

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

Journal homepage:

https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/index ISSN: 2289-7879

Boiling Heat Transfer Coefficient, Pressure Drop and Flow Pattern of a Two-Phase Flow in a Horizontal Mini Channel with R290

Agus Sunjarianto Pamitran^{1,*}, Ronald Akbar¹, Jong-Taek Oh², Sentot Novianto³, Mulya Juarsa⁴, Normah Mohd-Ghazali⁵

- ¹ Department of Mechanical Engineering, Universitas Indonesia, Kampus UI Depok 16424, Indonesia
- Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749. South Korea
- ³ Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Trisakti, Jakarta, 16424, Indonesia
- 4 Research Centre for Nuclear Reactor Technology, National Research and Innovation Agency, Kawasan Puspiptek Gedung 80, Setu, Tangerang Selatan, Banten, Indonesia
- ⁵ School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor, Johor Bahru, Malaysia

ARTICLE INFO

ABSTRACT

Article history:

Received 27 January 2025 Received in revised form 22 April 2025 Accepted 3 May 2025 Available online 20 May 2025

Keywords:

Heat transfer coefficient; two-phase flow boiling; R290; mini-channel, correlation prediction; pressure drop Many researchers have done various studies on the correlation development to predict the heat transfer coefficient and pressure drop. It is of great urgency to accurately predict the correlation to avoid a discrepancy when designing a heat exchanger. This study is aimed at determining the characteristics of a heat transfer coefficient and a pressure drop of refrigerant R290 by employing experimental data. Moreover, it is also aimed at making several comparisons in order to obtain the best correlations used to predict the experimental data. The experimental data are the two-phase flow boiling in a horizontal tube with the inner diameter of 3 mm, the mass flux of 50 kg/m²s to 180 kg/m²s, the heat flux of 5 kW/m² to 20 kW/m², the saturation temperature of 0°C to 11°C, and the vapor quality of up to 1. This study shows the effects of the two-phase Reynolds Number on the experimental heat transfer coefficient and the pressure drop. Aizuddin *et al.*,'s [1] heat transfer coefficient correlation and Sun and Mishima's pressure drop correlation showed the best prediction, namely mean absolute deviation of 14.07% and 27.64%, respectively. Wojtan *et al.*,'s [2] flow pattern map showed better flow pattern prediction with the experimental data.

1. Introduction

The higher fossil resources depletion rate and the problems such as pollution, global warming, and ozone depletion provides the indication that fossil resources will not support the future energy demand [3]. Many environmentally-friendly refrigerants have been used to replace various refrigerants with a high ozone depletion potential (ODP) and Global Warming Potential (GWP), which may result in an ozone depletion and increase the global warming effect [4]. R290, or propane, is a natural refrigerant with zero ODP and GWP, so it will not damage the environment. Moreover, it has

E-mail address: pamitran@eng.ui.ac.id

https://doi.org/10.37934/arfmts.131.2.169182

^{*} Corresponding author.

a higher cooling capacity than R22 [1,5]. Based on the results of a study on various heat pump trials at WPZ Toss Switzerland [6], it was found out that R290 was the second most common refrigerant used in many heat pumps after R407C, accounting for 12% of all heat pumps tested in 2002. Based on the results of various published studies, several conclusions on the characteristics of the heat transfer coefficient and pressure drop, depending on their test conditions have been drawn. da Silva et al., [7], Ducoulombier et al., [8], Ribatski [9], and Markal et al., [10] concluded that the heat transfer coefficient was dependent on vapor quality, mass flux, and heat flux.

The heat transfer coefficient reaches a higher value at greater mass flux and heat flux. Then at high vapor quality, the heat transfer coefficient would enter the dry out regime until it decreased so sharply in the mist regime that the vapor began to diffuse in the form of bubbles, thus reducing the heat transfer. While Hamdar *et al.*, [11] and Saisorn *et al.*, [12] stated that the heat transfer coefficient was independent from the vapor quality. Meanwhile, in regards to the pressure drop, Ju *et al.*, [13] and Bashar *et al.*, [14] pointed out that, since the friction occurred at a certain mass flux, the characteristics of the pressure drop would be better-enhanced in a small diameter tube. Then, an increased saturation temperature would reduce the pressure drop. Qu *et al.*, [15], Padilla *et al.*, [16], and Umar *et al.*, [17] concluded that the pressure drop increased slightly and linearly in various mass fluxes in a vapor with low vapor quality. In terms of the correlation, the heat transfer coefficient and pressure drop are divided into several methods; so, the experimental data would be able to be analyzed.

Turgut and Mustafa [18] stated that the coefficient correlation of the heat transfer was divided into five models, all of which were the combinations of various nucleate and their convective boiling mechanisms. The models were the enhancement factor, the superposition model, the nucleate boiling model, the asymptotic model, and the largest mechanism predominant model. Moreover, the correlation of the pressure drop was divided into the homogeneous flow model and the separated flow model [19]. Based on those previously mentioned models, the prediction process would be carried out with some correlations on the heat transfer coefficient and the pressure drop of R290 data flowing in a horizontal mini-channel tube. This study is aimed at determining the characteristics of the heat transfer coefficient and the pressure drop with refrigerant R290 and at revealing which best correlation can predict the data. Then, the result also will be plotted to the flow pattern maps of Wojtan *et al.*, [2] and Zhuang *et al.*, [20].

2. Methodology

2.1 Experimental Set Up

This study employed the experimental data from the study done by Pamitran *et al.*, [21] as Figure 1 showed. The components mainly consisted of a condenser, cooling system, liquid receiver, refrigerant pump, preheater, mass flow meter, and test section. The needle valve adjusted the mass flow rate of the refrigerant, and the flow rate was measured with a mass flow meter. A preheater was installed to control the vapor quality of the refrigerant, so it was heated before it entered the test section. The test section was a stainless-steel mini-channel tube with a smooth surface, a 3-mm diameter, and a 2-m length. It was insulated to resist any heat loss to the environment. The outer part of the test section, especially at the top, middle, and bottom sides, were fitted with several thermocouples with a 100-mm interval. The mass flux varied from 50 kg/m²s to 180 kg/m²s and the heat flux varied from 5 kW/m² to 20 kW/m². The saturation pressure of the refrigerant was used to determine the saturation temperature, and it was measured by using a pressure gauge at the inlet and outlet of the test section. The sight glass was fitted at the inlet and outlet to visualize the flow.

