

ISSN print: 2060-8545
ISSN online: 2060-8574

Volume 7 • Issue 3 • September-December 2022

SCIENTIFIC DENTAL JOURNAL

Official Journal of Faculty of Dentistry, Tanta University, Tanta, Egypt

www.sdj.tanta.edu.eg

Editorial Board : Scientific Dental Journal

Editorial Board

Editorial Board

Scientific Dental Journal

Editor-in-Chief:

Dr. Muhammad Ihsan Rizal

Department of Oral Biology, Biochemistry and Molecular Biology Division
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
ihsan.rizal@trisakti.ac.id
sdj@trisakti.ac.id

Executive Editor:

Dr. Armelia Sari Widyarman

Department of Microbiology
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
armeliasari@trisakti.ac.id

Editorial Board:

Dr. Rosalina Tjandrawinata

Department of Dental Material
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
rosatjandrawinata@gmail.com

Dr. Carolina Marpaung

Department of Prosthodontics
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
carolina@trisakti.ac.id

A/Prof. Chaminda Jayampath Seneviratne

Faculty of Dentistry, National University of Singapore
Singapore
jaya@nus.edu.sg

Prof. SG Damlee

Pediatric and Preventive Dentistry

Maharishi Markandeshwar University
India
sgdamlee@gmail.com

Dr. Risa Chaisuparat
Associate Professor, Department of Oral Pathology
Faculty of Dentistry, Chulalongkorn University
Thailand
mink_risa@yahoo.com

Prof. Sittichai Koontongkaew
Department of Oral Biology
Faculty of Dentistry, Thammasat University
Thailand
koontongkaew@gmail.com

Prof. Rahmi Amtha
Department of Oral Medicine
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
rahmi.amtha@gmail.com

Dr. Moehamad Orliando Roeslan
Department of Histology
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
orliandoichol@gmail.com

Administration:

Dr. Enrita Dian Rahmadini
Department of Pediatric Dentistry
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
enrita.dr@trisakti.ac.id

Mega Cahyati
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
mega@trisakti.com

Mario Richi
MiCORE Laboratory
Faculty of Dentistry, Universitas Trisakti
Jakarta, Indonesia
mario.richi1995@gmail.com

Moh Shidqon
Faculty of Economics and Business, Universitas Trisakti
Jakarta, Indonesia
ajidshidqon@gmail.com

Sep-Dec 2020 - Volume 4 - Issue 3 : Scientific Dental Journal

[Home](#) > Sep-Dec 2020 - Volume 4 - Issue 3

[Previous Issue](#) | [Next Issue](#)

Sep-Dec 2020 - Volume 4 - Issue 3

pp: 73-147

[Table of Contents Outline](#)

[eTOC Alerts](#)

[Contributor Index](#)

Review Article

[The Pathogenicity of *Actinomyces naeslundii* Is Associated with Polymicrobial Interactions: A Systematic Review](#)

Rismayuddin, Nurul Alia Risma; Kamaluddin, Wan Nur Fatihah Wan Mohd; Arzmi, Mohd Hafiz;
More

Scientific Dental Journal. 4(3):73-78, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[Table of Contents Outline](#) | [Back to Top](#)

Original Article

[Clinical Evaluation of Mineral Trioxide Aggregate in the Surgical Management of](#)

Degree I and Degree II Furcation Defects

Parimoo, Rajneesh; Singh, Baljeet; Gupta, Rajesh

Scientific Dental Journal. 4(3):79-83, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

The Effect Difference of Chitosan Nanoparticles, Chitosan Microparticles, and Casein Phosphopeptide–Amorphous Calcium Phosphate in Reducing Enamel Demineralization

Effendi, Mohammad Chair; Fitriani, Delvi; Nurmawlidina, Mutiara Fauzia

Scientific Dental Journal. 4(3):84-87, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

The Effect of Tea Tree Oil in Inhibiting the Adhesion of Pathogenic Periodontal Biofilms in vitro

Soulissa, Abdul Gani; Afifah, Jeni; Herryawan, ; More

Scientific Dental Journal. 4(3):88-92, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

Patient Satisfaction Towards Composite and Amalgam Restorations in IIUM Dental Polyclinic

Kusumawardani, Anisa; Sukmasari, Susi; Ab Halim, Norhazayti; More

Scientific Dental Journal. 4(3):93-96, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)

- [PDF](#)
- [Permissions](#)
- [Open](#)

The Effect of Nanofilled Resin Coating on the Hardness of Glass Ionomer Cement

Handoko, Michael William; Tjandrawinata, Rosalina; Octarina,

Scientific Dental Journal. 4(3):97-100, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

Effectiveness of Brewed Green Tea and Mouthwash Containing Green Tea Extract against *Streptococcus mutans* and *Porphyromonas gingivalis* in Saliva

Juliawati, Mita; Juslily, Marta; Soulissa, Abdul Gani; More

Scientific Dental Journal. 4(3):101-104, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

***Eugenia polyantha* (Wight) Infusion Against Oral Microorganisms on Toothbrushes**

Nurjanah, Neneng; Herijulianti, Eliza; Putri, Megananda Hiranya; More

Scientific Dental Journal. 4(3):105-109, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

Tensile Strength Differences between Nickel-Titanium and Titanium Molybdenum Alloy Orthodontic Archwire after Immersion in Detergent Toothpaste

Lubis, Hilda Fitria; Calvint,

Scientific Dental Journal. 4(3):110-114, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[**Differences in Apical Vapor Lock Formation after Sodium Hypochlorite Irrigation with and Without Surfactant Using Two Needle Types**](#)

Delly, ; Widyastuti, Wiena; Aryadi, ; More

Scientific Dental Journal. 4(3):115-119, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[**Efficacy of Eucalyptus Oil \(*Eucalyptus Globulus*\), Sweet Orange Oil \(*Citrus Sinensis*\), and Grapefruit Oil \(*Citrus Paradisi*\) as Bioceramic Sealer Solvents**](#)

