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Abstract  

The K-Means algorithm is a popular unsupervised learning method for data clustering. However, its performance heavily 
depends on centroid initialization and the distribution shape of the data, making it less effective for datasets with complex or 
non-linear cluster structures. This study evaluates the performance of the standard K-Means algorithm and proposes a 
Multiobjective Particle Swarm Optimization K-Means (MOPSO-KMeans) approach to improve clustering accuracy. The 
evaluation was conducted on five benchmark datasets: Atom, Chainlink, EngyTime, Target, and TwoDiamonds. Experimental 
results show that K-Means is effective only on datasets with clearly separated clusters, such as EngyTime and TwoDiamonds, 

achieving accuracies of 95.6% and 100%, respectively. In contrast, MOPSO-KMeans demonstrated improved performance on 
datasets with non-linear structures, such as Target and Chainlink, with the highest accuracy reaching 59.2%. The evaluation 
used metrics including Sum of Square Within (SSW), Sum of Square Between (SSB), best accuracy, and standard deviation. 
The results indicate that MOPSO-KMeans provides more stable and consistent clustering outcomes compared to conventional 
K-Means. These findings support the application of swarm-based optimization for clustering tasks on datasets with high 
complexity. 
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1. Introduction  

Clustering is one of the techniques in data mining that 

aims to group data into several clusters based on the 

similarity of their characteristics. One of the most 
popular clustering methods is k-Means clustering [1], 

which is a non-hierarchical cluster analysis method. 

This algorithm works by randomly initializing a set 

number of centroids, then assigning objects to k clusters 

based on their distance to these centroids, and 

iteratively updating the centroid positions until 

convergence is reached. 

In k-Means clustering, the main objective is to form 

optimal clusters in which the members of each cluster 

are highly similar to one another, while being 

significantly different from members of other clusters 
[2]. To achieve this goal, two primary metrics are 

commonly used: the Sum of Squares Within-cluster 

(SSW) and the Sum of Squares Between-cluster (SSB). 

SSW measures cluster compactness, indicating how 

closely data points within a cluster are grouped around 

their centroid [3]. A smaller SSW value implies greater 

similarity among data points within the same cluster. 

On the other hand, SSB measures the distance between 
cluster centroids, which reflects the separation between 

[4]. A larger SSB value indicates greater distance 

between clusters, thus making the clustering more 

effective in distinguishing different data groups. 

The k-Means algorithm is widely recognized as an 

efficient and scalable method for processing large 

datasets [5]. Several previous studies, such as those by 

[6] and [7], have indicated that k-Means can produce 

more compact clusters compared to hierarchical 

clustering methods. However, k-Means has several 

limitations, particularly regarding the random selection 
of initial centroids, which can lead to varying clustering 

results each time the algorithm is executed [8]. 

Additionally, k-Means tends to get trapped in local 

optima, which may result in suboptimal cluster 
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assignments [9]. Its sensitivity to outliers is also a major 

concern, as extreme values can significantly shift the 

centroid positions [10]. Furthermore, the assumption 

that clusters are spherical [11] and of uniform size 

makes k-Means less effective when dealing with 

datasets containing complex-shaped clusters or varying 

densities. 

To address these issues, this study proposes an 

optimization approach based on Multi-Objective 

Particle Swarm Optimization (MOPSO) to enhance the 
performance of k-Means in determining more optimal 

centroids. MOPSO is a variant of Particle Swarm 

Optimization (PSO) [12] designed to handle multi-

objective optimization problems. In the context of 

clustering, MOPSO aims to simultaneously minimize 

the Sum of Squares Within-cluster (SSW) and 

maximize the Sum of Squares Between-cluster (SSB), 

thereby producing clusters that are well-balanced in 

terms of both homogeneity and separation. 

This approach will be evaluated using several 

benchmark datasets commonly used in clustering 
studies [13], namely Atom, Chainlink, Engytime, 

Target, and Two Diamonds. Each dataset presents 

unique challenges that can test the effectiveness of the 

proposed method. The Atom dataset poses a challenge 

in separating closely located clusters, while Chainlink 

contains interwoven topological structures, which are 

difficult for centroid-based methods to handle. 