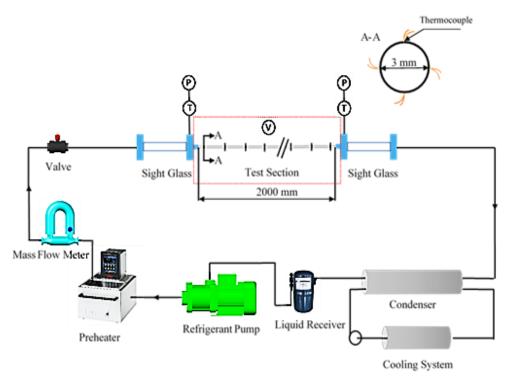


Fig. 1. Experimental set up [21]

The temperature and the pressure data were recorded with the data acquisition. Table 1 from study done by Pamitran *et al.*, [21] shows the parameter's uncertainties consisting of the temperature, pressure, mass flux, heat flux, and vapor quality. The uncertainties were obtained using both random and systematic errors, which varied according to the conditions of the working fluid flow. Therefore, the minimum and maximum error ranges were also displayed.

Table 1Parameter uncertainties [21]

r drainteter directainties [21]	
Parameters	Uncertainties
Temperature T (%)	± 0.18 - ± 5.58
Pressure P (kPa)	<u>±</u> 2.5
Mass flux $m{G}$ (%)	<u>+</u> 1.85 - <u>+</u> 9.78
Heat flux $oldsymbol{q}$ (%)	<u>±</u> 1.67 - <u>±</u> 3.58
Vapor quality x (%)	<u>±</u> 1.79 - <u>±</u> 9.82

2.2 Data Reduction

The vapor quality x in the test section was calculated by using Eq. (1).

$$x = \frac{i - i_l}{i_{lv}} \tag{1}$$

where i is the enthalpy, the subscript l and v is the condition of the liquid and vapor at the saturation temperature, respectively. The subcooled length z_{sc} in m is used to determine the starting point of the saturation calculated by using Eq. (2).

$$z_{SC} = L \frac{i_l - i_{l,in}}{(Q/W)} \tag{2}$$

where L is the tube length, Q is the electricity power, and W is the mass flow rate. The experimental heat transfer coefficient h along the test section shall be obtained by using Eq. (3).

$$h = \frac{q}{T_{wi} - T_{sat}} \tag{3}$$

where q in kW/m² is the heat flux, T is the temperature in K, the subscript wi is the inner wall of the test section, and sat is the saturation condition. Meanwhile, the experimental pressure drop was obtained by employing the pressure difference between the pressure gauge at the inlet and that of the outlet of the test section.

2.3 Correlation Analysis

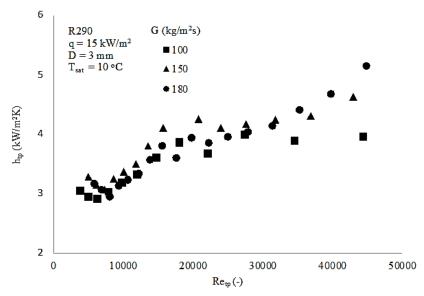
Several correlations from the other 20 authors would be used to predict the experimental data. All the employed correlations were modified and adjusted from the data of their studies. They were based on each of the heat transfer coefficients and their pressure drop correlation model. The conditions and the refrigerants of the studies used by those authors were different, too. The mass flux varied from 12.4 kg/m²s to 11071 kg/m²s. The heat flux varied from 0.1 kW/m² to 2620 kW/m², and the refrigerant varied from R290 to CO₂. The employed test section varied from 0.1 mm to 32 mm, and it was confirmed that the shape of the test section ranged from a microchannel to a conventional tube. The all-previous cited correlation was developed with variation of mass flux and heat flux. Many refrigerants have been used, including synthetics and natural refrigerants, such as R290. Table 2 from the previous studies [1,18,22-29] and Table 3 from studies [30-39] show the correlation of the heat transfer coefficient and the pressure drop used in this study.

Table 2The heat transfer coefficient correlations used in this study

Authors	Equations
Shah [22]	$h_{tp} = F \cdot h_{cb}$
(Enhancement factor)	$h_{cb} = 0.023. Re_l^{0.8}. Pr_l^{0.4} \frac{k_l}{R}$
	$F = fn(Bo, N)$ and $N = fn(Co, Fr_l)$
	R11, R12, R22, R502
	<i>D_{in}</i> : 0.1-26.4 mm
	<i>G</i> : 50-11071 kg/m²s
	q: 1- 12 kW/m ²
Cooper [40]	$h_{nb} = 55p_r^{0.12} (-lnp_r)^{-0.55} M^{-0.5} q^{0.67}$
(Nucleate boiling model)	R22, R21, R13, R12, R11
	<i>D_{in}</i> : 5.02- 15.8 mm
W 111 Fo.43	q: 0.1-1000 kW/m²
Kandlikar [24]	$h_{tp} = max(h_{nb}, h_{cb})$
(The Largest Mechanism	$h_{nb} = 0.6683. Co^{-0.2}. (25. Fr_l)^{0.3} + 1058. Bo^{0.7}. 0.023. Re_l^{0.8}. Pr_l^{0.4} \frac{k_l}{D}$
Predominant model)	$h_{cb} = 1.136. Co^{-0.9}. (25. Fr_l)^{0.3} + 667.2. Bo^{0.7}. 0.023. Re_l^{0.8}. Pr_l^{0.4} \frac{k_l}{D}$
	8 different refrigerants
	<i>D_{in}</i> : 3-20.5 mm
	<i>G</i> : 13-8179 kg/m²s
	q: 0.3-2280 kW/m²
Liu and Winterton [25] (Asymptotic model)	$h_{tp} = [(S.h_{nb})^2 + (F.h_{cb})^2]^{\frac{1}{2}}$
	$h_{nb} = h_{Cooper}$
	$h_{cb} = 0.023. Re_{lo}^{0.8}. Pr_l^{0.4} \frac{k_l}{R}$
	$S = fn(F, Re_{lo})$ and $F = fn(x, Pr_{l}, \rho_{l}, \rho_{v})$
	$S = \int n(r, n\epsilon_{l0})$ and $r = \int n(x, r_l, \rho_l, \rho_v)$