Tanujaya, Christy; Aryadi, ; Hardini, Nadia

Scientific Dental Journal. 4(3):120-123, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[Table of Contents](#) [Outline](#) | [Back to Top](#)

Case Report

[**Nonsurgical Approach for Torus Palatinus Management in Full Denture Rehabilitation**](#)

Falatehan, Niko; Anfelia, Gracia

Scientific Dental Journal. 4(3):124-128, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)

- [Permissions](#)
- [Open](#)

[Deep Bite Correction with an Anterior Bite Plate in a Growing Patient](#)

Pratiwi, Dwita; Purwanegara, Miesje K

Scientific Dental Journal. 4(3):129-133, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[Revascularization of Nonvital Immature Incisor with Asymptomatic Apical Periodontitis](#)

Doni, ; Mulyawati, Ema; Santosa, Pribadi; More

Scientific Dental Journal. 4(3):134-141, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[Association of Oral Health Status with the Risk of Malnutrition and Pneumonia in Geriatric Patients](#)

Hartanto, Firstine Kelsi; Dewi, Tenny Setiani

Scientific Dental Journal. 4(3):142-147, Sep-Dec 2020.

- [Abstract](#)
- [Favorite](#)
- [PDF](#)
- [Permissions](#)
- [Open](#)

[Table of Contents Outline](#) | [Back to Top](#)

^Back to Top

Effectiveness of Brewed Green Tea and Mouthwash Containing Green Tea Extract against *Streptococcus mutans* and *Porphyromonas gingivalis* in Saliva

Mita Juliawati, Marta Juslily, Abdul Gani Soulissa¹, Armelia Sari Widyarman², Elly Munadziroh³

Departments of Public Health,¹ Periodontic and ²Microbiology, Faculty of Dentistry, Trisakti University, West Jakarta, ³Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia

ABSTRACT

Background: Green tea is known to exert an antibacterial effect against cariogenic pathogens. **Objectives:** This study aimed to determine the effect of brewed green tea as mouth rinse against *Streptococcus mutans* and *Porphyromonas gingivalis* in saliva and compare it to the effect of a commercial mouthwash containing green tea extract. **Methods:** Saliva of 30 healthy individuals aged 19–40 years was collected before treatment, 1 min after gargling, and 1 week after daily treatment with brewed green tea as a mouth rinse or commercial mouthwash containing green tea. Bacterial DNA was extracted from salivary samples and evaluated using quantitative polymerase chain reaction. The total number of DNA targets was analyzed using SYBR Green and 16S ribosomal RNA gene-specific primers for *S. mutans* and *P. gingivalis*. The data were statistically analyzed using a paired *t*-test. The level of significance was set to $P < 0.05$. **Results:** Green tea mouth rinse and mouthwash containing green tea extract significantly reduced the number of *S. mutans* and *P. gingivalis* in the participants' saliva after 1 week of use ($P < 0.05$). There was no significant difference between the effects of brewed green tea mouth rinse and commercial mouthwash containing green tea. **Conclusion:** The use of mouthwash containing green tea and brewed green tea mouth rinse reduces the number of *S. mutans* and *P. gingivalis* in saliva. Brewed green tea can be used as a mouth rinse with effects comparable to those of commercial mouthwash containing green tea. Further studies are warranted to explore its effects on other oral pathogens.

KEYWORDS: Brewed green tea, green tea, mouth rinse, *Porphyromonas gingivalis*, *Streptococcus mutans*

Received : 07-08-20
Revised : 24-08-20
Accepted : 15-09-20
Published Online: 17-10-20

BACKGROUND

Green tea is produced from the leaves of *Camellia sinensis*, a species of plant that belongs to the genus *Camellia*, a genus of flowering plants in the family Theaceae. Green tea is known to exert antibacterial effects against cariogenic pathogens.¹ Among the most common pathogenic microbes are *Streptococcus mutans*, which causes dental caries, and *Porphyromonas gingivalis*, which causes periodontal disease and is commonly found in high levels in chronic periodontitis.²

Mouthwash is a liquid used for several purposes. It eliminates bacteria, acts as an astringent, and exerts

healing effects by treating infections or preventing dental caries. Mouthwashes contain antibacterial compounds that help treat infection by inhibiting bacterial growth and decrease the bacterial levels in dental plaque.³ The ideal mouthwash is nontoxic and effectively reduces or eliminates plaque accumulation.⁴ Previous study showed that there is no evidence indicating toxic effects

Address for correspondence: Dr. Mita Juliawati, Department of Public Health, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia. E-mail: mitajuliawati@yahoo.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Juliawati M, Juslily M, Soulissa AG, Widyarman AS, Munadziroh E. Effectiveness of brewed green tea and mouthwash containing green tea extract against *Streptococcus mutans* and *Porphyromonas gingivalis* in Saliva. Sci Dent J 2020;4:101-4.

Access this article online

Quick Response Code:

Website: www.scidentj.com

DOI: 10.4103/SDJ.SDJ_39_20

such as irritation, burn, vesicle, or mucous disturbance was reported on green tea extract for mouthwash.⁵ This indicates that both brewed green tea and mouthwash containing green tea are safe and nontoxic. Akande *et al.* distinguish between two generations of mouthwash based on pharmacological characteristics. First-generation agents, containing compounds such as cetylpyridinium chloride and sanguinarine, eliminate bacteria on contact but have a limited effect against oral pathogens. Second-generation agents, such as those containing chlorhexidine, have long-term effects against oral microflora.^{5,6}

The use of antimicrobial agents in gingivitis patients has been proven to decrease the number of periodontal pathogens, reduce the periodontal pocket depth, and provide optimal treatment.⁷ A number of products designed to assist individuals in achieving and maintaining good oral hygiene are currently available on the market. Previous studies have demonstrated the biochemical and microbiological effects of mouthwash against plaque accumulation.^{3,8,9}

Mouthwashes containing herbal ingredients have been proven to inhibit the activity of several bacteria, including *S. mutans*. The zone of inhibition of some herbal mouthwashes is larger than that of some commercial mouthwashes.¹⁰ Experimental and epidemiologic studies have shown that green tea consumption prevents alveolar bone resorption by inhibiting osteoclast survival through caspase-mediated apoptosis and is thus beneficial to periodontal health.^{11,12}

No previous studies have investigated the effects of brewed green tea as a mouth rinse compared to commercial mouthwash containing green tea on oral pathogens in saliva. Therefore, this study aimed to determine the effect of brewed green tea as a mouth rinse against *S. mutans* and *P. gingivalis* in saliva and compare it to the effect of a commercial mouthwash containing green tea extract.

