

HOME ABOUT LOGIN REGISTER

SEARCH

CURRENT ARCHIVES ANNOUNCEMENTS EDITORIAL TEAM REVIEWERS

Jurnal Pendidikan Biologi

PB

JPBIO X NOMOR X

iterbitkan oleh: regram Studi Pendidikan Biologi TKID Regrad V basis

e-ISSN 2540-802X

BULAN ISSN 20XX 2540-802X

Home > Vol 10, No 1 (2025)

JPBIO (Jurnal Pendidikan Biologi)

Journal title Initials	JPBIO (Jurnal Pendidikan Biologi) JBIO
Online Since	2016
Grade	Accredited Sinta 3 Journal; decree No. 85/M/KPT/2020
Frequency	2 Issues per Year (April and November)
Online ISSN	2540-802X
Editor-in-chief	Yakobus Bustami (Scopus ID: 57194697472)
Managing Editor	Anyan (Sinta ID: 5999449)
Publisher	Department of Research and Community Service of STKIP Persada Khatulistiwa Sintang
DOI	Prefix 10.31932 by ≤ Cro ssref
Indexed	Sinta Â Google Schoolar Â Index Copernicus Garuda BASE Dimensions

JPBIO (Jurnal Pendidikan Biologi) is a scientific journal published by Department of Research and Community Service of STKIP Persada Khatulistiwa Sintang with e-ISSN 2540-802X receiving manuscripts contribution that have never been published or sent to other journals related biology and biology education with the topics: (1) teaching and learning; (2) case study, lesson study, classroom action research, experiments, and others; (3) education curriculum; (4) learning evaluation; (5) learning media; (6) development of teaching materials; (7) school management or laboratory management; (8) problems / trends in the field of education; and (9) biological sciences. JPBIO (Jurnal Pendidikan Biologi) was published twice a year, on April and November and at least 5 articles per issue. This journal written in English. All submitted manuscripts will be initially reviewed by editors and are then evaluated by two reviewers through the double-blind review process. National accredited Sinta 3 by the Ministry of Research-Technology and Higher Education Republic of Indonesia with decree Number 85/M/KPT/2020.

Announcements

JPBIO (JURNAL PENDIDIKAN BIOLOGI) ACCREDITED BY KEMENRISTEKDIKTI

JPBIO (Jurnal Pendidikan Biologi) has been accredited by the Ministry of Research, Technology and Higher Education, Republic of Indonesia (Decree No. 85/M/KPT/2020; as a SINTA 3 Accredited Journal)

Posted: 2020-06-02

CALL FOR PAPER 2025

We invite you to submit your papers to JPBIO (Jurnal Pendidikan Biologi).

Visit website: http://jurnal.stkippersada.ac.id/jurnal/index.php/JBIO/index

JPBIO (Jurnal Pendidikan Biologi) has been indexing and abstracting:

Editorial Team
Reviewers
Peer Review Process
Focus & Scope
Indexing and Abstracting
Author Guidelines
Publication Ethics
Online Submission
Copyright Transfer Form
Plagiarism Check
Journal Licence & Copyright
Visitor Statistics
USER
Username
Password

SUPPORTED BY:

🗌 Remember me

Login

Sponsoring Organization

Scopus'

COLLABORATION WITH

FLAG COUNTER

GARUDA Of Dimensions

Posted: 2024-11-19

More...

More Announcements...

Vol 10, No 1 (2025): April 2025

Table of Contents

Articles	
Correlation of self-efficacy, social support, and learning interest with students' metacognitive skills in biology learning DOI : 10.31932/jpbio.v10i1.3928	PDF 01-12
Sri Putri Dinar, Arsad Bahri, Ismail Ismail	
Exploration of biodiversity and evenness of bryophytes in mount of bogor, Indonesia DOI : 10.31932/jpbio.v10i1.4051	PDF 13-25
Rizhal Hendi Ristanto, Mutia Ayaar Sihab, Ririn Anindiana Putri, Rizky Nur Fitria, Ericka Darmawan, Diana Vivanti Sigit, Regan A.K.P.Y Birran	
The effect of growth regulator on growth rate of amorphopallus titanum DOI : 10.31932/jpbio.v10i1.4052	PDF 26-34
Lia Anggraini, Afrizal Mayub, Rendy Wikrama Wardana, Aceng Ruyani, Henny Johan	
ROCED: Robot card biology education as a media for biology learning DOI : 10.31932/jpbio.v10i1.4227	PDF 35-49
Solihin Solihin, Adelia Siti Nur Apriliani, An Nabila Nur Jannah	
Gene expression of sirtuin-1 in adult with hypertension	PDF
DOI : 10.31932/jpbio.v10i1.4456 Yohana Yohana, Meutia Atika Faradilla, Endrico Xavierees Tungka, Kurniasari Kurniasari	50-58
	205
ldentification of weaver ant behavior patterns (oechophylla smaragdina) DOI : 10.31932/jpbio.v10i1.4458	PDF 59-68
Putri Indana Zulfa, Aulia Faradina Dwi Nabila Azzahra, Muta'allimah Muta'allimah, Nikmah Ilmin Nafi'ah, Adieba Warda Hayya	
The correlation between communication skill and basic teaching skill of prospective biology teachers	PDF 69-76
DOI : 10.31932/jpbio.v10i1.4485	
Widya Arwita, Hasruddin Hasruddin, Widia Ningsih, Rizal Mukra, Sailana Mira Rangkuti, Amanda Bella Junniar	
Vegetation compotition and structure of the pole community in the Girimanik natural forest area	PDF 77-88
DOI : 10.31932/jpbio.v10i1.4487 Berliana Githa Ardilla, Santhyami Santhyami	
Utilization of animals in the manyarung ritual ceremony at banuaka' taman kapuas, sayut village	PDF 89-99
DOI : 10.31932/jpbio.v10i1.4531 Benediktus Ege, Markus Iyus Supiandi, Yakobus Bustami, Hendrikus Julung, Yuniarti Essi Utami	
Development of biology e-modules on environmental change integrated with wahdatul ulum DOI : 10.31932/jpbio.v10i1.4545	PDF 100-113
Elyda Khairani Nasution, Nirwana Anas	
Generation Z needs resources and media for marine biology learning based on local potential DOI : 10.31932/jpbio.v10i1.4462	PDF 114-123
Nur Fitriana Sam, Dewi Retnaningati, Munira Munira	
Density and distribution of holothuria leucospilota along the coast of dedap island, pulau abang waters	PDF 124-134
DOI : 10.31932/jpbio.v10i1.4532 Ijal Wiranto, Yarsi Efendi, Fenny Agustina	
ויש איז מוונט, דמושו בובוומ, רבוווץ מצמצנווע	
Crab diversity in tongke-tongke mangroves, east sinjai district, sinjai regency DOI : 10.31932/jpbio.v10i1.4589	PDF 135-151
Muh. Sabri, Aswar Rustam	
Analysis of students' science process skills in human reflex practicum based on the guided	PDF 152-161
inquiry learning	152-101

Nur Mustaqimah, Nurul Fajryani Usman, Nurhayati Nurhayati, Nurbaya Nurbaya

DOI : 10.31932/jpbio.v10i1.4600

The influence of academic ability and learning styles on learning outcomes in differentiated instruction DOI : 10.31932/jpbio.v10i1.4525 Arie Wahyuni, Zaenal Abidin, Agus Yadi Ismail, Sukron Aminudin	PDF 162-173
Feasibility of the literacy taxonomy guidebook in the digital age for high school biology teachers DOI : 10.31932/jpbio.v10i1.4493	PDF 174-190

Odela Priscilia Murni, Afandi Afandi, Anisyah Yuniarti, Joko Sulianto, Sajidan Sajidan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

HOME ABOUT LOGIN REGISTER

REGISTER SEARCH CU

CURRENT ARCHIVES ANNOUNCEMENTS EDITORIAL TEAM REVIEWERS

Home > Vol 10, No 1 (2025) > **Yohana**

Gene expression of sirtuin-1 in adult with hypertension

Yohana Yohana, Meutia Atika Faradilla, Endrico Xavierees Tungka, Kurniasari Kurniasari

Abstract

SIRT1 is a key member of the sirtuin family, exerts a unique protective effect on endothelial cells by modulating various proteins, and has a role as an anti-aging biomarker. Hypertension is pathology chronic pathological condition that disrupts ROS and antioxidants. Little evidence showed that sirtuin has a role in chronic oxidative stress. Therefore, the objective of this study was to analyze the relative expression of Sirtuin-1 in hypertension. This is a case-control study with 30 subjects, adults 50-60 years old in each group. JNC 8 was used to determine blood pressure. Quantitative Real Time PCR was used to calculate the level of Sirt-1. The Livak method was used for relative expression. JASP software was used for data analysis. Our study showed Sirtuin-1 mRNA expression was significantly lower in the hypertension group than the normotension group. It was 0.52 fold lower in hypertension. Sirtuin-1 stimulates antioxidants such as superoxide dismutase and catalase through FOXO-dependent signaling. It has a similar role to antioxidants for eliminating ROS. Sirtuin-1 expression is significantly reduced in individuals with hypertension, suggesting its potential role in oxidative stress regulation and its value as a biomarker for vascular aging and hypertension-related endothelial dysfunction.

Keyword: Sirtuin-1, hypertension, expression, mRNA

Full Text:

References

Alam, F., Syed, H., Amjad, S., Baig, M., Khan, T. A., & Rehman, R. (2021). Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Current research in physiology, 4, 119-124. Retrieved from https://doi.org/10.1016/j.crphys.2021.03.002

Amponsah-Offeh, M., Diaba-Nuhoho, P., Speier, S., & Morawietz, H. (2023). Oxidative stress, antioxidants and hypertension. Antioxidants, 12(2), 281. Retrieved from https://doi.org/10.3390/antiox12020281

Arifen, N., Li, Y., Srivastava, A. K., & Anand-Srivastava, M. B. (2022). Sirtuin1 inhibitor attenuates hypertension in spontaneously hypertensive rats: role of Gi? proteins and nitroxidative stress. Journal of Hypertension, 40(7), 1314-1326. Retrieved from https://doi.org/10.1097/HJH.00000000003143

Astutik, E., Puspikawati, S. I., Dewi, D. M. S. K., Mandagi, A. M., & Sebayang, S. K. (2020). Prevalence and Risk Factors of High Blood Pressure among Adults in Banyuwangi Coastal Communities, Indonesia. Ethiopian journal of health sciences, 30(6). Retrieved from https://doi.org/10.4314/ejhs.v30i6.12

Begum, M. K., Konja, D., Singh, S., Chlopicki, S., & Wang, Y. (2021). Endothelial SIRT1 as a target for the prevention of arterial aging: promises and challenges. Journal of Cardiovascular Pharmacology, 78, S63-S77. Retrieved from https://doi.org/10.1097/FJC.000000000001154

Campagna, R., Mazzanti, L., Pompei, V., Alia, S., Vignini, A., & Emanuelli, M. (2024). The multifaceted role of endothelial Sirt1 in vascular aging: an update. Cells, 13(17), 1469. Retrieved from https://doi.org/10.3390/cells13171469.