Zhang <i>et al.,</i> [26] (Superposition model)	9 different refrigerants $D_{in} \colon 2.95\text{-}32 \text{ mm}$ $G \colon 12.4\text{-}8179.3 \text{ kg/m}^2\text{s}$ $q \colon 0.38\text{-}2620 \text{ kW/m}^2$ $h_{tp} = S \cdot h_{nb} + F \cdot h_{cb}$ $h_{nb} = 0.00122 \left[\frac{k_l^{0.79} \cdot c_{pl}^{0.45} \cdot \rho_l^{0.49}}{\sigma^{0.5} \cdot \mu_l^{0.29} \cdot i_{lv}^{0.24} \cdot \rho_v^{0.24}} \right] \cdot \Delta T_{sat}^{0.24} \cdot \Delta P_{sat}^{0.75}$ If $Re_l < 2300$, so: $h_{cb} = \frac{k_l}{D_h} \cdot max \left(Nu'_{sp,v}, Nu_{sp,t} \right)$ If $Re_l \ge 2300$, so: $h_{cb} = \frac{k_l}{D_h} \cdot Nu_{sp,t}$
Bertsch <i>et al.,</i> [27] (Superposition model)	$S = fn(Re_l)$ and $F = fn(C, X)$ Water, R11, R12, R113 D_{in} : 0.78-6 mm G: 23.4-2939 kg/m²s q: 2.95-2511 kW/m² $h_{tp} = S \cdot h_{nb} + F \cdot h_{cb}$ $h_{nb} = h_{cooper}$ $h_{cb} = h_{conv,l} \cdot (1 - x) + h_{conv,v} \cdot x$ S = fn(x) and $F = fn(x)12 different refrigerants$
Kim and Issam [28] (Asymptotic model)	$\begin{split} &D_{in} \colon \text{0.16-3 mm} \\ &G \colon \text{20-3000 kg/m}^2 \text{s} \\ &q \colon \text{0.4-115 kW/m}^2 \\ &h_{tp} = \left[(h_{nb})^2 + (h_{cb})^2 \right]^{\frac{1}{2}} \\ &h_{nb} = \left[2345 \cdot \left(Bo \cdot \frac{P_H}{P_F} \right)^{0.70} \cdot p_r^{0.38} (1-x)^{-0.51} \right] \cdot \text{0.023.} Re_l^{0.8} \cdot Pr_l^{0.4} \frac{k_l}{D_h} \\ &h_{cb} = \left[5.2 \cdot \left(Bo \cdot \frac{P_H}{P_F} \right)^{0.08} \cdot We_{lo}^{-0.54} \right. + \\ &3.5 \cdot \left(\frac{1}{\chi_{tt}} \right)^{0.94} \left(\frac{\rho_v}{\rho_l} \right)^{0.25} \right] \cdot \text{0.023.} Re_l^{0.8} \cdot Pr_l^{0.4} \frac{k_l}{D_h} \end{split}$
Turgut and Mustafa [29] (Asymptotic model)	18 different refrigerants $\begin{split} D_{in} \colon 0.19\text{-}6.5 &\text{ mm} \\ G \colon 19\text{-}1608 \text{ kg/m}^2\text{s} \\ q \colon 5\text{-}50 \text{ kW/m}^2 \\ h_{tp} &= \left[(\ h_{nb})^3 + (h_{cb}\)^3 \right]^{\frac{1}{3}} \\ h_{nb} &= 0.5740708489546. \ h_{Cooper}^{1.0097850898120}. \ p_r^{-0.673980526542}. \ (1-x)^{0.1260865942051} \\ h_{cb} &= \left[1.9246533128433. \left(\frac{1}{co} \right)^{0.9518395312523} \right]. 0.023. \ Re_l^{0.8}. \ Pr_l^{0.4} \frac{k_l}{D_h} \end{split}$
Aizuddin <i>et al.,</i> [1] (Asymptotic model)	R744 (CO ₂) $D_{in}: 0.5-9.52 \text{ mm}$ $G: 50-1400 \text{ kg/m}^2\text{s}$ $q: 5-40 \text{ kW/m}^2$ $h_{tp} = \left[(h_{nb})^2 + (h_{cb})^2 \right]^{\frac{1}{2}}$ $h_{nb} = \left[2215 \cdot \left(Bo \cdot \frac{P_H}{P_F} \right)^{0.88} \cdot p_r^{-0.43} (1-x) \right] \cdot 0.023 \cdot Re_l^{0.8} \cdot Pr_l^{0.4} \frac{k_l}{D_h}$ $h_{cb} = \left[0.31 \cdot \left(Bo \cdot \frac{P_H}{P_F} \right)^{-0.03} \cdot We_{lo}^{-0.85} + 8.92 \cdot \left(\frac{1}{X_{tt}} \right)^{0.775} \left(\frac{\rho_v}{\rho_l} \right)^{0.33} \right] \cdot 0.023 \cdot Re_l^{0.8} \cdot Pr_l^{0.4} \frac{k_l}{D_h}$ R290 $R = \frac{1.3 \text{ mm}}{2} \cdot $
	D_{in} : 3 mm G : 100, 150, and 200 kg/m ² s q : 5, 10, and 15 kW/m ²