MATERIALS AND METHODS

Study design

This study included 30 patients in the Dental Hospital, Faculty of Dentistry of Trisakti University, Jakarta, Indonesia, randomly chosen according to the following inclusion criteria: males or females aged 19–40 years. The exclusion criteria were tobacco, alcohol, and drug use and also systemic diseases. All patients signed informed consent forms. The study was approved by the Ethics and Biomedicine Research Committee of the Faculty of Dentistry of Trisakti University with number 313/KE/FKG/04/2016.

Sample collection

Saliva was collected from the patients before treatment and after 1 week of gargling twice daily (in the morning and at night) with brewed green tea ($n = 15$) or mouthwash containing green tea extract (Listerine; $n = 15$) after toothbrushing. The saliva was collected using the spitting method.¹³ Mouthwash containing green tea extract was used in this study because it exerts antibacterial effects, contains natural ingredients, such as essential oils, and does not contain alcohol. The main ingredients of mouthwash containing green tea are 0.6% methyl salicylate, thymol, menthol, eucalyptol, green tea extract, and 220 ppm fluoride.¹⁴

Bacterial DNA extraction from saliva

Bacterial DNA was extracted from the saliva samples, and the bacterial number was evaluated using quantitative polymerase chain reaction (qPCR). DNA samples were extracted using the heat shock method. The samples were centrifuged at $\times 4500$ g for 15 min and washed with phosphate-buffered saline. An aliquot of 100 μ L of cell suspension containing 10^8 cells/mL was transferred to microtubes and centrifuged at $\times 10,000$ g for 10 min at 4°C. It was subsequently incubated at 100°C for 20 min, after which the tubes were immediately frozen in ice (0°C) for 10 min. Centrifugation at $\times 10,000$ g was then performed for 2 min, and the supernatant was moved into new 1.5 mL microcentrifuge tubes. The suspension containing the DNA sample was stored at -20°C.

Quantitative polymerase chain reaction

The total amount of DNA target was quantified using qPCR with SYBR Green (Applied Biosystems, USA) and 16S ribosomal RNA (rRNA) gene-specific primers for *S. mutans* and *P. gingivalis*.¹⁵ The primer sequences are shown in Table 1. The qPCR procedure was as follows: initial denaturation at 95°C for 10 min (1 cycle), followed by 40 cycles at 94°C for 15 s and annealing at 60°C for 1 min and 95°C for 15 s. All procedures were performed in triplicate. Quantitation was performed using standard curves from known concentrations of DNA containing the respective amplicon for each set of primers.

Statistical analysis

The normality of the data was assessed with the Shapiro-Wilk test.¹³ Differences between pre- and posttreatment

Table 1: The primer sequences¹⁵

16s rRNA gene	Sequence (5'-3')
<i>S. mutans</i> (forward)	GCCTACAGCTCAGAGATGCTATTCT
<i>S. mutans</i> (reverse)	GCCATACACCACTCATGAATTGA
<i>P. gingivalis</i> (forward)	TGCAACTTGCTTACAGAGGG
<i>P. gingivalis</i> (reverse)	ACTCGTATCGCCCGTTATTC
<i>S. mutans</i> : <i>Streptococcus mutans</i> , <i>P. gingivalis</i> : <i>Porphyromonas gingivalis</i>	

values were analyzed using a paired-samples *t*-test. Differences between the two experimental groups were analyzed using an independent samples *t*-test. The level of statistical significance was set to $P < 0.05$. The statistical analysis was performed using IBM SPSS Statistics version 20 (IBM, Armonk, NY, USA).

RESULTS

The standard curve formula used in this study was $y = 0,047 \times ^2 - 40,116x + 46,092$ with $R^2 = 1$ and $y = -0,2862 \times 13,766$ with $R^2 = 0,9888$ for *S. mutans* and *P. gingivalis*, respectively. The result showed that gargling with brewed green tea and mouthwash containing green tea for 1 week resulted in a reduction in the number of *S. mutans* [Figure 1a and b] and *P. gingivalis* [Figure 2a and b] in the participants' saliva. The reduction of *P. gingivalis* was statistically significant after 1-week gargling with brewed green tea and mouthwash containing green tea ($P < 0.05$). There was no significant difference between the effects of brewed green tea and the commercial mouthwash ($P > 0.05$) [Figures 1 and 2].