Chen, Y., et al. (2020). Grape seed proanthocyanidin extract ameliorates endothelial dysfunction and hypertension via Sirt1-AMPKeNos signaling. Journal of Nutrition and Biochemistry, 77, 108331. Retrieved from https://doi.org/10.3390/nu11122844

Griendling, K. K., Camargo, L. L., Rios, F. J., Alves-Lopes, R., Montezano, A. C., & Touyz, R. M. (2021). Oxidative stress and hypertension. Circulation research, 128(7), 993-1020. Retrieved from https://doi.org/10.3390/cells13171469

Habibian, J., Ferguson, B.S. (2018). The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. Int. J. Mol. Sci, 20, 102. Retrieved from https://doi.org/10.3390/ijms20010102

Hossain, E., Li, Y., & Anand-Srivastava, M. B. (2021). Angiotensin II-induced overexpression of sirtuin 1 contributes to enhanced expression of Gi? proteins and hyperproliferation of vascular smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 321(3), H496-H508. Retrieved from https://doi.org/10.1152/ajpheart.00898.2020

Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C. (2019). Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis. Frontiers in pharmacology, 10, 421 Retrieved from https://doi.org/10.3390/ijms20010102

Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y. (2019). circ-Sirt1 controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res, 47(35), 80-93 Retrieved from https://doi.org/10.1093/nar/gkz141

Li, Y., Hossain, E., Arifen, N., Srivastava, A. K., & Anand-Srivastava, M. B. (2022). Sirtuin1 contributes to the overexpression of Gi? proteins and hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 40(1), 117-127. Retrieved from https://doi.org/10.1097/HJH.00000000002985

Penantian, R. M., Antarianto, R. D., & Hardiany, N. S. (2023). Effect of Calorie Restriction on the Expression of Sirtuin1 as an Antiaging Biomarker. Makara Journal of Science. 27(3). 3. Retrieved from https://scholarhub.ui.ac.id/science/vol27/iss3/3

Reviewers

Peer Review Process

IPRIC

Focus & Scope

Indexing and Abstracting

Author Guidelines

Publication Ethics

Online Submission

Copyright Transfer Form

Plagiarism Check

Journal Licence & Copyright

Visitor Statistic

ABOUT THE AUTHORS

Yohana Yohana Department of Biochemistry, Faculty of Medicine Universitas Trisakti, Jakarta Indonesia Deaprtment of Biochemistry, head department *Meutia Atika Faradilla* Department of Biochemistry, Faculty of Medicine Universitas Trisakti, Jakarta Indonesia *Endrico Xavierees Tungka* Department of Biochemistry,

Faculty of Medicine Universitas Trisakti, Jakarta Indonesia

Kurniasari Kurniasari Department of Biochemistry, Faculty of Medicine Universitas Trisakti, Jakarta Indonesia

Jsername	
assword	

Remember me

Login

SUPPORTED BY:

Sponsoring Organization Maiese, K. (2021). Sirtuins in metabolic disease: innovative therapeutic strategies with SIRT1, AMPK, mTOR, and nicotinamide. In Sirtuin Biology in Cancer and Metabolic Disease (pp. 3-23). Academic Press. Retrieved from https://doi.org/10.1016/B978-0-12-822467-0.00006-1

Manolis, A. J. (2020). Hypertension: A silent killer. Journal of Clinical Hypertension, 22(1), 13-21. Retrieved from https://doi.org/10.1080/14779072.2024.2357344

Meiyanti, M., Margo, E., Chudri, J., & Faradilla, M. A. (2023). Factors associated with plasma malondialdehyde levels in people over 40 years. Journal of Drug Delivery and Therapeutics, 13(7), 52-56. Retrieved from https://doi.org/ 10.22270/jddt.v13i7.6142

Mulia, E. P. B., & Prajitno, S. (2020, February). Neglected cases of hypertension in rural Indonesia: A cross-sectional study of prevalence and risk factors on adult population. In IOP Conference Series: Earth and Environmental Science, 441(1), 012167. Retrieved from https://doi.org/10.1088/1755-1315/441/1/012167

Negre-Salvayre, A., Swiader, A., Salvayre, R., & Guerby, P. (2022). Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Archives of biochemistry and biophysics, 730, 109416. Retrieved from https://doi.org/10.1016/j.abb.2022.109416

Teixeira, F. C. (2020). Sirtuins: Regulatory proteins in health and disease. Journal of Molecular Medicine, 98(9), 833-844. Retrieved from https://doi.org/10.3390/ijms22020630

Ren, C. Z., Wu, Z. T., Wang, W., Tan, X., Yang, Y. H., Wang, Y. K., Li, M. L., & Wang, W. Z. (2022). SIRT1 exerts anti-hypertensive effect via FOXO1 activation in the rostral ventrolateral medulla. Free radical biology & medicine, 188, 1–13. Retrieved from https://doi.org/10.1016/j.freeradbiomed.2022.06.003

Sazdova, I., Hadzi-Petrushev, N., Keremidarska-Markova, M., Stojchevski, R., Sopi, R., Shileiko, S., & Mladenov, M. (2024). SIRT-Associated Attenuation of Cellular Senescence in Vascular Wall. Mechanisms of Ageing and Development, 111943. Retrieved from https://doi.org/10.1016/j.mad.2024.111943

Shahgaldi, S., & Kahmini, F. R. (2021). A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sciences, 282, 119803. Retrieved from https://doi.org/10.1016/j.lfs.2021.119803

Singh, S., & Ubaid, M. (2020). Oxidative stress and inflammation in hypertension. Journal of Cardiovascular Medicine, 21(12), 641-648. Retrieved from https://doi.org/10.3390/antiox11010172

Sun, H., Li, D., Wei, C., Liu, L., Xin, Z., Gao, H., & Gao, R. (2024). The relationship between SIRT1 and inflammation: a systematic review and meta-analysis. Frontiers in Immunology, 15, 1465849. Retrieved from https://doi.org/10.3389/fimmu.2024.1465849

Touyz, R. M., Rios, F. J., Alves-Lopes, R., Neves, K. B., Camargo, L. L., & Montezano, A. C. (2020). Oxidative stress: a unifying paradigm in hypertension. Canadian journal of cardiology, 36(5), 659-670. Retrieved from https://doi.org/10.1016/j.cjca.2020.02.081

Wan, X., & Garg, N. J. (2021). Sirtuin control of mitochondrial dysfunction, oxidative stress, and inflammation in chagas disease models. Frontiers in Cellular and Infection Microbiology, 11, 693051. Retrieved from https://doi.org/10.3389/fcimb.2021.693051

Wu, Q. J., Zhang, T. N., Chen, H. H., Yu, X. F., Lv, J. L., Liu, Y. Y., ... & Zhao, Y. H. (2022). The sirtuin family in health and disease. Signal Transduction and Targeted Therapy, 7(1), 402. Retrieved from https://doi.org/10.1038/s41392-022-01257-8

Yang, X. (2022). Sirt1/NF kB/MAPK signaling pathway regulates blood pressure and cardiac hypertrophy. American Journal of Hypertension, 35(5), 432-441. Retrieved from https://doi.org/10.1016/j.biopha.2016.11.011

Yohana, Y., Faradilla, M. A., Meiyanti, M., Hartanti, M. D., Margo, E., & Anastasya, K. S. (2024). mRNA Relative Expression Catalase in Hypertension. Bioscientist: Jurnal Ilmiah Biologi, 12(2), 1821-1827. Retrieved from https://doi.org/10.33394/bioscientist.v12i2.12825

Zhang, W., Huang, Q., Zeng, Z., Wu, J., Zhang, Y., & Chen, Z. (2017). Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxidative medicine and cellular longevity, 2017(1), 7543973. Retrieved from https://doi.org/10.1155/2017/7543973

DOI: https://doi.org/10.31932/jpbio.v10i1.4456

Article Metrics

ບບ

Abstract view : 30 times PDF - 12 times

Refbacks

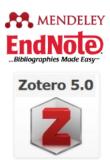
• There are currently no refbacks.

0 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Scopus

COLLABORATION WITH

FLAG COUNTER



PLAGIARISM CHECK

REFERENCE TOOLS

e-ISSN 2540-802X

» View » Subscribe

All

Search
Search Scope

Search

Browse

- » By Issue
 » By Author
 » By Title
 » Other Journals

FONT SIZE

INFORMATION

» For Readers

» For Authors
 » For Librarians

HOME ABOUT LOGIN

REGISTER SEARCH

CURRENT ARCHIVES ANNOUNCEMENTS EDITORIAL TEAM REVIEWERS

Home > About the Journal > Editorial Team

Editorial Team

Editor-in-Chief

Dr. Yakobus Bustami, M.Pd., (Scopus ID: 57194697472) STKIP Persada Khatulistiwa Sintang, Indonesia

Managing Editor

Anyan, M.Kom., (Sinta ID: 5999449) STKIP Persada Khatulistiwa Sintang, Indonesia

Assistant Editors

Didin Syafruddin, M.Si., (Scopus ID: 57207960619) STKIP Persada Khatulistiwa Sintang, Indonesia Yuniarti Essi Utami, M.Pd., (Scopus ID: 57210448379) STKIP Persada Khatulistiwa Sintang, Indonesia

Editorial Board

Prof. Dr. Aloysius Duran Corebima, M.Pd, (Scopus ID: 56857563800) Universitas Kanjuruhan Malang, Indonesia Dr. Agus Prasetyo Utomo, M.Pd., (Scopus ID: 57202605051) Universitas Muhammadiyah Jember, Indonesia Asep Mulyani, M.Pd, (Sinta ID: 6039868) IAIN Syekh Nurjati Cirebon, Indonesia Dr. Anggi Tias Pratama, M.Pd., (Scopus ID: 57191420208) Universitas Negeri Yogyakarta, Indonesia Dr. Setiyo Prajoko, M.Pd., (Sinta ID: 6110903) Universitas Tidar, Indonesia Suratmi M.Pd, (Sinta ID: 6083519) Universitas Sriwijaya, Indonesia Dr. Sintje Liline, M.Pd., (Scopus ID: 57190258674) Universitas Pattimura, Indonesia Leliavia Leliavia, M.Pd., (Scopus ID: 57210443205) STKIP Persada Khatulistiwa Sintang, Indonesia Benediktus Ege, M.Pd., (Scopus ID: 57208839834) STKIP Persada Khatulistiwa, Indonesia Hendrikus Julung, M.Pd., (Scopus ID: 57208835729) STKIP Persada Khatulistiwa Sintang, Indonesia Rachmi Afriani, M.Si., (Scopus ID: 57207963749) Universitas Kapuas Sintang, Indonesia Hendra Setiawan, M.Si., (Scopus ID: 56581861600) Universitas Kapuas Sintang, Indonesia F Rahayu Esti Wahyuni, M.Pd., (Scopus ID: 57210750859) STKIP Persada Khatulistiwa Sintang, Indonesia

@ • • • This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Reviewers

Peer Review Process

Focus & Scope

Indexing and Abstracting

Author Guidelines

Publication Ethics

Online Submission

Copyright Transfer Form

Plagiarism Check

Journal Licence & Copyright

USER

Username Password 🗌 Remember me Login

SUPPORTED BY:

Sponsoring Organization

Scopus'

COLLABORATION WITH

FLAG COUNTER

JPBIO (Jurnal Pendidikan Biologi) Vol. 10, No. I, April 2025, 50 – 58 //e-ISSN 2540-802X http://jurnal.stkippersada.ac.id/jurnal/index.php/JBIO/index

Gene expression of sirtuin-I in adult with hypertension

Check for updates

Yohana 🕩, Meutia Atika Faradilla, Endrico Xavierees Tungka, Kurniasari

Department of Biochemistry, Faculty of Medicine Universitas Trisakti, Jakarta, Indonesia

*Corresponding author: dryohana@trisakti.ac.id

Article Info	ABSTRACT		
Article History:	SIRTI is a key member of the sirtuin family, exerts a unique		
Received 03 February 2025	protective effect on endothelial cells by modulating various		
Revised 09 March 2025	proteins, and has a role as an anti-aging biomarker.		
Accepted 14 April 2025	Hypertension is pathology chronic pathological condition that		
Published 30 April 2025	disrupts ROS and antioxidants. Little evidence showed that		
	sirtuin has a role in chronic oxidative stress. Therefore, the		
Keywords:	objective of this study was to analyze the relative expression of		
Sirtuin-I	Sirtuin-I in hypertension. This is a case-control study with 30		
Hypertension	subjects, adults 50-60 years old in each group. JNC 8 was used		
Expression	to determine blood pressure. Quantitative Real Time PCR was		
mRNA	used to calculate the level of Sirt-I. The Livak method was used		
	for relative expression. JASP software was used for data analysis.		
同步增高	Our study showed Sirtuin-I mRNA expression was		
	significantly lower in the hypertension group than the		
ADD 194539	normotension group. It was 0.52 fold lower in hypertension.		
X27794538	Sirtuin-I stimulates antioxidants such as superoxide dismutase		
网络盖马德尔的名	and catalase through FOXO-dependent signaling. It has a		
	similar role to antioxidants for eliminating ROS. Sirtuin-I		
1010375236	expression is significantly reduced in individuals with		
	hypertension, suggesting its potential role in oxidative stress		

Copyright © 2025, Yohana et al This is an open access article under the CC–BY-SA license

regulation and its value as a biomarker for vascular aging and

hypertension-related endothelial dysfunction.