Turgut and Mustafa [18] $h_{tp} = [(\ h_{nb})^{2.695516415880346} + (\ h_{cb})^{2.695516415880346}]^{2.695516415880346}$ (Asymptotic model) $h_{nb} = 66.636181187049520 p_r^{1.244926529779103} \\ (-lnp_r)^{0.258952076070707} \ M^{0.399836377153093} \ q^{0.505546027893485} \\ h_{cb} = \left[1 + 1.499118607477336. X_{tt}^{-1.040878186584161}\right] \\ 0.551669381417827. Re_l^{0.185318440184329}. Pr_l^{0.354519104766204} \frac{k_l}{D_h} \\ R290 \\ D_{in} : 0.3-7.7 \ \text{mm} \\ G : 50-600 \ \text{kg/m}^2 \text{s} \\ q : 2.5-227 \ \text{kW/m}^2$


Table 3The pressure drop correlations used in this study

The pressure drop correlation	ions used in this study
Authors	Equations
Beattie and Whalley [30]	$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_F + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_a$
(Homogeneous flow model)	
	$\beta = \frac{\rho_l x}{\rho_l x + \rho_g (1 - x)}$
	$\mu_{tp} = \mu_l (1 - \beta)(1 + 2.5\beta) + \mu_g \beta$
Tran <i>et al.,</i> [31]	$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_E + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_Q$
(Separated flow model)	$\emptyset_{lo}^{22} = 1 + (4.3X^{2} - 1)[N_{conf}X^{0.875}(1 - x)^{0.875} + x^{1.75}]$
	$\Delta p_l = \Delta p_{lo} \cdot \emptyset_{lo}^2$
	R134a, R12, R113
	<i>D_{in}</i> : 2.46 and 2.92 mm
	<i>G</i> : 33-832 kg/m²s
	q: 2.2-129 kW/m ²
Zhang and Ralph [32]	$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_F + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_a$
(Separated flow model)	- "
	If $x = 0$, so: $\emptyset_{lo}^2 = 1$
	If $x > 0$, so:
	$\emptyset_{lo}^2 = (1-x)^2 + 2.87x^2 \left(\frac{P}{P_c}\right)^{-1} + 1.68x^{0.8}(1-x)^{0.25} \left(\frac{P}{P_c}\right)^{-1.64}$
	R134a, R22, R404a
	D_{in} : 3.25 and 6.25 mm
	$G: 200-1000 \text{ kg/m}^2 \text{s}$
Miyara et al., [33]	$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_E + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_Q$
(Separated flow model)	$C = 21\{1 - exp(-0.28Bd^{0.5})\}\{1 - 0.9\exp(-0.02Fr^{1.5})\}$
	$n = 1 - 0.7 \exp(-0.08Fr)$
	$\emptyset_v^2 = 1 + CX_{tt}^n + X_{tt}^2$
	Water, R744 (CO ₂)
	D _{in} : 1-4 mm
Llucas and Min [24]	G: 50-200 kg/m ² s (dn) (dn) (dn)
Hwang and Min [34] (Separated flow model)	$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_F + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_a$
(Separated flow filoder)	$C = 0.227 Re_{lo}^{0.452} X^{-0.32} N_{conf}^{-0.82}$
	R134a, R22, R404a
	<i>D_{in}</i> : 0.24, 0.43, and 0.79 mm
	G: 140-930 kg/m ² s
Park and Hrnjak [35]	$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_F + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_a$
(Separated flow model)	
	$\left(\frac{dp}{dz}\right)_{lo} = 0.079 \left(\frac{\mu_l}{GD}\right)^{0.25} \left(\frac{2G^2}{D\rho_l}\right)$
	$\left(\frac{dp}{dz}\right)_{vo} = 0.079 \left(\frac{\mu_v}{GD}\right)^{0.25} \left(\frac{2G^2}{D\rho_v}\right)$
	10
	$\left(\frac{dp}{dz}\right)_F = \left(\frac{dp}{dz}\right)_{I_0} (1 - 2x)(1 - x)^{1/3} + \left(\frac{dp}{dz}\right)_{v_0} \left[2x(1 - x)^{1/3} + x^3\right]$
	R744 (CO ₂), R410A, R22

```
D_{in}: 6.1 mm
                                               G: 100-400 kg/m<sup>2</sup>s
                                               q: 5-15 kW/m<sup>2</sup>
                                              Sun and Kaichiro [36]
(Separated flow model)
                                              C = 26(1 + \frac{Re_l}{1000}) \left[ 1 - exp\left(\frac{-0.153}{0.27La + 0.8}\right) \right]
\emptyset_l^2 = 1 + \frac{c}{x} + \frac{1}{x^2}
If Re_{lo} and Re_{vo} > 2000, so:
                                              C = 1.79 \left(\frac{Re_v}{Re_l}\right)^{0.4} \left(\frac{1-x}{x}\right)^{0.5}
\emptyset_l^2 = 1 + \frac{C}{X^{1.19}} + \frac{1}{X^2}
                                               12 different refrigerants
                                               D<sub>in</sub>: 0.5-6 mm
                                               G: 198-1080 kg/m<sup>2</sup>s
                                               q: 10.6-17 kW/m<sup>2</sup>
                                               Li and Zan [37]
(Separated flow model)
                                               If Bd \leq 1.5, so:
                                               C = 11.9Bd^{0.45}
                                               If 1.5 \le Bd \le 11, so:
                                               C = 109.4(Bd.Re_l^{0.5})^{-0.6}
                                               12 different refrigerants
                                               D<sub>in</sub>: 0.14-3 mm
                                               G: 50-2000 kg/m<sup>2</sup>s
                                              Li and Takashi [38]
(Separated flow model)
                                               6.28N\mu_{tp}^{0.78}Re_{tp}^{0.67}x^{0.32}
                                               If Re_l > 2000 and Re_v < 1000 (turbulent - laminar), so: C =
                                               1.54 N \mu_{tp}^{0.14} Re_{tp}^{0.52} x^{0.42}
                                               If Re_l < 1000 and Re_v > 2000 (laminar - turbulent) , so : \mathcal{C} =
                                               245.5 N \mu_{tp}^{0.75} Re_{tp}^{0.35} x^{0.54}
                                               If Re_l and Re_v < 1000 (laminar - laminar) , so: C = 41.7 N \mu_{tp}^{0.66} Re_{tp}^{0.42} x^{0.21}
                                               10 different refrigerants
                                               D_{in}: 0.1-3 mm
                                               G: 50-2000 \text{ kg/m}^2\text{s}
                                               q: 5- 500 kW/m<sup>2</sup>
                                               \left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}\right)_F + \left(\frac{dp}{dz}\right)_Z + \left(\frac{dp}{dz}\right)_a
Maher et al., [39]
(Homogeneous flow model)
                                              \mu_{tp} = \left[ (1-x) \mu_f + x \mu_g \right]^{0.94} \left( \frac{1-x}{\mu_l} + \frac{x}{\mu_o} \right)^{-0.94}
                                               f_{tp} = \left(0.79Re_{tp}^{-0.25}\right)^{1.4} + \left\{0.17\left\{0.69ln\left(Re_{tp}\right) - 2.2\right\}^{-1.5}\right\}^{1/0.7}
                                               \left(\frac{dp}{dz}\right)_{tp} = \frac{G_{tp}^2.f_{tp}}{2.D_{in}.\rho_{tp}}
                                               7 different refrigerants
                                               D<sub>in</sub>: 0.52-8 mm
                                               G: 35.5-1600 \text{ kg/m}^2\text{s}
```