DISCUSSION

In this study, we examined the effectiveness of mouthwash containing green tea extract against *S. mutans* and *P. gingivalis* using qPCR. The results showed a statistically significant reduction in the number of *S. mutans* and *P. gingivalis* after using mouthwash containing green tea extract for 1 week ($P < 0.05$). PCR technology (conventional and real-time PCR [qPCR])

is the most commonly used in the pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells.¹⁶

Daily use of mouthwash containing green tea for 1 week resulted in a reduction of more than 25% in *S. mutans* compared to the pretreatment levels in some participants but an increase in others. This can be attributed to the patients' diets and oral hygiene. Sugar can increase undissolved glucan biosynthesis and cause strong bacterial adhesion to the tooth surface.^{17,18}

Dental caries can be prevented using antimicrobial agents to suppress the growth of cariogenic microorganisms.¹⁹ The same is true of using mouthwash containing green tea extract against periodontal disease. Catechins contained in green tea can inhibit *P. gingivalis*, *Prevotella intermedia*, and *Prevotella nigrescens* adhesion to buccal epithelial cells.¹¹ Toxin production of *P. gingivalis* metabolites is inhibited by green tea catechins with a 3-galloyl moiety radial stearic structure, epigallocatechin gallate, and gallocatechin gallate, which are the main polyphenols contained in tea.²⁰ These catechins have been shown to exert bactericidal effects against black-pigmented anaerobic rod-shaped Gram-negative bacteria, such as *P. gingivalis* and *Prevotella* species. A combination of green tea catechins using a local slow-release distribution and mechanical treatments can improve periodontal health. Study showed peptidase activity in gingival fluid can

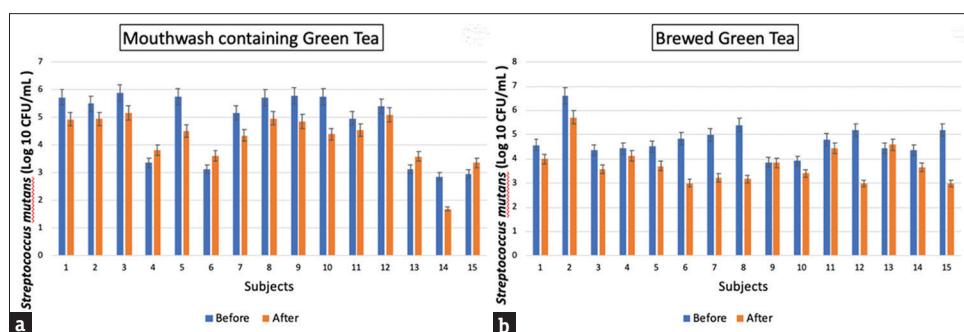


Figure 1: Comparison between the effects of mouthwash containing green tea extract (a) and brewed green tea (b) against *Streptococcus mutans* in saliva

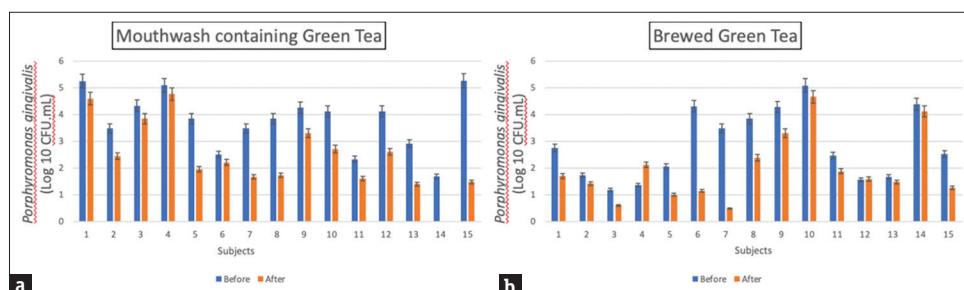


Figure 2: Comparison between the effects of mouthwash containing green tea extract (a) and brewed green tea (b) against *Porphyromonas gingivalis* in saliva

be maintained at low levels but reach 70% of placebo levels.²¹ Green tea can reduce the severity of periodontal disease by mediating the host's inflammatory response against periodontal pathogens.^{11,22} The next suggestion is that green tea with the above significant results can be an alternative to natural mouthwash since the brewed green tea is safer and more cost-effective.²³