Citation: Yohana, Faradilla, M.A., Tungka, E.X., & Kurniasari. (2025). Gene expression of sirtuin-I in adult with hypertension. *JPBIO (Jurnal Pendidikan Biologi), 10*(1), 50-58. DOI: https://doi.org/10.31932/jpbio.v10i1.4456

INTRODUCTION

Aging is one of the risk factors for hypertension. Increasing systolic blood pressure by 20 mmHg could have a twofold risk of death by stroke. It could trigger death suddenly because of a lack of symptoms. Global prevalence of hypertension is predicted to reach 60% of adults by 2025. In Indonesia, based on Indonesian Research in 2018, the prevalence of hypertension increased from 25% to 34%. It affected 55.28% of individuals aged 54-65 years old. Globally, hypertension poses a significant threat to human health, increasing the risk of premature mortality and disability. Moreover, its pathological mechanisms can disrupt the nervous, endocrine, and immune systems.

10.31932/jpbio.v10i1.4456

Asymptomatic nature leads to unavoidable complications, premature death, and disability. Systolic and diastolic blood pressure triggers chronic systemic inflammation, such as vascular stiffness due to reduced production of elastin and collagen in the arterial tunica media. Repetition of this process led to endothelial dysfunction of arteries. It reduced nitric oxide (NO) production and caused vasoconstriction (Manolis et al., 2020).

Few studies showed that degenerative disease has a higher level of reactive oxygen species (ROS). Recently, our study showed a significant negative correlation between ROS level and physical activity, while a positive correlation has also been found between ROS level and body mass index of people over 40 years old (Meiyanti et al, 2023). Other studies showed mRNA Catalase expression was lower in people over 50 years old. It demonstrates that ROS could be eliminated with antioxidant properties (Yohana et al, 2024). Another enzyme that is involved with oxidative stress and antioxidant properties is Sirtuin-I. It reduced ROS production and uncoupled eNOS (Wu et al, 2022).

Sirtuin is a NAD+-dependent deacetylase, regulates No. adaptation, vascular homeostasis, cellular signaling, immunity, inflammation, and oxidative stress protection (Teixeira et al., 2020). SIRTI protects the cardiovascular and vascular systems through deacetylase activity, suppressing ROS production. Recent studies indicate ROS and inflammation contribute to blood pressure elevation (Griendling, K, et al, 2021). SIRTI inhibits pro-inflammatory gene expression, mitigating inflammatory responses. Animal studies demonstrate Sirtuin's role in reducing blood pressure and cardiac hypertrophy via SirtI/NF kB/MAPK signaling (Yang et al., 2022).

Sirtuin activation could reduce endothelial dysfunction, atherosclerosis, and blood pressure through SirtI-AMPK-eNos signaling through grape seed proanthocyanidin extract (Chen et al., 2020). Sirtuin-I is involved in cardiovascular protection. However, sirtuin-I expression in hypertension is still unclear. This study is among the few clinical investigations that quantitatively assess the relative mRNA expression of SIRTI in adult human subjects with hypertension. Unlike previous studies that mainly rely on experimental or animal models, our findings provide direct clinical evidence that SIRTI expression is significantly downregulated in hypertensive patients, supporting its role as a potential biomarker of oxidative stress and endothelial dysfunction in human hypertension. Therefore, the objective of this research is to analyze the relative expression of Sirtuin-I in hypertension among individuals over 50 years old.

RESEARCH METHODS

Research Design

This research was approved by the Ethics Committee Faculty of Medicine Universitas Trisakti, with number 006/KER/FK/10/2024. This is a case-control study with 60 respondents divided into the hypertension and normotension groups according to JNC VIII.

Population and Samples

The method used for selecting the sample for this study was the purposive sampling method. A total of 60 subjects (30 per group) were selected based on statistical and practical considerations. This sample size provides adequate power for detecting significant differences in SIRTI gene expression using quantitative PCR, while also considering feasibility, resource limitations, and the biological variability of the target age group (50–60 years). The age range was chosen to focus on individuals with a higher risk of hypertension and endothelial dysfunction. Stored biological material whose sample maintenance is carried out in the Biomolecular Laboratory, Medical Faculty, Universitas Trisakti. Subjects are participants who are invited to take part in the study in Angke Village. Selected subjects must meet the following inclusion and exclusion criteria.

This study was conducted by respondents who were 50-60 years old, with inclusion and exclusion criteria. Inclusion criteria were agreed to participate in research, whereas exclusion criteria

were respondents with liver disease, autoimmune disease, and cancer. After agreeing to the informed consent, 2 ml of blood was taken from the respondent.

Instruments

The research instruments used were a nanophotometer, a Polymerase Chain Reaction (PCR) machine Labcycler (SENSOQUEST), and a quantitative real-time PCR (qPCR) machine QiAquant 96 5 plex. The nanophotometer was used to assess the concentration and purity of nucleic acids (DNA and RNA) by measuring absorbance at specific wavelengths (e.g., 260 nm and 280 nm), which is essential before downstream molecular biology applications. The Labcycler (SENSOQUEST) is a conventional thermal cycler used to perform standard PCR, which amplifies specific DNA sequences through repeated cycles of denaturation, annealing, and extension. This instrument is crucial for generating sufficient quantities of DNA for further analysis. The QiAquant 96 5 plex is a high-performance real-time PCR system capable of detecting and quantifying nucleic acids in real time using fluorescent dyes or probes. The term "5 plex" refers to its ability to detect up to five different targets simultaneously in a single reaction, allowing multiplexing. This system provides precise quantification of gene expression levels, pathogen load, or genetic mutations through amplification curve analysis and Ct (cycle threshold) values.

Procedures

I. RNA extraction

Two millilitres of blood were extracted and transformed into total RNA by the Quick RNA Miniprep kit (Zymoresearch). According to the kit procedure, briefly, blood was combined with cell lysis buffer and Proteinase K, then incubated for 30 minutes at 20-30 degrees Celsius. Isopropanolol was added 50% (v/v). After the sample was homogenized, it was transferred into the spin column and centrifuged at 16.000 g for 30 seconds. The sample was washed with RNA wash buffer and centrifuge it 15.000 g for 30 seconds. Yield was eliminated and do addition of DNA-se buffer. Sample mixed until homogenized, then incubated at 20-30 degrees Celsius for 15 minutes. After 15 minutes, the sample was washed with RNA buffer and centrifuged for I minute. At the terminal point, the Sample wash added RNA-free water and centrifuged for I minute. The yield was measured for concentration and purity by a nanophotometer wavelength of 260/280 nm. The sample was kept in -80 degrees Celsius. The sample was managed by the Biomolecular Laboratory of the Faculty of Medicine at Trisakti University. At first total RNA needed to be checked for concentration and purity by a nanophotometer. The sample concentration that can be used is more than 20 ng/ μ L. Purity results fall within the range of 1.7 – 2.0, they can be categorized as pure isolation results.

2. Specimen Examination: Measurement of mRNA expression SIRTI

a. cDNA Synthesis Procedure

Copy DNA was synthesized using SensiFAST cDNA Synthesis kit and amplified using a PCR machine (SENSOQUEST) with 95 degrees Celsius for denaturation for 15 seconds, annealing at 60 degrees Celsius for 40 cycles. Minimum RNA sample for the reaction was 200 ng, and 20 μ l master mix. The product was diluted 1:10 and stored at -20°C for quantitative real-time PCR.

b. qRT PCR procedure (quantitative Reverse Transcriptase Polymerase Chain Reaction)

Relative expression was analyzed using 2-step qRT PCR (QiAquant 96 5 plex). 4 ul cDNA was added into the PCR tube along with SensiFAST SYBR Green No.-ROX marker, forward and reverse primers, and Nucleus Free Water up to 20 ul. The total PCR reaction was 50 cycles. Sirtuin-I Sequence primer was CTATACCCAGAACATAGACACG (forward),

10.31932/jpbio.v10i1.4456

ACAAATCAGGCAAGATGC (reverse). GADPH sequence primer was GTC TCC TCT GAC TTC AAC AGC G (forward), ACC ACC CTG TTG CTG No. CCA A (reverse). Both primers have an annealing temperature of 56,5 degrees Celsius. The result was presented in the cycle threshold (Ct). Ct value was measured to calculate expression in the hypertension and normotension groups. Relative expression was determined using the Livak method.

Data Analysis

CT value was well distributed within the two groups, with the Wilk test. Student t-test was used to figure out differences between the 2 groups with a significance p < 0.05. Analysis statistics used JASP software 0.19.2. JASP (Jeffreys's Amazing Statistics Program) is an open-source software designed to facilitate both classical and Bayesian statistical analysis with an intuitive and user-friendly interface, as well as producing publication-ready output in the form of tables and graphs.

RESULTS

The primary objective of this study was to investigate the relative mRNA expression of Sirtuin-I (SIRTI) in individuals diagnosed with hypertension, specifically in a population over 50 years old. Sirtuin-I is a gene associated with cellular stress resistance, metabolic regulation, and vascular health. This research aims to provide molecular evidence by quantifying and comparing the expression levels of SIRTI mRNA between hypertensive and normotensive individuals, thus helping to understand its potential role in the pathophysiology of hypertension.

Figure I illustrates the relative mRNA expression levels of SIRTI in two groups: Hypertension and Normotension. The y-axis represents the relative expression level of SIRTI mRNA, while the x-axis distinguishes between the two groups. The normotensive group shows a significantly higher level of SIRTI expression, averaging around 6-fold relative expression. The hypertensive group shows a much lower average expression, around 3-fold, with a wider range as indicated by the error bar. Error bars indicate the standard deviation or standard error (depending on the analysis), showing variability within each group. The difference between groups was found to be statistically significant (p < 0.05), indicating a true difference in expression rather than one due to random chance. The results demonstrate that SIRTI mRNA expression is significantly reduced in hypertensive individuals compared to normotensive controls.