3. Result and Discussion

The experimental data showed that the heat transfer coefficient and the pressure drop were affected by the two-phase Reynolds Number. Figure 2 shows the effects of the two-phase Reynolds Number on the experimental heat transfer coefficient data with heat flux amounting to 15 kW/m².

Fig. 2. Effect of two-phase Reynolds number on the heat transfer coefficient

The higher the two-phase Reynolds number was, the higher the heat transfer coefficient would be. However, at a lower two-phase Reynolds number, the effects of the mass flux were not too significant. The nucleate boiling mechanisms dominated the heat transfer process, often occurring in a mini-channel tube [41]. Figure 3 shows the effects of the two-phase Reynolds number on the pressure drop with the heat flux amounting to 15 kW/m². The pressure drop would become higher when a high two-phase Reynolds number occurred. The effects of the mass flux were also insignificant at a lower two-phase Reynolds Number. Then, the pressure drop would increase as the mass flux increased.

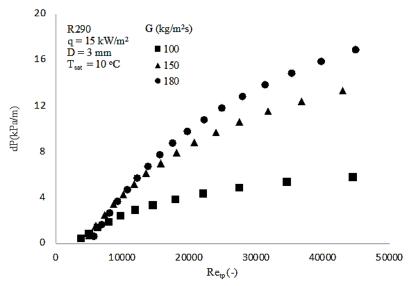


Fig. 3. Effect of two-phase Reynolds number on the pressure drop

In this study, Table 4 from the correlations of [1,18,22,24-29] shows the deviation of the heat transfer coefficient prediction. Moreover, Figure 4 shows the selected comparison between the heat transfer coefficient and the existing correlation. Overall, Aizuddin *et al.*,'s [1] correlation gave the best prediction. The correlation was an asymptotic model that developed with R290, mass flux of 100 up to 200 kg/m²s, and heat flux of 5 up to 15 kW/m². Those experimental conditions were very close

with those of the present study. Therefore, this correlation was good to predict the heat transfer coefficient with the present data. Shah's correlation [22] was the second-best heat transfer coefficient correlation in an Enhancement Factor model. This correlation was a further development of his previous study where he predicted the heat transfer coefficient by using a graph adjusted to simplify the calculation process [42]. Shah's basic equation divided the Enhancement Factor F into many conditions based on the nucleate and convective boiling mechanism. With this division, this correlation could predict the heat transfer coefficient well at various qualities of the vapor.

Table 4
Deviation of the heat transfer coefficient correlations

Correlations	Mean absolute deviation (%)	-
Aizuddin et al., [1]	14.07	
Shah [22]	14.72	
Bertsch et al., [27]	19.29	
Kim and Mudawar [28]	25.06	
Zhang <i>et al.,</i> [26]	27.89	
Turgut and Coban [17]	40.32	
Kandlikar [24]	43.82	
Liu and Winterton [25]	55.27	
Turgut and Asker [29]	77.51	

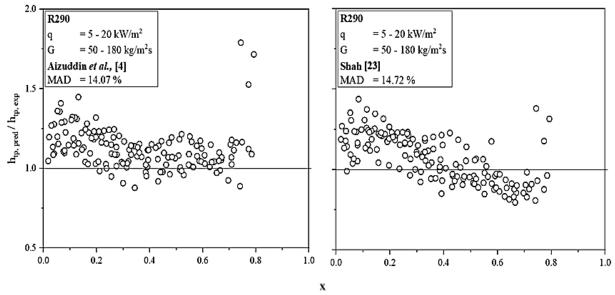


Fig. 4. Selected comparison between heat transfer coefficient with existing correlations

Table 5 from the correlations of [30-33,35-39] shows the deviation in the prediction of the pressure drop. Moreover, Figure 5 shows the selected comparison between the pressure drop and the existing correlation. Sun & Mishima's correlation [36] provided the best prediction. This correlation was a separated flow model developed with 12 different refrigerants on condition that the mass flux ranged from 198 kg/m²s to 1080 kg/m²s, by modifying Chisholm's Parameter. With this modification, this correlation could predict the pressure drop under wider various conditions of the mass flux. Li's and Wu's correlation [37] was the second-best pressure drop correlation in the Separated Flow Model. This correlation was developed with 12 different refrigerants and based on the condition that the mass flux ranged from 500 kg/m²s to 2000 kg/m²s. Li and Wu modified the Chisholm Parameter, which was divided based on Bond Number's condition. With this division, this correlation could predict the pressure drop under various conditions of surface tension.