CONCLUSION

This study shows that the use of brewed green tea mouth rinse and mouthwash containing green tea extract can reduce the number of *S. mutans* and *P. gingivalis* in saliva. This mouth rinse might be effective in preventing dental caries and periodontal disease. Moreover, brewed green tea used as a mouth rinse has effects comparable to those of commercial mouthwash containing green tea extract. Further studies on their effects against other oral pathogens are warranted.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins. *Food Sci Technol Bull* 2005;2:71-81.
2. Mira A, Simon-Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. *J Clin Periodontol* 2017;44 Suppl 18:S23-38.
3. Cortelli JR, Thénoux RE de LS. The effect of mouthrinses against oral microorganisms. *Braz Oral Res* 2007;21:23-8.
4. Akande OO, Alada AR, Aderinokun GA, Ige AO. Efficacy of different brands of mouth rinses on oral bacterial load count in healthy adults. *Afr J Biomed Res* 2010;7:125-8.
5. Moghbel A, Farajzadeh A, Aghel N, Agheli H, Raisi N. Formulation and evaluation of green tea mouthwash: A new, safe and nontoxic product for children and pregnant women. *Toxicol Lett* 2009;189:S257.
6. Jedd N, Ravi S, Radhika T, Sai Lakshmi LJ. Comparison of the efficacy of herbal mouth rinse with commercially available mouth rinses: A clinical trial. *J Oral Maxillofac Pathol* 2018;22:332-4.
7. Barca E, Ciftci E, Cintan S. Adjunctive use of antibiotics in periodontal therapy. *J Istanbul Univ Fac Dent* 2015;49:55-62.
8. Haerian-Ardakani A, Rezaei M, Talebi-Ardakani M, Keshavarz Valian N, Amid R, Meimandi M, et al. Comparison of antimicrobial effects of three different mouthwashes. *Iran J Public Health* 2015;44:997-1003.
9. Uraz A, Boynueğri D, Özcan G, Karaduman B, Uc D, Senel S, et al. Two percent chitosan mouthwash: A microbiological and clinical comparative study. *J Dent Sci* 2012;7:342-9.
10. Teh JY, Rawi R, Noor SSM, Taib H, Mohamad S. *In vitro* antimicrobial effectiveness of herbal-based mouthrinses against oral microorganisms. *Asian Pac J Trop Biomed* 2015;5:370-4.
11. Chatterjee A, Saluja M, Agarwal G, Alam M. Green tea: A boon for periodontal and general health. *J Indian Soc Periodontol* 2012;16:161-7.
12. Shen CL, Yeh JK, Cao JJ, Wang JS. Green tea and bone metabolism. *Nutr Res* 2009;29:437-56.
13. Widyarman AS, Yunita ST, Prasetyadi T. Consumption of yogurt containing probiotic *Bifidobacterium lactis* reduces *Streptococcus mutans* in orthodontic patients. *Sci Dent J* 2018;2:19-25.
14. Cai H, Chen J, Panagodage Perera NK, Liang X. Effects of herbal mouthwashes on plaque and inflammation control for patients with gingivitis: A systematic review and meta-analysis of randomised controlled trials. *Evid Based Complement Alternat Med* 2020;2020:2829854.
15. Widyarman AS, Hartono V, Marjani LI, Irawan D, Luthfi L, Bachtiar BM. Lactobacillus reuteri containing probiotic lozenges consumption reduces *Streptococcus mutans*, *Streptococcus sobrinus*, *Porphyromonas gingivalis*, and *Aggregatibacter actinomycetemcomitans* in orthodontic patients. *J Int Dent Med Res* 2018;11:628-33.
16. Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and challenges in viability detection of foodborne pathogens. *Front Microbiol* 2016;7:1833.
17. Leme AFP, Koo H, Bellato CM, Bedi G, Cury JA. The role of sucrose in cariogenic dental biofilm formation-new insight. *J Dent Res* 2006;85:878-87.
18. Colak H, Dülgergil CT, Dalli M, Hamidi MM. Early childhood caries update: A review of causes, diagnoses, and treatments. *J Nat Sci Biol Med* 2013;4:29-38.
19. Chen F, Wang D. Novel technologies for the prevention and treatment of dental caries: A patent survey. *Expert Opin Ther Pat* 2010;20:681-94.
20. Sakanaka S, Okada Y. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium *Porphyromonas gingivalis*. *J Agric Food Chem* 2004;52:1688-92.
21. Hirasawa M, Takada K, Makimura M, Otake S. Improvement of periodontal status by green tea catechin using a local delivery system: A clinical pilot study. *J Periodontal Res* 2002;37:433-8.
22. Basu A, Masek E, Ebersole JL. Dietary polyphenols and periodontitis-a mini-review of literature. *Molecules* 2018;23:436.
23. Shin AR, Nam SH. The effects of various mouthwashes on the oral environment change for oral health care. *Biomed Res* 2018;29:1724-9.

Mita Juliawati

Effectiveness of Brewed Green Tea and Mouthwash Containing Green Tea Extract against Streptococcus mutans and Porphy...

 Artikel 1

Document Details

Submission ID

trn:oid:::3618:126964327

4 Pages

Submission Date

Jan 27, 2026, 2:38 PM GMT+7

2,797 Words

Download Date

Jan 27, 2026, 2:43 PM GMT+7

15,190 Characters

File Name

effectiveness_of_brewed_green_tea_and_mouthwash.7 (1).pdf

File Size

857.5 KB

18% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography
- ▶ Quoted Text
- ▶ Small Matches (less than 15 words)

Exclusions

- ▶ 17 Excluded Sources

Match Groups

- **14** Not Cited or Quoted 17%
Matches with neither in-text citation nor quotation marks
- **1** Missing Quotations 1%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 14% Internet sources
- 9% Publications
- 7% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

- 14 Not Cited or Quoted 17%
Matches with neither in-text citation nor quotation marks
- 1 Missing Quotations 1%
Matches that are still very similar to source material
- 0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- 0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 14% Internet sources
- 9% Publications
- 7% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	Student papers	
CSU, Fullerton on 2022-10-27		3%
2	Internet	
www.jidmr.com		2%
3	Student papers	
Universitas Prof. Dr. Moestopo (Beragama) on 2024-07-02		2%
4	Internet	
pubmed.ncbi.nlm.nih.gov		2%
5	Internet	
www.mdpi.com		2%
6	Publication	
Lang-Chun Zhang, Na Li, Ji-Lin Chen, Jie Sun, Min Xu, Wen-Qiang Liu, Zhong-Fu Zu...		1%
7	Internet	
www.jstage.jst.go.jp		<1%
8	Internet	
pmc.ncbi.nlm.nih.gov		<1%
9	Internet	
public-pages-files-2025.frontiersin.org		<1%
10	Internet	
www.ncbi.nlm.nih.gov		<1%

11

Publication

Juliany. M. T. Moura Barros, Vilma Marques Ferreira, Claudiana Moura dos Santos... <1%

12

Internet

ejobios.org <1%

Effectiveness of Brewed Green Tea and Mouthwash Containing Green Tea Extract against *Streptococcus mutans* and *Porphyromonas gingivalis* in Saliva

Mita Juliawati, Marta Juslily, Abdul Gani Soulissa¹, Armelia Sari Widyarman², Elly Munadziroh³

Departments of Public Health,¹ Periodontic and ²Microbiology, Faculty of Dentistry, Trisakti University, West Jakarta, ³Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia

ABSTRACT

Background: Green tea is known to exert an antibacterial effect against cariogenic pathogens. **Objectives:** This study aimed to determine the effect of brewed green tea as mouth rinse against *Streptococcus mutans* and *Porphyromonas gingivalis* in saliva and compare it to the effect of a commercial mouthwash containing green tea extract. **Methods:** Saliva of 30 healthy individuals aged 19–40 years was collected before treatment, 1 min after gargling, and 1 week after daily treatment with brewed green tea as a mouth rinse or commercial mouthwash containing green tea. Bacterial DNA was extracted from salivary samples and evaluated using quantitative polymerase chain reaction. The total number of DNA targets was analyzed using SYBR Green and 16S ribosomal RNA gene-specific primers for *S. mutans* and *P. gingivalis*. The data were statistically analyzed using a paired *t*-test. The level of significance was set to $P < 0.05$. **Results:** Green tea mouth rinse and mouthwash containing green tea extract significantly reduced the number of *S. mutans* and *P. gingivalis* in the participants' saliva after 1 week of use ($P < 0.05$). There was no significant difference between the effects of brewed green tea mouth rinse and commercial mouthwash containing green tea. **Conclusion:** The use of mouthwash containing green tea and brewed green tea mouth rinse reduces the number of *S. mutans* and *P. gingivalis* in saliva. Brewed green tea can be used as a mouth rinse with effects comparable to those of commercial mouthwash containing green tea. Further studies are warranted to explore its effects on other oral pathogens.