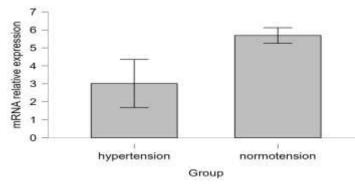


Figure I. mRNA relative expression Sirtuin-I $(p < 0.05)^*$

DISCUSSION

This study found that the average age of the hypertension group was 48 years old. This result showed people aged over 40 years have considerably higher hypertension than the younger age (Astutik et al, 2020). A similar result was found in other research held in rural areas, demonstrating that older age could potentially have a significant risk for hypertension, cause vascular wall might have modified.(Mulia et al, 2020).

Hypertension is a complex degenerative disease characterized by elevated blood pressure, leading to numerous complications. The underlying pathophysiological processes, including inflammation and fibrosis, are linked to oxidative stress. Oxidative stress arises from an imbalance between oxidants and antioxidants, leading to impaired cellular signaling and oxidative damage in hypertension (Touyz, et al, 2020). The production of reactive oxygen species (ROS) is increased in hypertension, leading to oxidative stress. However, ROS also play important physiological roles, particularly in low concentrations, where they contribute to redox regulation, maintaining endothelial integrity, and vascular function. The interaction between flowing blood and endothelial cells induces mechanical forces, such as shear stress, which influence the formation and release of nitric oxide (No.) and ROS, as well as the activation of signal transduction pathways and gene and protein expression. These mechanisms play critical roles in maintaining vascular homeostasis. Notably, laminar flow increases endothelial nitric oxide synthase (eNOS) expression, activity, and No. production, whereas oscillatory flow during hypertension leads to increased ROS formation and subsequent oxidative damage (Amponsah-Offeh et al, 2022).

Although cells have many defensive mechanisms to maintain a fine balance between antioxidant and oxidant systems, improper biochemical reactions within the cell as well as certain external factors, can lead the cell into a state of oxidative stress. An imbalance between oxidants and antioxidants in favor of excessive oxidants, leading to a disruption of redox signaling and control, and/or molecular damage (Sun H, et al, 2024). Research has implicated sirtuins in the regulation of antioxidant defenses and redox signaling pathways, highlighting their crucial role in maintaining redox homeostasis and preventing disease pathogenesis (Alam F, et al, 2021).

SIRTI is a key member of the sirtuin family, exerts a unique protective effect on endothelial cells by modulating various proteins, including eNOS, LKBI, p53, NFKB, FOXOI, Notch, and p66Shc (Sazdova et al, 2024). Consequently, SIRTI prevents endothelial senescence, promotes angiogenesis and migration, enhances endothelium-dependent vasodilation, and suppresses inflammation and foam cell formation (Begum MK eal, 2021). Notably, another study demonstrated that endothelial SIRTI maintains vasodilator responses by upregulating sGC in smooth muscle cells, independently of eNOS and No., providing an alternative therapeutic pathway to mitigate vascular aging and associated diseases, including hypertension (Ren C, et al, 2022).

SIRTI is an evolutionarily conserved enzyme that deacetylates multiple intracellular targets 54 tis54 important for a variety of cellular functions such as DNA damage repair, cell cycle regulation, apoptosis, senescence, and remodeling of large arteries contributes to the elevation of blood pressure and increased risk of cardiovascular diseases (Shahgald S et al, 2021). In this present study, we investigate the relative expression of the SirtI gene in hypertension and normotension among individuals over 50 years old. Figure I showed that SIRTI expression was relatively 0.52-fold lower in the hypertension group compared to the normotension group. This result is consistent with our previous study result that the antioxidant was lower in hypertension than normotension (Yohana et al, 2024). This study is supported by another study with the elderly who have hypertension. It revealed that superoxide dismutase was significantly lower in the elderly with hypertension than in controls. Cabonyl as ROS marker was significantly higher in the hypertension group. There was a correlation between superoxide dismutase and systolic blood pressure. (Penantian et al, 2023).

SIRTI attenuates oxidative stress and inflammation to regulate vascular endothelial functions through several important signal mediators, such as AMPK, NOXs, eNOs, and FOXOs (Kong et al, 2019). There is a complex crosstalk network between AMPK and SIRTI. Studies showed that SIRTI can stimulate AMPK via the modulation of upstream AMPK kinase such as liver kinase BI(LKBI), suppressing the production of ROS and inflammation response in

HUVECs, while AMPK influences SIRTI deacetylation activity by increasing cellular NAD+ levels or directly phosphorylating SIRTI (Maiese K, 2021). Furthermore, increased activity of NOX (NADPH oxidase) may also enhance NAD+ content to elevate SIRTI levels in endothelial cells (Wan X et al, 2021). In addition, SIRTI deacetylates FOXOs and stimulates FOXOdependent antioxidant [such as catalase (CAT), manganese superoxide dismutase (MnSOD) and thioredoxin] expression to eliminate ROS in endothelial cells, and prevent endothelial dysfunction (Huang et al, 2019). The activation of SIRTI stimulates the expression of c-Myc by promoting the degradation of FOXOI to prevent endothelial cell dysfunction and angiogenesis induced by hyperglycemia. eNOs, a member of NOS families, is expressed in vascular smooth muscle (Negre-Salvayre, et al, 2022).

Interestingly, Sirtuin expression is not just only depressed in hypertension, Sirtuin expression could be found to be increased. Research revealed that Sirtuin-I (Sirt-I) is overexpressed in spontaneously hypertensive rats (SHR), contributing to hypertension. This study investigated Sirt-I's role in hypertension and underlying mechanisms. Results showed that Sirt-I inhibitor EX-527 reduced blood pressure by 76 mmHg, inhibited heart rate, and attenuated oxidative stress (Husein, Y, et al, 2022). These findings suggest Sirt-I inhibitors may be effective in treating hypertensionrelated cardiovascular complications. Another study showed that overexpression of SIRTI in endothelial cells attenuated the augmented blood pressure and adverse arterial remodeling. Mechanistically, SIRTI inhibited LKBI protein binding to the promoter of transforming growth factor beta I (TGFbI), a potent modulator of arterial remodeling, thus preventing the activation and proliferation of smooth muscle cells (Arifen et al, 2022).

Inhibition of Sirt-I also attenuated the enhanced levels of superoxide anion, NADPH oxidase activity, and the overexpression of NADPH oxidase subunits; Nox2, Nox4 and P47phox proteins in VSMC isolated from EX-527-treated SHR. Furthermore, the decreased levels of endothelial nitric oxide synthase (eNOS) and nitric oxide (No) and increased levels of peroxynitrite (ONOO-) in VSMC from SHR were also restored to control levels by Sirt-I inhibitor (Lie Y, et al. 2021). These results suggest that the inhibition of overexpression of Sirt-I through decreasing the enhanced levels of $Gi\alpha$ proteins and nitro-oxidative stress attenuates the high BP in SHR. It may thus be suggested that inhibitors of Sirt-I may have the potential to be used as therapeutic agents in the treatment of cardiovascular complications associated with hypertension (Zhang et al, 2017)

It has been reported that SirtI directly impacts the endothelial function of arteries by deacetylating endothelial No. synthase (eNOS), which in turn is activated and preserves vascular homeostasis through No. production. Consistently, the inhibition of SirtI in the endothelium of arteries inhibits endothelium-dependent vasodilation and decreases bioavailable No. An elegant study performed by Bai et al. demonstrated that the overexpression of human SirtI in the endothelium in eNOS-deficient mice is protective against hypertension and counteracts adverse arterial remodeling occurring in aging vessels (Campagna et al, 2024).

CONCLUSION

Sirtuin-I relative expression was 0.52 fold lower in hypertension. Sirtuin-I has a preserved effect on cardiovascular and vascular wall through balancing another protein level in the mediation of oxidative stress. A limitation of this research was protein level was not measured. Further research suggestions are to explore the relationship between a diet containing Sirtuin and its expression at the protein level.

ACKNOWLEDGMENT

We would like to express our gratitude to all parties who have assisted in this research. We thank to Medical Faculty Universitas Trisakti for providing support and facilities for this research.

This Research was funded by DRPMF FK Trisakti year 2024/2025. We hope that the results of this research can benefit society and contribute to the advancement of scientific knowledge.

REFERENCES

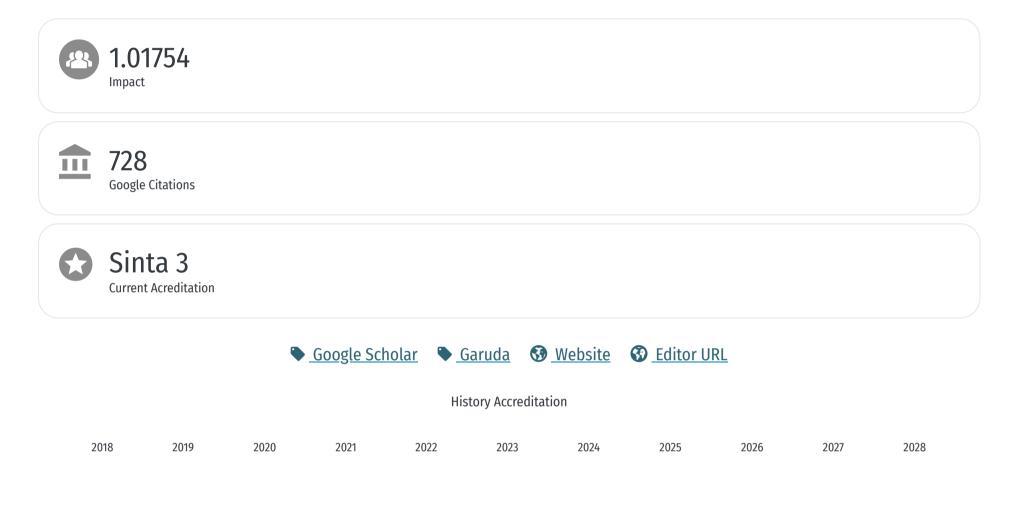
- Alam, F., Syed, H., Amjad, S., Baig, M., Khan, T. A., & Rehman, R. (2021). Interplay between oxidative stress, SIRTI, reproductive and metabolic functions. *Current research in physiology*, 4, 119-124. Retrieved from https://doi.org/10.1016/j.crphys.2021.03.002
- Amponsah-Offeh, M., Diaba-Nuhoho, P., Speier, S., & Morawietz, H. (2023). Oxidative stress, antioxidants and hypertension. *Antioxidants, 12*(2), 281. Retrieved from https://doi.org/10.3390/antiox12020281
- Arifen, N., Li, Y., Srivastava, A. K., & Anand-Srivastava, M. B. (2022). SirtuinI inhibitor attenuates hypertension in spontaneously hypertensive rats: role of Giα proteins and nitroxidative stress. Journal of Hypertension, 40(7), 1314-1326. Retrieved from https://doi.org/10.1097/HJH.000000000003143
- Astutik, E., Puspikawati, S. I., Dewi, D. M. S. K., Mandagi, A. M., & Sebayang, S. K. (2020). Prevalence and Risk Factors of High Blood Pressure among Adults in Banyuwangi Coastal Communities, Indonesia. *Ethiopian journal of health sciences*, 30(6). Retrieved from https://doi.org/10.4314/ejhs.v30i6.12
- Begum, M. K., Konja, D., Singh, S., Chlopicki, S., & Wang, Y. (2021). Endothelial SIRTI as a target for the prevention of arterial aging: promises and challenges. *Journal of Cardiovascular Pharmacology*, 78, S63-S77. Retrieved from https://doi.org/10.1097/FJC.000000000001154
- Campagna, R., Mazzanti, L., Pompei, V., Alia, S., Vignini, A., & Emanuelli, M. (2024). The multifaceted role of endothelial SirtI in vascular aging: an update. *Cells, 13*(17), 1469. Retrieved from https://doi.org/10.3390/cells13171469.
- Chen, Y., et al. (2020). Grape seed proanthocyanidin extract ameliorates endothelial dysfunction and hypertension via SirtI-AMPK-eNos signaling. Journal of Nutrition and Biochemistry, 77, 108331. Retrieved from https://doi.org/10.3390/nu11122844
- Griendling, K. K., Camargo, L. L., Rios, F. J., Alves-Lopes, R., Montezano, A. C., & Touyz, R. M. (2021). Oxidative stress and hypertension. *Circulation research*, *128*(7), 993-1020. Retrieved from https://doi.org/10.3390/cells13171469
- Habibian, J., Ferguson, B.S. (2018). The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. Int. J. Mol. Sci, 20, 102. Retrieved from https://doi.org/10.3390/ijms20010102
- Hossain, E., Li, Y., & Anand-Srivastava, M. B. (2021). Angiotensin II-induced overexpression of sirtuin I contributes to enhanced expression of Giα proteins and hyperproliferation of vascular smooth muscle cells. *American Journal of Physiology-Heart and Circulatory Physiology*, 321(3), H496-H508. Retrieved from https://doi.org/10.1152/ajpheart.00898.2020
- Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C. (2019). Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis. *Frontiers in pharmacology, 10,* 421 Retrieved from https://doi.org/10.3390/ijms20010102
- Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y. (2019). circ-SirtI controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRTI expression by binding to miR-132/212 in vascular smooth muscle cells. *Nucleic Acids Res, 47*(35), 80-93 Retrieved from https://doi.org/10.1093/nar/gkz141