Table 5Deviation of the heat pressure drop correlations

Deviation of the heat pressure drop correlations				
Correlation Mean absolute deviation (%)				
Sun and Mishima [36]	27.64			
Li and Wu [37]	34.05			
Miyara et al., [33]	34.81			
Park and Hrnjak [35]	43.68			
Maher <i>et al.,</i> [39]	45.69			
Li and Hibiki [38]	47.57			
Beattie and Whalley [30]	57.32			
Zhang and Webb [32]	57.79			
Tran <i>et al.,</i> [31]	69.07			

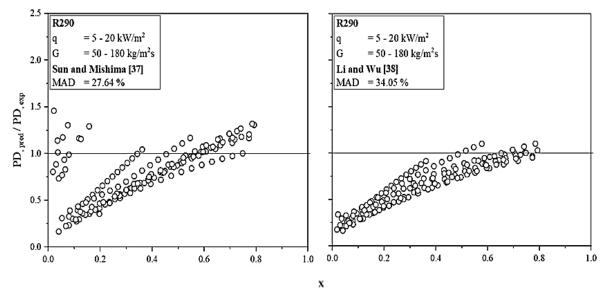


Fig. 5. Selected comparison between pressure with existing correlations

Ghiaasiaan [19] stated that the flow pattern map was a method most frequently used to predict a two-phase flow pattern. The shape of the flow pattern map is usually an empirical graph with various coordinate axes for different parameters in each version. This study used the flow pattern maps from Wojtan et al., [2] and Zhuang et al., [20] to predict the flow pattern in the experimental data. Figure 6 shows Wojtan et al., 's [2] flow pattern map with the heat flux amounting to 15 kW/m². It was observed that mass flux influenced the flow pattern map. The flow pattern would go through the intermittent and annular regimes in the experimental data with the mass flux amounting to 100 kg/m²s. Then, it would enter the stratified-wavy regime before entering the dry out regime. Meanwhile, the flow pattern only entered the intermittent and annular regimes if the max flux amounted to 150 kg/m²s or 180 kg/m²s.

Figure 7 shows Zhuang *et al.*,'s [20] flow pattern map with the heat flux of 15 kW/m². It was observed that the Weber Number influenced the flow pattern map. In the experimental data, the Weber Number was lower with the mass fluxes of 100 kg/m²s and 150 kg/m²s. It shows that the flow pattern would enter the transition regime before entering the wavy-annular and smooth-annular regimes. Meanwhile, the flow pattern is the wavy-annular and smooth-annular regimes for a higher Weber Number with the mass flux of 180 kg/m²s. Weber Number is a function of the liquid and vapor Reynolds Number. Higher mass flux and vapor quality are directly proportional to the higher liquid and vapor Reynolds Number, causes the refrigerant flow became more turbulent in both the liquid and vapor phases.

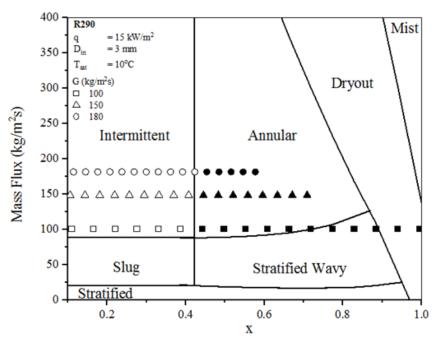


Fig. 6. Wojtan et al., 's [2] flow pattern map with 15 kW/m² of heat flux

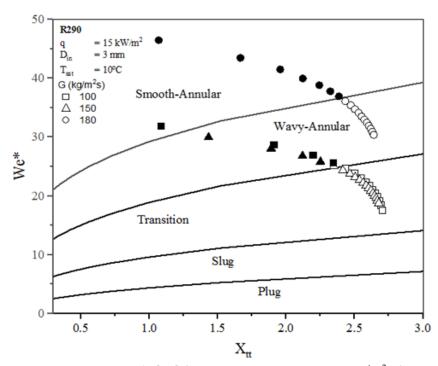


Fig. 7. Zhuang et al.,'s [20] flow pattern map with 15 kW/m 2 of heat flux

Based on the two flow pattern maps shown in Figures 6 and 7, it was known that higher mass flux caused a lower vapor quality at the outlet of the test section, which affected the flow pattern and its transition. Under the mass flux of 180 kg/m²s, the flow transition only passed through the intermittent and annular regimes in the Wojtan *et al.*, 's [2] flow pattern map. In the flow pattern map of Zhuang *et al.*, [20] the flow transition is primarily only in the annular regime. The results of the flow pattern transition, which looks equally short, are predicted because of the large liquid and vapor Reynolds Numbers at a certain vapor quality, causing the fluid flow to show a more significant inertial effect. The flow pattern maps obtained from Wojtan *et al.*, [2] and Zhuang *et al.*, [20] were developed

by using a larger inner diameter of the test section than that of the test section used in this study. Hence, this would result in a delay when it is used to predict the experimental data. Table 6 shows the results of the delay for each of the flow pattern maps.

Table 6Delay result of the flow pattern maps

Mass flux	(x) Wojtan (x)	et al., [2]	(X_{tt}) Zhuang e	t al., [20]	Experimenta	al data result
(kg/m²s	Annular	Dry out	Wavy-annular	Annular	Dry out	Wavy-annular
100	0.42	0.82	3.04	0.38	0.82	1.52
150	0.42	0.77	3.04	0.4	-	2.4
180	0.42	0.71	3.04	0.42	-	

Wojtan et al., 's [2] flow pattern map showed a slight delay and would be smaller when the mass flux reached a higher value. Then, Zhuang et al., 's [20] flow pattern map had a significant delay, but the delay was lower when the mass flux reached a higher value. Overall, both of the two flow pattern maps really produced a delay in the experimental data due to the presence of a small inner diameter in the test section. However, it was deemed to be tolerable because the value was not too high.