KEYWORDS: Brewed green tea, green tea, mouth rinse, *Porphyromonas gingivalis*, *Streptococcus mutans*

Received : 07-08-20
Revised : 24-08-20
Accepted : 15-09-20
Published Online: 17-10-20

BACKGROUND

Green tea is produced from the leaves of *Camellia sinensis*, a species of plant that belongs to the genus *Camellia*, a genus of flowering plants in the family Theaceae. Green tea is known to exert antibacterial effects against cariogenic pathogens.¹ Among the most common pathogenic microbes are *Streptococcus mutans*, which causes dental caries, and *Porphyromonas gingivalis*, which causes periodontal disease and is commonly found in high levels in chronic periodontitis.²

Mouthwash is a liquid used for several purposes. It eliminates bacteria, acts as an astringent, and exerts

healing effects by treating infections or preventing dental caries. Mouthwashes contain antibacterial compounds that help treat infection by inhibiting bacterial growth and decrease the bacterial levels in dental plaque.³ The ideal mouthwash is nontoxic and effectively reduces or eliminates plaque accumulation.⁴ Previous study showed that there is no evidence indicating toxic effects

Address for correspondence: Dr. Mita Juliawati, Department of Public Health, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia. E-mail: mitajuliawati@yahoo.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Juliawati M, Juslily M, Soulissa AG, Widyarman AS, Munadziroh E. Effectiveness of brewed green tea and mouthwash containing green tea extract against *Streptococcus mutans* and *Porphyromonas gingivalis* in Saliva. Sci Dent J 2020;4:101-4.

Access this article online

Quick Response Code:

Website: www.scidentj.com

DOI: 10.4103/SDJ.SDJ_39_20

such as irritation, burn, vesicle, or mucous disturbance was reported on green tea extract for mouthwash.⁵ This indicates that both brewed green tea and mouthwash containing green tea are safe and nontoxic. Akande *et al.* distinguish between two generations of mouthwash based on pharmacological characteristics. First-generation agents, containing compounds such as cetylpyridinium chloride and sanguinarine, eliminate bacteria on contact but have a limited effect against oral pathogens. Second-generation agents, such as those containing chlorhexidine, have long-term effects against oral microflora.^{5,6}

The use of antimicrobial agents in gingivitis patients has been proven to decrease the number of periodontal pathogens, reduce the periodontal pocket depth, and provide optimal treatment.⁷ A number of products designed to assist individuals in achieving and maintaining good oral hygiene are currently available on the market. Previous studies have demonstrated the biochemical and microbiological effects of mouthwash against plaque accumulation.^{3,8,9}

Mouthwashes containing herbal ingredients have been proven to inhibit the activity of several bacteria, including *S. mutans*. The zone of inhibition of some herbal mouthwashes is larger than that of some commercial mouthwashes.¹⁰ Experimental and epidemiologic studies have shown that green tea consumption prevents alveolar bone resorption by inhibiting osteoclast survival through caspase-mediated apoptosis and is thus beneficial to periodontal health.^{11,12}

No previous studies have investigated the effects of brewed green tea as a mouth rinse compared to commercial mouthwash containing green tea on oral pathogens in saliva. Therefore, this study aimed to determine the effect of brewed green tea as a mouth rinse against *S. mutans* and *P. gingivalis* in saliva and compare it to the effect of a commercial mouthwash containing green tea extract.

MATERIALS AND METHODS

Study design

This study included 30 patients in the Dental Hospital, Faculty of Dentistry of Trisakti University, Jakarta, Indonesia, randomly chosen according to the following inclusion criteria: males or females aged 19–40 years. The exclusion criteria were tobacco, alcohol, and drug use and also systemic diseases. All patients signed informed consent forms. The study was approved by the Ethics and Biomedicine Research Committee of the Faculty of Dentistry of Trisakti University with number 313/KE/FKG/04/2016.

Sample collection

Saliva was collected from the patients before treatment and after 1 week of gargling twice daily (in the morning and at night) with brewed green tea ($n = 15$) or mouthwash containing green tea extract (Listerine; $n = 15$) after toothbrushing. The saliva was collected using the spitting method.¹³ Mouthwash containing green tea extract was used in this study because it exerts antibacterial effects, contains natural ingredients, such as essential oils, and does not contain alcohol. The main ingredients of mouthwash containing green tea are 0.6% methyl salicylate, thymol, menthol, eucalyptol, green tea extract, and 220 ppm fluoride.¹⁴

Bacterial DNA extraction from saliva

Bacterial DNA was extracted from the saliva samples, and the bacterial number was evaluated using quantitative polymerase chain reaction (qPCR). DNA samples were extracted using the heat shock method. The samples were centrifuged at $\times 4500$ g for 15 min and washed with phosphate-buffered saline. An aliquot of 100 μ L of cell suspension containing 10^8 cells/mL was transferred to microtubes and centrifuged at $\times 10,000$ g for 10 min at 4°C. It was subsequently incubated at 100°C for 20 min, after which the tubes were immediately frozen in ice (0°C) for 10 min. Centrifugation at $\times 10,000$ g was then performed for 2 min, and the supernatant was moved into new 1.5 mL microcentrifuge tubes. The suspension containing the DNA sample was stored at -20°C.

