	<1%
19	onepetro.org Internet Source	<1%
20	id.scribd.com Internet Source	<1%
21	archive.org	<1%
22	WWW.gsj.jp Internet Source	<1%
23	pastel.archives-ouvertes.fr	<1%
24	Submitted to Heriot-Watt University Student Paper	<1%
25	Richard R. Hillis. "Evidence For Pliocene Erosion At Ashmore Reef (Timor Sea) From The Sonic elocities Of Neogene Limestone Formations", Exploration Geophysics, 2018 Publication	<1 %
26	anm.yazd.ac.ir	<1%

Л

hebergement.u-psud.fr

27

28	Dario Grana, Tapan Mukerji, Philippe Doyen. "Seismic Reservoir Modeling", Wiley, 2021 Publication	<1%
29	Submitted to Fakultas Teknologi Kebumian dan Energi Universitas Trisakti ^{Student Paper}	<1%
30	docplayer.net Internet Source	<1%
31	dspace.mit.edu Internet Source	<1%
32	Pietsch, R., and G. Uenzelmann-Neben. "The Manihiki Plateau-A multistage volcanic emplacement history", Geochemistry Geophysics Geosystems, 2015. Publication	<1 %
33	ijogst.put.ac.ir Internet Source	<1%
34	Submitted to Universitas Brawijaya Student Paper	<1%
35	odplegacy.org Internet Source	<1%
36	WWW.geotop.ca Internet Source	<1%
37	Mohamed I. Abdel-Fattah, John D. Pigott, Mohamed S. El-Sadek. "Integrated seismic attributes and stochastic inversion for reservoir characterization: Insights from Wadi field (NE Abu-Gharadig Basin, Egypt)", Journal of African Earth Sciences, 2020 Publication	<1 %
	ball bandle not	

39	repositorio.unal.edu.co	<1%
40	fttm.itb.ac.id Internet Source	<1%
41	Submitted to Khalifa University of Science Technology and Research Student Paper	<1 %
42	mafiadoc.com Internet Source	<1%
43	epdf.pub Internet Source	<1%
44	istina.ipmnet.ru Internet Source	<1%
45	unversityconsortium.files.wordpress.com	<1%
46	www.allekabels.nl Internet Source	<1%
47	repository.mercubuana.ac.id	<1%
48	digital.library.unt.edu	<1%
49	Joel Walls. "Well Logs and Rock Physics in Seismic Reservoir Characterization", Proceedings of Offshore Technology Conference OTC, 05/2004 Publication	<1 %
50	library.universitaspertamina.ac.id	<1%
51	planetekonomi.blogspot.com	<1%
52	adoc.pub Internet Source	<1%

53	CORE.ac.uk Internet Source	<1 %
54	doku.pub Internet Source	<1%
55	en.trisakti.ac.id	<1%
56	www.dluha.net Internet Source	<1%

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	Off		