10.31932/jpbio.v10i1.4456


- Li, Y., Hossain, E., Arifen, N., Srivastava, A. K., & Anand-Srivastava, M. B. (2022). SirtuinI contributes to the overexpression of $Gi\alpha$ proteins and hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 40(1), 117-127. Retrieved from https://doi.org/10.1097/HJH.00000000002985
- Penantian, R. M., Antarianto, R. D., & Hardiany, N. S. (2023). Effect of Calorie Restriction on the Expression of SirtuinI as an Antiaging Biomarker. Makara Journal of Science, 27(3), 3. Retrieved from https://scholarhub.ui.ac.id/science/vol27/iss3/3
- Maiese, K. (2021). Sirtuins in metabolic disease: innovative therapeutic strategies with SIRTI, AMPK, mTOR, and nicotinamide. In Sirtuin Biology in Cancer and Metabolic Disease (pp. 3-23). Academic Press. Retrieved from https://doi.org/10.1016/B978-0-12-822467-0.00006-1
- Manolis, A. J. (2020). Hypertension: A silent killer. Journal of Clinical Hypertension, 22(1), 13-21. Retrieved from https://doi.org/10.1080/14779072.2024.2357344
- Meiyanti, M., Margo, E., Chudri, J., & Faradilla, M. A. (2023). Factors associated with plasma malondialdehyde levels in people over 40 years. Journal of Drug Delivery and Therapeutics, 13(7), 52-56. Retrieved from https://doi.org/ 10.22270/jddt.v13i7.6142
- Mulia, E. P. B., & Prajitno, S. (2020, February). Neglected cases of hypertension in rural Indonesia: A cross-sectional study of prevalence and risk factors on adult population. In IOP Conference Series: Earth and Environmental Science, 441(1), 012167. Retrieved from https://doi.org/10.1088/1755-1315/441/1/012167
- Negre-Salvayre, A., Swiader, A., Salvayre, R., & Guerby, P. (2022). Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Archives of biochemistry and biophysics, 730, 109416. Retrieved from https://doi.org/10.1016/j.abb.2022.109416
- Teixeira, F. C. (2020). Sirtuins: Regulatory proteins in health and disease. Journal of Molecular Medicine, 98(9), 833-844. Retrieved from https://doi.org/10.3390/ijms22020630
- Ren, C. Z., Wu, Z. T., Wang, W., Tan, X., Yang, Y. H., Wang, Y. K., Li, M. L., & Wang, W. Z. (2022). SIRTI exerts anti-hypertensive effect via FOXOI activation in the rostral ventrolateral medulla. Free radical biology & medicine, 188, 1-13. Retrieved from https://doi.org/10.1016/j.freeradbiomed.2022.06.003
- Sazdova, I., Hadzi-Petrushev, N., Keremidarska-Markova, M., Stojchevski, R., Sopi, R., Shileiko, S., & Mladenov, M. (2024). SIRT-Associated Attenuation of Cellular Senescence in Vascular Wall. Mechanisms of Ageing and Development, 111943. Retrieved from https://doi.org/10.1016/j.mad.2024.111943
- Shahgaldi, S., & Kahmini, F. R. (2021). A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sciences, 282, 119803. Retrieved from https://doi.org/10.1016/j.lfs.2021.119803
- Singh, S., & Ubaid, M. (2020). Oxidative stress and inflammation in hypertension. Journal of Cardiovascular Medicine. 641–648. from Retrieved 2I(12),https://doi.org/10.3390/antiox11010172
- Sun, H., Li, D., Wei, C., Liu, L., Xin, Z., Gao, H., & Gao, R. (2024). The relationship between SIRTI and inflammation: a systematic review and meta-analysis. Frontiers in Immunology, 15, 1465849. Retrieved from https://doi.org/10.3389/fimmu.2024.1465849
- Touyz, R. M., Rios, F. J., Alves-Lopes, R., Neves, K. B., Camargo, L. L., & Montezano, A. C. (2020). Oxidative stress: a unifying paradigm in hypertension. Canadian journal of cardiology, 36(5), 659-670. Retrieved from https://doi.org/10.1016/j.cjca.2020.02.081
- Wan, X., & Garg, N. J. (2021). Sirtuin control of mitochondrial dysfunction, oxidative stress, and inflammation in chagas disease models. Frontiers in Cellular and Infection Microbiology, 11, 693051. Retrieved from https://doi.org/10.3389/fcimb.2021.693051

10.31932/jpbio.v10i1.4456

- Wu, Q. J., Zhang, T. N., Chen, H. H., Yu, X. F., Lv, J. L., Liu, Y. Y., ... & Zhao, Y. H. (2022). The sirtuin family in health and disease. *Signal Transduction and Targeted Therapy*, 7(1), 402. Retrieved from https://doi.org/10.1038/s41392-022-01257-8
- Yang, X. (2022). SirtI/NF kB/MAPK signaling pathway regulates blood pressure and cardiac hypertrophy. American Journal of Hypertension, *35*(5), 432–441. Retrieved from https://doi.org/10.1016/j.biopha.2016.11.011
- Yohana, Y., Faradilla, M. A., Meiyanti, M., Hartanti, M. D., Margo, E., & Anastasya, K. S. (2024). mRNA Relative Expression Catalase in Hypertension. *Bioscientist: Jurnal Ilmiah Biologi, 12*(2), 1821-1827. Retrieved from https://doi.org/10.33394/bioscientist.v12i2.12825
- Zhang, W., Huang, Q., Zeng, Z., Wu, J., Zhang, Y., & Chen, Z. (2017). SirtI inhibits oxidative stress in vascular endothelial cells. *Oxidative medicine and cellular longevity*, 2017(1), 7543973. Retrieved from https://doi.org/10.1155/2017/7543973



JPBIO (JURNAL PENDIDIKAN BIOLOGI)

PROGRAM STUDI PENDIDIKAN BIOLOGI

★ P-ISSN : 0 <> E-ISSN : 2540802X

Garuda Google Scholar

The use of alternative coloring variations to mitotic observations of shallots using the squash methodSTKIP Persada Khatulistiwa SintangJPBIO (Jurnal Pendidikan Biologi) Vol 9, No 1 (2024): April 2024 36-442024DOI: 10.31932/jpbio.v9i1.3053OAccred : Sinta 3

Implementing the TPACK model to enhance learning outcomes of future biology teachers for the digital eraSTKIP Persada Khatulistiwa SintangIPBIO (Jurnal Pendidikan Biologi) Vol 9, No 2 (2024): November 2024 294-3022024DOI: 10.31932/jpbio.v9i2.3940Accred : Sinta 3

 Studentâ
 S scientific argumentation skills in biology: A gender-based analysis

 STKIP Persada Khatulistiwa Sintang
 JPBIO (Jurnal Pendidikan Biologi) Vol 9, No 2 (2024): November 2024 171-178

 2024
 DOI: 10.31932/jpbio.v9i2.3684
 O Accred : Sinta 3

Expert response to the development of interactive video as teaching media on cell material

STKIP Persada Khatulistiwa Sintang JPBIO (Jurnal Pendidikan Biologi) Vol 9, No 1 (2024): April 2024 85-97

□ <u>2024</u> □ <u>DOI: 10.31932/jpbio.v9i1.3384</u> <u>O Accred : Sinta 3</u>

 Augmented reality borobudur temple: Development of the aves booklet on the avadana relief story

 STKIP Persada Khatulistiwa Sintang
 IPBIO (Jurnal Pendidikan Biologi) Vol 9, No 2 (2024): November 2024 224-233

 2024
 DOI: 10.31932/jpbio.v9i2.3596
 Accred : Sinta 3

 Development biology reference book-based utilization telang flower (Clitoria ternatea L.) for food packaging natural indicators

 STKIP Persada Khatulistiwa Sintang
 IPBIO (Jurnal Pendidikan Biologi) Vol 9, No 2 (2024): November 2024 269-282

 2024
 DOI: 10.31932/jpbio.v9i2.3569
 CAccred : Sinta 3

 Exploration of mosses in urban-bogor habitats: Species identification, diversity and uniformity

 STKIP Persada Khatulistiwa Sintang
 IPBIO (Jurnal Pendidikan Biologi) Vol 9, No 1 (2024): April 2024 45-57

 2024
 DOI: 10.31932/jpbio.v9i1.3182
 Accred : Sinta 3

 The impact of differentiated learning in team-based project on undergraduate students' design thinking mindset

 STKIP Persada Khatulistiwa Sintang

 Image: Doi: 10.31932/jpbio.v9i2.3948
 Image: Doi: 10.31932/jpbio.v9i2.3948

 Image: Doi: 10.31932/jpbio.v9i2.3948
 Image: Doi: 2024

 Image: Doi: 2024
 Image: Doi: 2024

 <

 Microbiological quality analysis of grouper salted fish (Epinephelus Fuscoguttatus) in several traditional markets in ambon

 STKIP Persada Khatulistiwa Sintang
 Image: Doi: 10.31932/jpbio.v9i2.3709

 Image: Doi: 10.31932/jpbio.v9i2.3709
 Occred: Sinta 3

 Development booklet 3-dimensional image-based digital as learning media on virus materials for senior high school

 STKIP Persada Khatulistiwa Sintang
 IPBIO (Jurnal Pendidikan Biologi) Vol 9, No 1 (2024): April 2024 98-110

 2024
 DOI: 10.31932/jpbio.v9i1.3394
 Accred : Sinta 3

View more ...