Quantitative polymerase chain reaction

The total amount of DNA target was quantified using qPCR with SYBR Green (Applied Biosystems, USA) and 16S ribosomal RNA (rRNA) gene-specific primers for *S. mutans* and *P. gingivalis*.¹⁵ The primer sequences are shown in Table 1. The qPCR procedure was as follows: initial denaturation at 95°C for 10 min (1 cycle), followed by 40 cycles at 94°C for 15 s and annealing at 60°C for 1 min and 95°C for 15 s. All procedures were performed in triplicate. Quantitation was performed using standard curves from known concentrations of DNA containing the respective amplicon for each set of primers.

Statistical analysis

The normality of the data was assessed with the Shapiro-Wilk test.¹³ Differences between pre- and posttreatment

Table 1: The primer sequences¹⁵

16s rRNA gene	Sequence (5'-3')
<i>S. mutans</i> (forward)	GCCTACAGCTCAGAGATGCTATTCT
<i>S. mutans</i> (reverse)	GCCATACACCACTCATGAATTGA
<i>P. gingivalis</i> (forward)	TGCAACTTGCTTACAGAGGG
<i>P. gingivalis</i> (reverse)	ACTCGTATGCCCGTTATTC
<i>S. mutans</i> : <i>Streptococcus mutans</i> , <i>P. gingivalis</i> : <i>Porphyromonas gingivalis</i>	

values were analyzed using a paired-samples *t*-test. Differences between the two experimental groups were analyzed using an independent samples *t*-test. The level of statistical significance was set to $P < 0.05$. The statistical analysis was performed using IBM SPSS Statistics version 20 (IBM, Armonk, NY, USA).

RESULTS

The standard curve formula used in this study was $y = 0.047 \times^2 - 40,116x + 46,092$ with $R^2 = 1$ and $y = -0.2862 \times 13,766$ with $R^2 = 0.9888$ for *S. mutans* and *P. gingivalis*, respectively. The result showed that gargling with brewed green tea and mouthwash containing green tea for 1 week resulted in a reduction in the number of *S. mutans* [Figure 1a and b] and *P. gingivalis* [Figure 2a and b] in the participants' saliva. The reduction of *P. gingivalis* was statistically significant after 1-week gargling with brewed green tea and mouthwash containing green tea ($P < 0.05$). There was no significant difference between the effects of brewed green tea and the commercial mouthwash ($P > 0.05$) [Figures 1 and 2].

DISCUSSION

In this study, we examined the effectiveness of mouthwash containing green tea extract against *S. mutans* and *P. gingivalis* using qPCR. The results showed a statistically significant reduction in the number of *S. mutans* and *P. gingivalis* after using mouthwash containing green tea extract for 1 week ($P < 0.05$). PCR technology (conventional and real-time PCR [qPCR])

is the most commonly used in the pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells.¹⁶

Daily use of mouthwash containing green tea for 1 week resulted in a reduction of more than 25% in *S. mutans* compared to the pretreatment levels in some participants but an increase in others. This can be attributed to the patients' diets and oral hygiene. Sugar can increase undissolved glucan biosynthesis and cause strong bacterial adhesion to the tooth surface.^{17,18}

Dental caries can be prevented using antimicrobial agents to suppress the growth of cariogenic microorganisms.¹⁹ The same is true of using mouthwash containing green tea extract against periodontal disease. Catechins contained in green tea can inhibit *P. gingivalis*, *Prevotella intermedia*, and *Prevotella nigrescens* adhesion to buccal epithelial cells.¹¹ Toxin production of *P. gingivalis* metabolites is inhibited by green tea catechins with a 3-galloyl moiety radial stearic structure, epigallocatechin gallate, and gallocatechin gallate, which are the main polyphenols contained in tea.²⁰ These catechins have been shown to exert bactericidal effects against black-pigmented anaerobic rod-shaped Gram-negative bacteria, such as *P. gingivalis* and *Prevotella* species. A combination of green tea catechins using a local slow-release distribution and mechanical treatments can improve periodontal health. Study showed peptidase activity in gingival fluid can

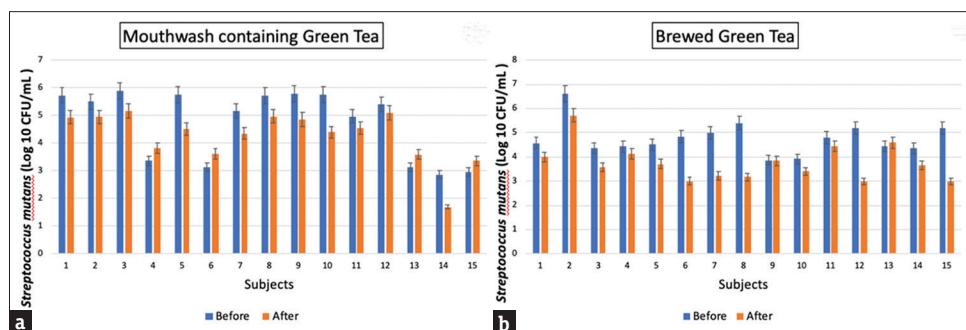


Figure 1: Comparison between the effects of mouthwash containing green tea extract (a) and brewed green tea (b) against *Streptococcus mutans* in saliva