4. Conclusions

Based on the results of the experimental data and the prediction of the R290 refrigerant heat transfer coefficient, several conclusions can be drawn. The heat transfer coefficient and the pressure drop were influenced by two-phase Reynolds number. The higher two-phase Reynolds number is, the higher the heat transfer coefficient will be. Moreover, the effects of the mass flux were insignificant at a low two-phase Reynolds number. Likewise, the higher two-phase Reynolds number is, the higher the pressure drop will be. The correlation of Aizuddin *et al.*, [1] obtained from the asymptotic model is the best correlation used to predict the heat transfer coefficient with a 14.07-% mean absolute deviation. Moreover, the correlation of Sun and Kaichiro [36] obtained from the separated flow model is the best correlation used to predict the pressure drop with a 27.64-% mean absolute deviation. The flow pattern maps of Wojtan *et al.*, [2] and Zhuang *et al.*, [20] have a good ability and suitability to predict the experimental data with a tolerable delay.

Acknowledgement

This study was funded by a grant from Universitas Indonesia, PPI 2021, No. NKB-604/UN2.RST/HKP.05.00/2021.

References

- [1] Aizuddin, Nik, Normah Mohd Ghazali, and Yushazaziah Mohd Yunos. "Analysis of convective boiling heat transfer coefficient correlation of R290." *Jurnal Mekanikal* 41, no. 1 (2018).
- [2] Wojtan, Leszek, Thierry Ursenbacher, and John R. Thome. "Investigation of flow boiling in horizontal tubes: Part I—A new diabatic two-phase flow pattern map." *International Journal of Heat and Mass Transfer* 48, no. 14 (2005): 2955-2969. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.012
- [3] Harikrishnan, M., R. Ajith Kumar, Rajesh Baby, and Ajith Kumar S. "An experimental investigation to assess the thermal performance of a sensible storage based-downward solar air heater." *Experimental Heat Transfer* 38, no. 3 (2025): 199-223. https://doi.org/10.1080/08916152.2024.2312465
- [4] Shojaeefard, Mohammad Hassan, and Javad Zare. "An investigation of the potential of improving an R1234yf parallel flow condenser performance using modeling and hybrid procedure of the modified NSGA-II and TOPSIS." Heat Transfer Engineering 39, no. 15 (2018): 1405-1422. https://doi.org/10.1080/01457632.2017.1366239

- [5] La Rocca, Vincenzo, and Giuseppe Panno. "Experimental performance evaluation of a vapour compression refrigerating plant when replacing R22 with alternative refrigerants." *Applied Energy* 88, no. 8 (2011): 2809-2815. https://doi.org/10.1016/j.apenergy.2011.01.051
- [6] Ausbildungszentrum, Wärmepumpentest—und. "Töss, Zusammenstellung von Leistunsdaten von Wärmenpumpen." *Töss, Schweiz* (2002).
- [7] da Silva Lima, Ricardo J., Jesús Moreno Quibén, and John R. Thome. "Flow boiling in horizontal smooth tubes: New heat transfer results for R-134a at three saturation temperatures." *Applied Thermal Engineering* 29, no. 7 (2009): 1289-1298. https://doi.org/10.1016/j.applthermaleng.2008.06.021
- [8] Ducoulombier, Maxime, Stéphane Colasson, Jocelyn Bonjour, and Philippe Haberschill. "Carbon dioxide flow boiling in a single microchannel—Part II: Heat transfer." *Experimental Thermal and Fluid Science* 35, no. 4 (2011): 597-611. https://doi.org/10.1016/j.expthermflusci.2010.11.014
- [9] Ribatski, Gherhardt. "A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels." *Experimental Heat Transfer* 26, no. 2-3 (2013): 198-246. https://doi.org/10.1080/08916152.2012.737189
- [10] Markal, Burak, Ayse Candan, Orhan Aydin, and Mete Avci. "Prediction of two-phase heat transfer coefficient of flow boiling in minichannels." *Heat Transfer Engineering* 41, no 1 (2020): 17-35. https://doi.org/10.1080/01457632.2018.1513827
- [11] Hamdar, Marian, Assaad Zoughaib, and Denis Clodic. "Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel." *International Journal of Refrigeration* 33, no. 3 (2010): 566-577. https://doi.org/10.1016/j.ijrefrig.2009.12.006
- [12] Saisorn, Sira, Jatuporn Kaew-On, and Somchai Wongwises. "Two-phase flow of R-134a refrigerant during flow boiling through a horizontal circular mini-channel." *Experimental Thermal and Fluid Science* 35, no. 6 (2011): 887-895. https://doi.org/10.1016/j.expthermflusci.2011.01.008
- [13] Ju, Lee H., and Lee S. Yong. "Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights." *International Journal of Multiphase Flow* 27, no. 5 (2001): 783-796. https://doi.org/10.1016/S0301-9322(00)00050-1
- [14] Bashar, M. Khairul, Keisuke Nakamura, Keishi Kariya, and Akio Miyara. "Development of a correlation for pressure drop of two-phase flow inside horizontal small diameter smooth and microfin tubes." *International journal of refrigeration* 119 (2020): 80-91. https://doi.org/10.1016/j.ijrefrig.2020.08.013
- [15] Qu, Weilin, and Issam Mudawar. "Measurement and prediction of pressure drop in two-phase micro-channel heat sinks." *International Journal of Heat and Mass Transfer* 46, no. 15 (2003): 2737-2753. https://doi.org/10.1016/S0017-9310(03)00044-9
- [16] Padilla, Miguel, Rémi Revellin, Philippe Haberschill, Ahmed Bensafi, and Jocelyn Bonjour. "Flow regimes and two-phase pressure gradient in horizontal straight tubes: Experimental results for HFO-1234yf, R-134a and R-410A." Experimental Thermal and Fluid Science 35, no. 6 (2011): 1113-1126. https://doi.org/10.1016/j.expthermflusci.2011.03.006
- [17] Umar, Fajriocta, Jong Taek Oh, and Agus Sunjarianto Pamitran. "Evaluation of pressure drop of two-phase flow boiling with R290 in horizontal mini channel." *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences* 89, no. 2 (2022): 160-166. https://doi.org/10.37934/arfmts.89.2.160166
- [18] Turgut, Oguz Emrah, and Mustafa Turhan Coban. "A New saturated two-phase flow boiling correlation based on propane (R290) Data." *Arabian Journal for Science and Engineering* 46, no. 8 (2021): 7851-7874. https://doi.org/10.1007/s13369-021-05593-9
- [19] Ghiaasiaan, S. Mostafa. *Two-phase flow, boiling, and condensation: in conventional and miniature systems*. Cambridge University Press, 2017. https://doi.org/10.1017/9781316597392
- [20] Zhuang, Xiaoru, Maoqiong Gong, Gaofei Chen, Xin Zou, and Jun Shen. "Two-phase flow pattern map for R170 in a horizontal smooth tube." *International Journal of Heat and Mass Transfer* 102 (2016): 1141-1149. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.094
- [21] Pamitran, Agus Sunjarianto, Kwang-Il Choi, and Jong-Taek Oh. "Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3, and CO2." *International Journal of Multiphase Flow* 37, no. 7 (2011): 794-801. https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.005
- [22] Shah, M. Mohammed. "Chart correlation for saturated boiling heat transfer: equations and further study." *ASHRAE Trans.*; (United States) 88, no. CONF-820112- (1982).
- [23] Cooper, M. G. "Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties." In *Advances in Heat Transfer*, vol. 16, p. 157-239. Elsevier, 1984. https://doi.org/10.1016/S0065-2717(08)70205-3
- [24] Kandlikar, Satish G. "A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes." (1990): 219-228. https://doi.org/10.1115/1.2910348