SERTIFIKAT

Kementerian Riset dan Teknologi/ Badan Riset dan Inovasi Nasional

Petikan dari Keputusan Menteri Riset dan Teknologi/ Kepala Badan Riset dan Inovasi Nasional Nomor 85/M/KPT/2020 Peringkat Akreditasi Jurnal Ilmiah Periode 1 Tahun 2020 Nama Jurnal Ilmiah

JPBIO (Jurnal Pendidikan Biologi)

E-ISSN: 2540802X

Penerbit: Program Studi Pendidikan Biologi

Ditetapkan sebagai Jurnal Ilmiah

TERAKREDITASI PERINGKAT 3

Akreditasi Berlaku selama 5 (lima) Tahun, yaitu Volume 4 Nomor 2 Tahun 2019 sampai Volume 9 Nomor 1 Tahun 2024

> Jakarta, 01 April 2020 Menteri Riset dan Teknologi/ pata Badan Riset dan Inovasi Nasional Republik Indonesia,

> > Barobang P. S. Brodjonegoro

Gene Expression of sirtuin I in adult with hypertension

by dr.Yohana

Submission date: 09-May-2025 10:55AM (UTC+0700) Submission ID: 2305823617 File name: 4456-15105-2-PB.pdf (195.52K) Word count: 4628 Character count: 26806

JPBIO (Jurnal Pendidikan Biologi) Vol. 10, No. 1, April 2025, 50 – 58 //e-ISSN 2540-802X http://jurnal.stkippersada.ac.id/jurnal/index.php/JBIO/index

Gene expression of sirtuin-I in adult with hypertension

Check for updates

Yohana 📴, Meutia Atika Faradilla, <mark>Endrico Xavierees Tungka, Kurniasar</mark>i

Department of Biochemistry, Faculty of Medicine Universitas Trisakti, Jakarta, Indonesia

*Corresponding author: dryohana@trisakti.ac.id

Article Info	ABSTRACT
Article History:	SIRTI is a key member of the sirtuin family, exerts a unique
Received 03 February 2025	protective effect on endothelial cells by modulating various
Revised 09 March 2025	proteins, and has a role as an anti-aging biomarker.
Accepted 14 April 2025	Hypertension is pathology chronic pathological condition that
Published 30 April 2025	disrupts ROS and antioxidants. Little evidence showed that
-	sirtuin has a role in chronic oxidative stress. Therefore, the
Keywords:	objective of this study was to analyze the relative expression of
Sirtuin-I	Sirtuin-I in hypertension. This is a case-control study with 30
Hypertension	subjects, adults 50-60 years old in each group. JNC 8 was used
Expression	to determine blood pressure. Quantitative Real Time PCR was
mRNA	used to calculate the level of Sirt-I. The Livak method was used
	for relative expression. JASP software was used for data analysis.
	Our study showed Sirtuin-I mRNA expression was
	significantly lower in the hypertension group than the
10.0495.86	normotension group. It was 0.52 fold lower in hypertension.
X23+94538	Sirtuin-I stimulates antioxidants such as superoxide dismutase
的复数 使得到的	and catalase through FOXO-dependent signaling. It has a
	similar role to antioxidants for eliminating ROS. Sirtuin-I
1=106752294	expression is significantly reduced in individuals with
	hypertension, suggesting its potential role in oxidative stress
	regulation and its value as a biomarker for vascular aging and
	hypertension-related endothelial dysfunction.
	Converight © 2025 Volume at al

Copyright © 2025, Yohana et al This is an open access article under the CC-BY-SA license © 0 ©

Citation: Yohana, Faradilla, M.A., Tungka, E.X., & Kurniasari. (2025). Gene expression of sirtuin-I in adult with hypertension. JPBIO (Jurnal Pendidikan Biologi), 10(1), 50-58. DOI: https://doi.org/10.31932/jpbio.v10i1.4456

INTRODUCTION

Aging is one of the risk factors for hypertension. Increasing systolic blood pressure by 20 mmHg could have a twofold risk of death by stroke. It could trigger death suddenly because of a lack of symptoms. Global prevalence of hypertension is predicted to reach 60% of adults by 2025. In Indonesia, based on Indonesian Research in 2018, the prevalence of hypertension increased from 25% to 34%. It affected 55.28% of individuals aged 54-65 years old. Globally, hypertension poses a significant threat to human health, increasing the risk of premature mortality and disability. Moreover, its pathological mechanisms can disrupt the nervous, endocrine, and immune systems.

10.31932/jpbio.v10i1.4456

Yohana et al

jurnaljpbio@gmail.com

Asymptomatic nature leads to unavoidable complications, premature death, and disability. Systolic and diastolic blood pressure triggers chronic systemic inflammation, such as vascular stiffness due to reduced production of elastin and collagen in the arterial tunica media. Repetition of this process led to endothelial dysfunction of arteries. It reduced nitric oxide (NO) production and caused vasoconstriction (Manolis et al., 2020).

Few studies showed that degenerative disease has a higher level of reactive oxygen species (ROS). Recently, our study showed a significant negative correlation between ROS level and physical activity, while a positive correlation has also been found between ROS level and body mass index of people over 40 years old (Meiyanti et al, 2023). Other studies showed mRNA Catalase expression was lower in people over 50 years old. It demonstrates that ROS could be eliminated with antioxidant properties (Yohana et al, 2024). Another enzyme that is involved with oxidative stress and antioxidant properties is Sirtuin-I. It reduced ROS production and uncoupled eNOS (Wu et al, 2022).

Sirtuin is a NAD+-dependent deacetylase, regulates No. adaptation, vascular homeostasis, cellular signaling, immunity, inflammation, and oxidative stress protection (Teixeira et al., 2020). SIRTI protects the cardiovascular and vascular systems through deacetylase activity, suppressing ROS production. Recent studies indicate ROS and inflammation contribute to blood pressure elevation (Griendling, K, et al, 2021). SIRTI inhibits pro-inflammatory gene expression, mitigating inflammatory responses. Animal studies demonstrate Sirtuin's role in reducing blood pressure and cardiac hypertrophy via SirtI/NF kB/MAPK signaling (Yang et al., 2022).

Sirtuin activation could reduce endothelial dysfunction, atherosclerosis, and blood pressure through SirtI-AMPK-eNos signaling through grape seed proanthocyanidin extract (Chen et al., 2020). Sirtuin-I is involved in cardiovascular protection. However, sirtuin-I expression in hypertension is still unclear. This study is among the few clinical investigations that quantitatively assess the relative mRNA expression of SIRTI in adult human subjects with hypertension. Unlike previous studies that mainly rely on experimental or animal models, our findings provide direct clinical evidence that SIRTI expression is significantly downregulated in hypertensive patients, supporting its role as a potential biomarker of oxidative stress and endothelial dysfunction in human hypertension. Therefore, the objective of this research is to analyze the relative expression of Sirtuin-I in hypertension among individuals over 50 years old.

RESEARCH METHODS

Research Design

This research was approved by the Ethics Committee Faculty of Medicine Universitas Trisakti, with number 006/KER/FK/I0/2024. This is a case-control study with 60 respondents divided into the hypertension and normotension groups according to JNC VIII.

Population and Samples

The method used for selecting the sample for this study was the purposive sampling method. A total of 60 subjects (30 per group) were selected based on statistical and practical considerations. This sample size provides adequate power for detecting significant differences in SIRT1 gene expression using quantitative PCR, while also considering feasibility, resource limitations, and the biological variability of the target age group (50–60 years). The age range was chosen to focus on individuals with a higher risk of hypertension and endothelial dysfunction. Stored biological material whose sample maintenance is carried out in the Biomolecular Laboratory, Medical Faculty, Universitas Trisakti. Subjects are participants who are invited to take part in the study in Angke Village. Selected subjects must meet the following inclusion and exclusion criteria.

This study was conducted by respondents who were 50-60 years old, with inclusion and exclusion criteria. Inclusion criteria were agreed to participate in research, whereas exclusion criteria

10.31932/jpbio.v10i1.4456

Yohana et al

jurnaljpbio@gmail.com

51

| 52

were respondents with liver disease, autoimmune disease, and cancer. After agreeing to the informed consent, 2 ml of blood was taken from the respondent.

Instruments

The research instruments used were a nanophotometer, a Polymerase Chain Reaction (PCR) machine Labcycler (SENSOQUEST), and a quantitative real-time PCR (qPCR) machine QiAquant 96 5 plex. The nanophotometer was used to assess the concentration and purity of nucleic acids (DNA and RNA) by measuring absorbance at specific wavelengths (e.g., 260 nm and 280 nm), which is essential before downstream molecular biology applications. The Labcycler (SENSOQUEST) is a conventional thermal cycler used to perform standard PCR, which amplifies specific DNA sequences through repeated cycles of denaturation, annealing, and extension. This instrument is crucial for generating sufficient quantities of DNA for further analysis. The QiAquant 96 5 plex is a high-performance real-time PCR system capable of detecting and quantifying nucleic acids in real time using fluorescent dyes or probes. The term "5 plex" refers to its ability to detect up to five different targets simultaneously in a single reaction, allowing multiplexing. This system provides precise quantification of gene expression levels, pathogen load, or genetic mutations through amplification curve analysis and Ct (cycle threshold) values.

Procedures

I. RNA extraction

Two millilitres of blood were extracted and transformed into total RNA by the Quick RNA Miniprep kit (Zymoresearch). According to the kit procedure, briefly, blood was combined with cell lysis buffer and Proteinase K, then incubated for 30 minutes at 20-30 degrees Celsius. Isopropanolol was added 50% (v/v). After the sample was homogenized, it was transferred into the spin column and centrifuged at 16.000 g for 30 seconds. The sample was washed with RNA wash buffer and centrifuge it 15.000 g for 30 seconds. The sample was washed with RNA wash buffer. Sample mixed until homogenized, then incubated at 20-30 degrees Celsius for 15 minutes. After 15 minutes, the sample was washed with RNA buffer and centrifuged for I minute. At the terminal point, the Sample wash added RNA-free water and centrifuged for I minute. The yield was measured for concentration and purity by a nanophotometer wavelength of 260/280 nm. The sample was kept in -80 degrees Celsius. The sample was managed by the Biomolecular Laboratory of the Faculty of Medicine at Trisakti University. At first total RNA needed to be checked for concentration and purity by a nanophotometer. The sample concentration that can be used is more than 20 ng/µL. Purity results fall within the range of 1.7 – 2.0, they can be categorized as pure isolation results.

2. Specimen Examination: Measurement of mRNA expression SIRTI

a. cDNA Synthesis Procedure

Copy DNA was synthesized using SensiFAST cDNA Synthesis kit and amplified using a PCR machine (SENSOQUEST) with 95 degrees Celsius for denaturation for 15 seconds, annealing at 60 degrees Celsius for 40 cycles. Minimum RNA sample for the reaction was 200 ng, and 20µl master mix. The product was diluted I:10 and stored at -20°C for quantitative real-time PCR.

b. qRT PCR procedure (quantitative Reverse Transcriptase Polymerase Chain Reaction)

Relative expression was analyzed using 2-step qRT PCR (QiAquant 96 5 plex). 4 ul cDNA was added into the PCR tube along with SensiFAST SYBR Green No.-ROX marker, forward and reverse primers, and Nucleus Free Water up to 20 ul. The total PCR reaction was 50 cycles. Sirtuin-I Sequence primer was CTATACCCAGAACATAGACACG (forward),

10.31932/jpbio.v10i1.4456

Yohana et al

om jurnaljpbio@gmail.com

53

ACAAATCAGGCAAGATGC (reverse). GADPH sequence primer was GTC TCC TCT GAC TTC AAC AGC G (forward), ACC ACC CTG TTG CTG No. CCA A (reverse). Both primers have an annealing temperature of 56,5 degrees Celsius. The result was presented in the cycle threshold (Ct). Ct value was measured to calculate expression in the hypertension and normotension groups. Relative expression was determined using the Livak method.