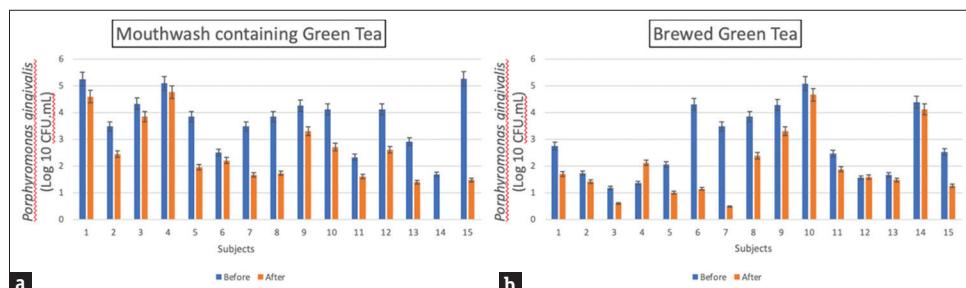


Figure 2: Comparison between the effects of mouthwash containing green tea extract (a) and brewed green tea (b) against *Porphyromonas gingivalis* in saliva

be maintained at low levels but reach 70% of placebo levels.²¹ Green tea can reduce the severity of periodontal disease by mediating the host's inflammatory response against periodontal pathogens.^{11,22} The next suggestion is that green tea with the above significant results can be an alternative to natural mouthwash since the brewed green tea is safer and more cost-effective.²³

CONCLUSION

This study shows that the use of brewed green tea mouth rinse and mouthwash containing green tea extract can reduce the number of *S. mutans* and *P. gingivalis* in saliva. This mouth rinse might be effective in preventing dental caries and periodontal disease. Moreover, brewed green tea used as a mouth rinse has effects comparable to those of commercial mouthwash containing green tea extract. Further studies on their effects against other oral pathogens are warranted.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins. *Food Sci Technol Bull* 2005;2:71-81.
2. Mira A, Simon-Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. *J Clin Periodontol* 2017;44 Suppl 18:S23-38.
3. Cortelli JR, Thénoux RE de LS. The effect of mouthrinses against oral microorganisms. *Braz Oral Res* 2007;21:23-8.
4. Akande OO, Alada AR, Aderinokun GA, Ige AO. Efficacy of different brands of mouth rinses on oral bacterial load count in healthy adults. *Afr J Biomed Res* 2010;7:125-8.
5. Moghbel A, Farajzadeh A, Aghel N, Agheli H, Raisi N. Formulation and evaluation of green tea mouthwash: A new, safe and nontoxic product for children and pregnant women. *Toxicol Lett* 2009;189:S257.
6. Jedd N, Ravi S, Radhika T, Sai Lakshmi LJ. Comparison of the efficacy of herbal mouth rinse with commercially available mouth rinses: A clinical trial. *J Oral Maxillofac Pathol* 2018;22:332-4.
7. Barca E, Ciftci E, Cintan S. Adjunctive use of antibiotics in periodontal therapy. *J Istanbul Univ Fac Dent* 2015;49:55-62.
8. Haerian-Ardakani A, Rezaei M, Talebi-Ardakani M, Keshavarz Valian N, Amid R, Meimandi M, et al. Comparison of antimicrobial effects of three different mouthwashes. *Iran J Public Health* 2015;44:997-1003.
9. Uraz A, Boynueğri D, Özcan G, Karaduman B, Uc D, Senel S, et al. Two percent chitosan mouthwash: A microbiological and clinical comparative study. *J Dent Sci* 2012;7:342-9.
10. Teh JY, Rawi R, Noor SSM, Taib H, Mohamad S. *In vitro* antimicrobial effectiveness of herbal-based mouthrinses against oral microorganisms. *Asian Pac J Trop Biomed* 2015;5:370-4.
11. Chatterjee A, Saluja M, Agarwal G, Alam M. Green tea: A boon for periodontal and general health. *J Indian Soc Periodontol* 2012;16:161-7.
12. Shen CL, Yeh JK, Cao JJ, Wang JS. Green tea and bone metabolism. *Nutr Res* 2009;29:437-56.
13. Widyarman AS, Yunita ST, Prasetyadi T. Consumption of yogurt containing probiotic *Bifidobacterium lactis* reduces *Streptococcus mutans* in orthodontic patients. *Sci Dent J* 2018;2:19-25.
14. Cai H, Chen J, Panagodage Perera NK, Liang X. Effects of herbal mouthwashes on plaque and inflammation control for patients with gingivitis: A systematic review and meta-analysis of randomised controlled trials. *Evid Based Complement Alternat Med* 2020;2020:2829854.
15. Widyarman AS, Hartono V, Marjani LI, Irawan D, Luthfi L, Bachtiar BM. Lactobacillus reuteri containing probiotic lozenges consumption reduces *Streptococcus mutans*, *Streptococcus sobrinus*, *Porphyromonas gingivalis*, and *Aggregatibacter actinomycetemcomitans* in orthodontic patients. *J Int Dent Med Res* 2018;11:628-33.
16. Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and challenges in viability detection of foodborne pathogens. *Front Microbiol* 2016;7:1833.
17. Leme AFP, Koo H, Bellato CM, Bedi G, Cury JA. The role of sucrose in cariogenic dental biofilm formation-new insight. *J Dent Res* 2006;85:878-87.
18. Colak H, Dülgergil CT, Dalli M, Hamidi MM. Early childhood caries update: A review of causes, diagnoses, and treatments. *J Nat Sci Biol Med* 2013;4:29-38.
19. Chen F, Wang D. Novel technologies for the prevention and treatment of dental caries: A patent survey. *Expert Opin Ther Pat* 2010;20:681-94.
20. Sakanaka S, Okada Y. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium *Porphyromonas gingivalis*. *J Agric Food Chem* 2004;52:1688-92.
21. Hirasawa M, Takada K, Makimura M, Otake S. Improvement of periodontal status by green tea catechin using a local delivery system: A clinical pilot study. *J Periodontal Res* 2002;37:433-8.
22. Basu A, Masek E, Ebersole JL. Dietary polyphenols and periodontitis-a mini-review of literature. *Molecules* 2018;23:436.
23. Shin AR, Nam SH. The effects of various mouthwashes on the oral environment change for oral health care. *Biomed Res* 2018;29:1724-9.