- [25] Liu, Z., and R. H. S. Winterton. "A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation." *International Journal of Heat and Mass Transfer* 34, no. 11 (1991): 2759-2766. https://doi.org/10.1016/0017-9310(91)90234-6
- [26] Zhang, W., T. Hibiki, and K. Mishima. "Correlation for flow boiling heat transfer in mini-channels." *International Journal of Heat and Mass Transfer* 47, no. 26 (2004): 5749-5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034
- [27] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella. "A composite heat transfer correlation for saturated flow boiling in small channels." *International Journal of Heat and Mass Transfer* 52, no. 7-8 (2009): 2110-2118. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.022
- [28] Kim, Sung-Min, and Issam Mudawar. "Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels—Part II. Two-phase heat transfer coefficient." *International Journal of Heat and Mass Transfer* 64 (2013): 1239-1256. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.014
- [29] Turgut, Oguz Emrah, and Mustafa Asker. "Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes." *Heat and Mass Transfer* 53, no. 6 (2017): 2165-2185. https://doi.org/10.1007/s00231-017-1975-x
- [30] Beattie, D. RH, and P. B. Whalley. "Simple two-phase frictional pressure drop calculation method." *Int. J. Multiphase Flow;* (United Kingdom) 8, no. 1 (1982). https://doi.org/10.1016/0301-9322(82)90009-X
- [31] Tran, T. N., M-C. Chyu, M. W. Wambsganss, and D. M. France. "Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development." *International Journal of Multiphase Flow* 26, no. 11 (2000): 1739-1754. https://doi.org/10.1016/S0301-9322(99)00119-6
- [32] Zhang, Ming, and Ralph L. Webb. "Correlation of two-phase friction for refrigerants in small-diameter tubes." *Experimental Thermal and Fluid Science* 25, no. 3-4 (2001): 131-139. https://doi.org/10.1016/S0894-1777(01)00066-8
- [33] Miyara, Akio, Ken Kuwahara, and Shigeru Koyama. "Correlation of frictional pressure loss of two-phase flow including effects of tube diameter and mass velocity." In *Proceedings of JSME, 57th Kyushu Conference*, no. 048-1, pp. 117-118. 2004. https://doi.org/10.1299/jsmekyushu.2004.57.117
- [34] Hwang, Yun Wook, and Min Soo Kim. "The pressure drop in microtubes and the correlation development." *International Journal of Heat and Mass Transfer* 49, no. 11-12 (2006): 1804-1812. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.040
- [35] Park, C. Y., and P. S. Hrnjak. "CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube." *International Journal of Refrigeration* 30, no. 1 (2007): 166-178. https://doi.org/10.1016/j.ijrefrig.2006.08.007
- [36] Sun, Licheng, and Kaichiro Mishima. "Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels." In *International Conference on Nuclear Engineering*, vol. 48159, p. 649-658. 2008. https://doi.org/10.1115/ICONE16-48210
- [37] Li, Wei, and Zan Wu. "A general correlation for adiabatic two-phase pressure drop in micro/minichannels." *International Journal of Heat and Mass Transfer* 53, no. 13-14 (2010): 2732-2739. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.029
- [38] Li, Xuejiao, and Takashi Hibiki. "Frictional pressure drop correlation for two-phase flows in mini and micro single-channels." *International Journal of Multiphase Flow* 90 (2017): 29-45. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.003
- [39] Maher, D., A. Hana, and S. Habib. "New correlations for two phase flow pressure drop in homogeneous flows model." *Thermal Engineering* 67 (2020): 92-105. https://doi.org/10.1134/S0040601520020032
- [40] Cooper, M. G. "Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties." In *Advances in Heat Transfer*, vol. 16, p. 157-239. Elsevier, 1984. https://doi.org/10.1016/S0065-2717(08)70205-3
- [41] Pamitran, Agus Sunjarianto, Kwang-Il Choi, Jong-Taek Oh, and Ki-Won Park. "Two-phase flow heat transfer of propane vaporization in horizontal minichannels." *Journal of Mechanical Science and Technology* 23 (2009): 599-606. https://doi.org/10.1007/s12206-008-0913-8
- [42] Shah, Mirza M. "A new correlation for heat transfer during boiling flow through pipes." *Ashrae Trans.* 82, no. 2 (1976): 66-86.