Data Analysis

CT value was well distributed within the two groups, with the Wilk test. Student t-test was used to figure out differences between the 2 groups with a significance p < 0.05. Analysis statistics used JASP software 0.19.2. JASP (Jeffreys's Amazing Statistics Program) is an open-source software designed to facilitate both classical and Bayesian statistical analysis with an intuitive and user-friendly interface, as well as producing publication-ready output in the form of tables and graphs.

RESULTS

The primary objective of this study was to investigate the relative mRNA expression of Sirtuin-I (SIRTI) in individuals diagnosed with hypertension, specifically in a population over 50 years old. Sirtuin-I is a gene associated with cellular stress resistance, metabolic regulation, and vascular health. This research aims to provide molecular evidence by quantifying and comparing the expression levels of SIRTI mRNA between hypertensive and normotensive individuals, thus helping to understand its potential role in the pathophysiology of hypertension.

Figure I illustrates the relative mRNA expression levels of SIRTI in two groups: Hypertension and Normotension. The y-axis represents the relative expression level of SIRTI mRNA, while the x-axis distinguishes between the two groups. The normotensive group shows a significantly higher level of SIRTI expression, averaging around 6-fold relative expression. The hypertensive group shows a much lower average expression, around 3-fold, with a wider range as indicated by the error bar. Error bars indicate the standard deviation or standard error (depending on the analysis), showing variability within each group. The difference between groups was found to be statistically significant (p < 0.05), indicating a true difference in expression rather than one due to random chance. The results demonstrate that SIRTI mRNA expression is significantly reduced in hypertensive individuals compared to normotensive controls.

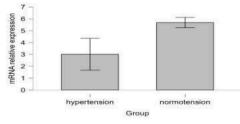


Figure I. mRNA relative expression Sirtuin-I (p < 0.05)*

DISCUSSION

This study found that the average age of the hypertension group was 48 years old. This result showed people aged over 40 years have considerably higher hypertension than the younger age (Astutik et al, 2020). A similar result was found in other research held in rural areas, demonstrating that older age could potentially have a significant risk for hypertension, cause vascular wall might have modified.(Mulia et al, 2020).

Yohana et al

Hypertension is a complex degenerative disease characterized by elevated blood pressure, leading to numerous complications. The underlying pathophysiological processes, including inflammation and fibrosis, are linked to oxidative stress. Oxidative stress arises from an imbalance between oxidants and antioxidants, leading to impaired cellular signaling and oxidative damage in hypertension (Touyz, et al, 2020). The production of reactive oxygen species (ROS) is increased in hypertension, leading to oxidative stress. However, ROS also play important physiological roles, particularly in low concentrations, where they contribute to redox regulation, maintaining endothelial integrity, and vascular function. The interaction between flowing blood and endothelial cells induces mechanical forces, such as shear stress, which influence the formation and release of nitric oxide (No.) and ROS, as well as the activation of signal transduction pathways and gene and protein expression. These mechanisms play critical roles in maintaining vascular flow increases endothelial nitric oxide synthase (eNOS) expression, activity, and No. production, whereas oscillatory flow during hypertension leads to increased ROS formation and subsequent oxidative damage (Amponsah-Offeh et al, 2022).

Although cells have many defensive mechanisms to maintain a fine balance between antioxidant and oxidant systems, improper biochemical reactions within the cell as well as certain external factors, can lead the cell into a state of oxidative stress. An imbalance between oxidants and antioxidants in favor of excessive oxidants, leading to a disruption of redox signaling and control, and/or molecular damage (Sun H, et al, 2024). Research has implicated sirtuins in the regulation of antioxidant defenses and redox signaling pathways, highlighting their crucial role in maintaining redox homeostasis and preventing disease pathogenesis (Alam F, et al, 2021).

SIRT1 is a key member of the sirtuin family, exerts a unique protective effect on endothelial cells by modulating various proteins, including eNOS, LKBI, p53, NFKB, FOXOI, Notch, and p66Shc (Sazdova et al, 2024). Consequently, SIRTI prevents endothelial senescence, promotes angiogenesis and migration, enhances endothelium-dependent vasodilation, and suppresses inflammation and foam cell formation (Begum MK eal, 2021). Notably, another study demonstrated that endothelial SIRTI maintains vasodilator responses by upregulating sGC in smooth muscle cells, independently of eNOS and No., providing an alternative therapeutic pathway to mitigate vascular aging and associated diseases, including hypertension (Ren C, et al, 2022).

SIRT1 is an evolutionarily conserved enzyme that deacetylates multiple intracellular targets 54 tis54 important for a variety of cellular functions such as DNA damage repair, cell cycle regulation, apoptosis, senescence, and remodeling of large arteries contributes to the elevation of blood pressure and increased risk of cardiovascular diseases (Shahgald S et al, 2021). In this present study, we investigate the relative expression of the Sirt1 gene in hypertension and normotension among individuals over 50 years old. Figure I showed that SIRT1 expression was relatively 0.52-fold lower in the hypertension group compared to the normotension group. This result is consistent with our previous study result that the antioxidant was lower in hypertension than normotension (Yohana et al, 2024). This study is supported by another study with the elderly who have hypertension than in controls. Cabonyl as ROS marker was significantly higher in the hypertension group. There was a correlation between superoxide dismutase and systolic blood pressure. (Penantian et al, 2023).

SIRTI attenuates oxidative stress and inflammation to regulate vascular endothelial functions through several important signal mediators, such as AMPK, NOXs, eNOs, and FOXOs (Kong et al, 2019). There is a complex crosstalk network between AMPK and SIRTI. Studies showed that SIRTI can stimulate AMPK via the modulation of upstream AMPK kinase such as liver kinase BI(LKBI), suppressing the production of ROS and inflammation response in

10.31932/jpbio.v10i1.4456 Y

Yohana et al

jurnaljpbio@gmail.com

54

HUVECs, while AMPK influences SIRTI deacetylation activity by increasing cellular NAD+ levels or directly phosphorylating SIRTI (Maiese K, 2021). Furthermore, increased activity of NOX (NADPH oxidase) may also enhance NAD+ content to elevate SIRTI levels in endothelial cells (Wan X et al, 2021). In addition, SIRTI deacetylates FOXOs and stimulates FOXOdependent antioxidant [such as catalase (CAT), manganese superoxide dismutase (MnSOD) and thioredoxin] expression to eliminate ROS in endothelial cells, and prevent endothelial dysfunction (Huang et al, 2019). The activation of SIRTI stimulates the expression of c-Myc by promoting the degradation of FOXOI to prevent endothelial cell dysfunction and angiogenesis induced by hyperglycemia. eNOs, a member of NOS families, is expressed in vascular smooth muscle (Negre-Salvayre, et al, 2022).

Interestingly, Sirtuin expression is not just only depressed in hypertension, Sirtuin expression could be found to be increased. Research revealed that Sirtuin-I (Sirt-I) is overexpressed in spontaneously hypertensive rats (SHR), contributing to hypertension. This study investigated Sirt-I's role in hypertension and underlying mechanisms. Results showed that Sirt-I inhibitor EX-527 reduced blood pressure by 76 mmHg, inhibited heart rate, and attenuated oxidative stress (Husein, Y, et al, 2022). These findings suggest Sirt-I inhibitors may be effective in treating hypertension-related cardiovascular complications. Another study showed that overexpression of SIRTI in endothelial cells attenuated the augmented blood pressure and adverse arterial remodeling. Mechanistically, SIRTI inhibited LKBI protein binding to the promoter of transforming growth factor beta I (TGFbI), a potent modulator of arterial remodeling, thus preventing the activation and proliferation of smooth muscle cells (Arifen et al, 2022).

Inhibition of Sirt-I also attenuated the enhanced levels of superoxide anion, NADPH oxidase activity, and the overexpression of NADPH oxidase subunits; Nox2, Nox4 and P47phox proteins in VSMC isolated from EX-527-treated SHR. Furthermore, the decreased levels of endothelial nitric oxide synthase (eNOS) and nitric oxide (No) and increased levels of peroxynitrite (ONOO-) in VSMC from SHR were also restored to control levels by Sirt-I inhibitor (Lie Y, et al. 2021). These results suggest that the inhibition of overexpression of Sirt-I through decreasing the enhanced levels of Git proteins and nitro-oxidative stress attenuates the high BP in SHR. It may thus be suggested that inhibitors of Sirt-I may have the potential to be used as therapeutic agents in the treatment of cardiovascular complications associated with hypertension (Zhang et al, 2017)

It has been reported that SirtI directly impacts the endothelial function of arteries by deacetylating endothelial No. synthase (eNOS), which in turn is activated and preserves vascular homeostasis through No. production. Consistently, the inhibition of SirtI in the endothelium of arteries inhibits endothelium-dependent vasodilation and decreases bioavailable No. An elegant study performed by Bai et al. demonstrated that the overexpression of human SirtI in the endothelium in eNOS-deficient mice is protective against hypertension and counteracts adverse arterial remodeling occurring in aging vessels (Campagna et al, 2024).

CONCLUSION

Sirtuin-I relative expression was 0.52 fold lower in hypertension. Sirtuin-I has a preserved effect on cardiovascular and vascular wall through balancing another protein level in the mediation of oxidative stress. A limitation of this research was protein level was not measured. Further research suggestions are to explore the relationship between a diet containing Sirtuin and its expression at the protein level.

ACKNOWLEDGMENT

We would like to express our gratitude to all parties who have assisted in this research. We thank to Medical Faculty Universitas Trisakti for providing support and facilities for this research.

10.31932/jpbio.v10i1.4456

Yohana et al

55

56

This Research was funded by DRPMF FK Trisakti year 2024/2025. We hope that the results of this research can benefit society and contribute to the advancement of scientific knowledge.

REFERENCES

- Alam, F., Syed, H., Amjad, S., Baig, M., Khan, T. A., & Rehman, R. (2021). Interplay between oxidative stress, SIRTI, reproductive and metabolic functions. *Current research in physiology*, 4, 119-124. Retrieved from https://doi.org/10.1016/j.crphys.2021.03.002
- Amponsah-Offeh, M., Diaba-Nuhoho, P., Speier, S., & Morawietz, H. (2023). Oxidative stress, antioxidants and hypertension. *Antioxidants, 12*(2), 281. Retrieved from https://doi.org/10.3390/antiox12020281
- Arifen, N., Li, Y., Srivastava, A. K., & Anand-Srivastava, M. B. (2022). Sirtuin I inhibitor attenuates hypertension in spontaneously hypertensive rats: role of Giα proteins and nitroxidative stress. Journal of Hypertension, 40(7), 1314-1326. Retrieved from https://doi.org/10.1097/HJH.000000000003143
- Astutik, E., Puspikawati, S. I., Dewi, D. M. S. K., Mandagi, A. M., & Sebayang, S. K. (2020). Prevalence and Risk Factors of High Blood Pressure among Adults in Banyuwangi Coastal Communities, Indonesia. *Ethiopian journal of health sciences*, 30(6). Retrieved from https://doi.org/10.4314/ejhs.v30i6.12
- Begum, M. K., Konja, D., Singh, S., Chlopicki, S., & Wang, Y. (2021). Endothelial SIRT1 as a target for the prevention of arterial aging: promises and challenges. *Journal of Cardiovascular Pharmacology*, 78, S63-S77. Retrieved from https://doi.org/10.1097/FJC.000000000001154
- Campagna, R., Mazzanti, L., Pompei, V., Alia, S., Vignini, A., & Emanuelli, M. (2024). The multifaceted role of endothelial SirtI in vascular aging: an update. *Cells, 13*(17), 1469. Retrieved from https://doi.org/10.3390/cells13171469.
- Chen, Y., et al. (2020). Grape seed proanthocyanidin extract ameliorates endothelial dysfunction and hypertension via SirtI-AMPK-eNos signaling. Journal of Nutrition and Biochemistry, 77, I0833I. Retrieved from https://doi.org/10.3390/nuII122844
- Griendling, K. K., Camargo, L. L., Rios, F. J., Alves-Lopes, R., Montezano, A. C., & Touyz, R. M. (2021). Oxidative stress and hypertension. *Circulation research*, *128*(7), 993-1020. Retrieved from https://doi.org/10.3390/cells13171469
- Habibian, J., Ferguson, B.S. (2018). The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. *Int. J. Mol. Sci, 20*, 102. Retrieved from https://doi.org/10.3390/ijms20010102
- Hossain, E., Li, Y., & Anand-Srivastava, M. B. (2021). Angiotensin II-induced overexpression of sirtuin I contributes to enhanced expression of Giα proteins and hyperproliferation of vascular smooth muscle cells. *American Journal of Physiology-Heart and Circulatory Physiology*, 321(3), H496-H508. Retrieved from https://doi.org/10.1152/ajpheart.00898.2020
- Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C. (2019). Resveratrol Promotes Diabetic Wound Healing via SIRTI-FOXOI-c-Myc Signaling Pathway-Mediated Angiogenesis. *Frontiers in pharmacology, 10,* 421 Retrieved from https://doi.org/10.3390/ijms20010102
- Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y. (2019). circ-SirtI controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRTI expression by binding to miR-I32/212 in vascular smooth muscle cells. *Nucleic Acids Res,* 47(35), 80-93 Retrieved from https://doi.org/I0.1093/nar/gkz141

10.31932/jpbio.v10i1.4456

Yohana et al

jurnaljpbio@gmail.com

- Li, Y., Hossain, E., Arifen, N., Srivastava, A. K., & Anand-Srivastava, M. B. (2022). Sirtuin I contributes to the overexpression of Giα proteins and hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats. *Journal of Hypertension*, 40(1), 117-127. Retrieved from https://doi.org/10.1097/HJH.000000000002985
- Penantian, R. M., Antarianto, R. D., & Hardiany, N. S. (2023). Effect of Calorie Restriction on the Expression of SirtuinI as an Antiaging Biomarker. Makara Journal of Science, 27(3), 3. Retrieved from https://scholarhub.ui.ac.id/science/vol27/iss3/3
- Maiese, K. (2021). Sirtuins in metabolic disease: innovative therapeutic strategies with SIRTI, AMPK, mTOR, and nicotinamide. In *Sirtuin Biology in Cancer and Metabolic Disease* (pp. 3-23). Academic Press. Retrieved from https://doi.org/10.1016/B978-0-12-822467-0.00006-1
- Manolis, A. J. (2020). Hypertension: A silent killer. Journal of Clinical Hypertension, 22(1), 13– 21. Retrieved from https://doi.org/10.1080/14779072.2024.2357344
- Meiyanti, M., Margo, E., Chudri, J., & Faradilla, M. A. (2023). Factors associated with plasma malondialdehyde levels in people over 40 years. *Journal of Drug Delivery and Therapeutics*, 13(7), 52-56. Retrieved from https://doi.org/ 10.22270/jddt.v13i7.6142
- Mulia, E. P. B., & Prajitno, S. (2020, February). Neglected cases of hypertension in rural Indonesia: A cross-sectional study of prevalence and risk factors on adult population. In *IOP Conference Series: Earth and Environmental Science*, 441(1), 012167. Retrieved from https://doi.org/10.1088/1755-1315/441/1/012167
- Negre-Salvayre, A., Swiader, A., Salvayre, R., & Guerby, P. (2022). Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Archives of biochemistry and biophysics, 730, 109416. Retrieved from https://doi.org/10.1016/j.abb.2022.109416
- Teixeira, F. C. (2020). Sirtuins: Regulatory proteins in health and disease. Journal of Molecular Medicine, 98(9), 833–844. Retrieved from https://doi.org/10.3390/ijms22020630
- Ren, C. Z., Wu, Z. T., Wang, W., Tan, X., Yang, Y. H., Wang, Y. K., Li, M. L., & Wang, W. Z. (2022). SIRTI exerts anti-hypertensive effect via FOXOI activation in the rostral ventrolateral medulla. *Free radical biology & medicine*, *188*, I–I3. Retrieved from https://doi.org/10.1016/j.freeradbiomed.2022.06.003
- Sazdova, I., Hadzi-Petrushev, N., Keremidarska-Markova, M., Stojchevski, R., Sopi, R., Shileiko, S., & Mladenov, M. (2024). SIRT-Associated Attenuation of Cellular Senescence in Vascular Wall. *Mechanisms of Ageing and Development*, 111943. Retrieved from https://doi.org/10.1016/j.mad.2024.111943
- Shahgaldi, S., & Kahmini, F. R. (2021). A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. *Life Sciences, 282*, 119803. Retrieved from https://doi.org/10.1016/j.lfs.2021.119803
- Singh, S., & Ubaid, M. (2020). Oxidative stress and inflammation in hypertension. Journal of Cardiovascular Medicine, 21(12), 641–648. Retrieved from https://doi.org/10.3390/antiox11010172
- Sun, H., Li, D., Wei, C., Liu, L., Xin, Z., Gao, H., & Gao, R. (2024). The relationship between SIRT1 and inflammation: a systematic review and meta-analysis. *Frontiers in Immunology*, 15, 1465849. Retrieved from https://doi.org/10.3389/fimmu.2024.1465849
- Touyz, R. M., Rios, F. J., Alves-Lopes, R., Neves, K. B., Camargo, L. L., & Montezano, A. C. (2020). Oxidative stress: a unifying paradigm in hypertension. *Canadian journal of cardiology*, 36(5), 659-670. Retrieved from https://doi.org/10.1016/j.cjca.2020.02.081
- Wan, X., & Garg, N. J. (2021). Sirtuin control of mitochondrial dysfunction, oxidative stress, and inflammation in chagas disease models. *Frontiers in Cellular and Infection Microbiology*, 11, 693051. Retrieved from https://doi.org/10.3389/fcimb.2021.693051

10.31932/jpbio.v10i1.4456

Yohana et al

jurnaljpbio@gmail.com

57

58

- Wu, Q. J., Zhang, T. N., Chen, H. H., Yu, X. F., Lv, J. L., Liu, Y. Y., ... & Zhao, Y. H. (2022). The sirtuin family in health and disease. *Signal Transduction and Targeted Therapy*, 7(1), 402. Retrieved from https://doi.org/10.1038/s41392-022-01257-8
- Yang, X. (2022). SirtI/NF kB/MAPK signaling pathway regulates blood pressure and cardiac hypertrophy. American Journal of Hypertension, 35(5), 432–441. Retrieved from https://doi.org/10.1016/j.biopha.2016.11.011
- Yohana, Y., Faradilla, M. A., Meiyanti, M., Hartanti, M. D., Margo, E., & Anastasya, K. S. (2024). mRNA Relative Expression Catalase in Hypertension. *Bioscientist: Jurnal Ilmiah Biologi, 12*(2), 1821-1827. Retrieved from https://doi.org/10.33394/bioscientist.v12i2.12825
- Zhang, W., Huang, Q., Zeng, Z., Wu, J., Zhang, Y., & Chen, Z. (2017). SirtI inhibits oxidative stress in vascular endothelial cells. Oxidative medicine and cellular longevity, 2017(1), 7543973. Retrieved from https://doi.org/10.1155/2017/7543973

doi 10.31932/jpbio.v10i1.4456

Yohana et al

🚫 jurnaljpbio@gmail.com

Gene Expression of sirtuin I in adult with hypertension

ORIGIN	ALITY REPORT	
SIMILA	2% 8% 8% 4% THE RIVER SOURCES PUBLICATIONS 5TUDENT PA	APERS
PRIMAR	Y SOURCES	
1	Muh. Sabri, Aswar Rustam. "Crab diversity in tongke-tongke mangroves, east sinjai district, sinjai regency", JPBIO (Jurnal Pendidikan Biologi), 2025 Publication	2%
2	Submitted to Universitas Siliwangi Student Paper	1%
3	Grigory G. Martinovich, Irina V. Martinovich, Sergey N. Cherenkevich, Heinrich Sauer. "Redox Buffer Capacity of the Cell: Theoretical and Experimental Approach", Cell Biochemistry and Biophysics, 2010 Publication	1 %
4	Dominga Lapi, Gian Carlo Tenore, Giuseppe Federighi, Martina Chiurazzi et al. "L-Arginine and Taurisolo® Effects on Brain Hypoperfusion–Reperfusion Damage in Hypertensive Rats", International Journal of Molecular Sciences, 2024 Publication	1 %
5	ijn.thebrpi.org Internet Source	1%
6	www.sciencegate.app	1%
7	Kenneth Maiese. "Sirtuins in metabolic disease: innovative therapeutic strategies	1%

with SIRT1, AMPK, mTOR, and nicotinamide",

Elsevier BV, 2021

Publication

8	bio-protocol.org Internet Source	1%
9	medworm.com Internet Source	1%
10	Submitted to Botswana International University of Science and Technology Student Paper	<1%
11	pubmed.ncbi.nlm.nih.gov Internet Source	<1%
12	www.tdx.cat Internet Source	<1%
13	Arulkumar Nagappan, Ji-Hyun Kim, Dae Young Jung, Myeong Ho Jung. "Cryptotanshinone from the Salvia miltiorrhiza Bunge Attenuates Ethanol-Induced Liver Injury by Activation of AMPK/SIRT1 and Nrf2 Signaling Pathways", International Journal of Molecular Sciences, 2019 Publication	<1%
14	Teza Lestari Ningrum, Wahidin Wahidin, Dea Diella. "Improving problem-solving ability and collaboration skills of ecosystem material through STEM integrated project-based learning", JPBIO (Jurnal Pendidikan Biologi), 2024 Publication	<1%
15	www.sciencepublishinggroup.com	<1%

16	Yaping Hou. "Changes in methylation patterns of multiple genes from peripheral blood leukocytes of Alzheimer's disease patients", Acta Neuropsychiatrica, 03/2012 Publication	<1%
17	pesquisa.teste.bvsalud.org	<1%
18	wrap.warwick.ac.uk Internet Source	<1%
19	Jie Qi, Li-Yan Fu, Kai-Li Liu, Rui-Juan Li et al. "Resveratrol in the Hypothalamic Paraventricular Nucleus Attenuates Hypertension by Regulation of ROS and Neurotransmitters", Nutrients, 2022 Publication	<1%
20	Xianbin Yu, Zhixuan Liu, Yitian Yu, Chengjie Qian, Yuzhe Lin, Shuqing Jin, Long Wu, Shi Li. " Hesperetin promotes diabetic wound healing by inhibiting ferroptosis through the activation of ", Phytotherapy Research, 2024 Publication	<1%

Exclude quotes	On	Exclude matches	< 10 words
Exclude bibliography	On		