Engytime features uneven density distribution, which 

can complicate the identification of precise cluster 

boundaries. The Target dataset presents non-linear 

patterns that standard k-Means struggles to capture, 

whereas Two Diamonds involves closely situated 
clusters, making it challenging to determine optimal 

separation. 

The performance evaluation will be conducted by 

comparing the clustering results against the ground 

truth labels using accuracy metrics, as well as by 

comparing the MOPSO-based approach with 

conventional clustering methods such as standard k-

Means. With the MOPSO-based optimization, this 

method is expected to produce better clusters than 

conventional k-Means, particularly in terms of inter-

cluster separation and intra-cluster uniformity. The 
findings of this study are expected to contribute to the 

development of more optimal clustering methods for 

various applications in the fields of data mining and 

machine learning. 

1. Research Methods 

The methodology section will sequentially present the 

analytical methods employed in this study on Figure 1. 

2.1 Dataset Benchmark 

The first step in this study is the selection of datasets to 

be used for testing the effectiveness of the proposed 

method. The datasets used in this research are as follows 

[13]: 

1. Atom 

The Atom dataset [14] is one of the benchmark 

datasets commonly used to evaluate the 

performance of clustering algorithms under 

complex conditions. This dataset on Figure 1 exists 

in a three-dimensional space (ℝ³) and consists of 

two main groups of data: the core cluster and the 

outer hull cluster. Geometrically, the core cluster is 

located at the center, while the outer hull 

completely surrounds it. This creates a condition 
known as an overlapping convex hull, where the 

convex shape of one cluster (the hull) entirely 

encloses the other cluster (the core). As a result, the 

two clusters overlap and cannot be linearly 

separated, meaning no straight line or plane can 

clearly divide them. 

 

Figure 1. Atom Dataset  

The core cluster contains 100 data points, while the 

outer hull cluster contains 400 data points. The core 

cluster is much denser compared to the outer hull, 

meaning that the core data points are tightly packed 

and concentrated at the center, whereas the hull 

data points are more dispersed. This difference in 

density poses a particular challenge for algorithms 

such as k-Means, which rely on distance between 

data points to form clusters. In this case, the 

distance between the cluster centroids may be 

smaller than the spread within a single cluster, 
making separation more difficult. 

Therefore, the primary challenge of the Atom 

dataset lies in its spatial structure, where the 

clusters are entirely overlapped geometrically, 

making it very difficult to separate them effectively 

using centroid-based clustering algorithms such as 

k-Means. 

2. ChainLink 

The Chainlink dataset [15];[16] is one of the 

benchmark datasets designed to evaluate the ability 

of clustering algorithms to handle complex, 

interrelated data structures. This dataset on Figure 
2 consists of two clusters, each containing 300 data 

points, which together form a structure resembling 

interlinked chains in three-dimensional space (ℝ³). 
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Figure 2. ChainLink Dataset  

Each cluster in the Chainlink dataset has the shape 

of a ring, and the two rings are interlocked with one 

another, creating a structure known as a linear 

nonseparable entanglement. This refers to a 

condition where clusters cannot be separated 

linearly due to their intricate overlapping positions. 

Although the clusters appear globally distinct, 

many data points from one cluster are locally closer 

to points from the other cluster than to points within 

their own cluster. This creates a conflict between 
global separation and local proximity, posing a 

significant challenge for distance-based algorithms 

such as k-Means. 

Moreover, both clusters have nearly identical 

average inter-point distances and densities, making 

it difficult to distinguish them based solely on size 

or distribution. The intertwined three-dimensional 

structure further complicates separation using 

linear boundaries. 

3. EngyTime 

The EngyTime dataset [17] is a benchmark dataset 
used to evaluate the capability of clustering 

algorithms in separating clusters that have different 

densities but are overlapping. This dataset consists 

of 2,000 data points divided into two clusters in a 

two-dimensional space (ℝ²), with two main 

variables: “Engy” and “Time”. 

 

Figure 3. EngyTime Dataset  

This dataset on Figure 3 represents a simplified 

form of a density-based problem, which frequently 

occurs in practice, such as in the analysis of 

unclassified high-dimensional flow cytometry 

data. EngyTime is constructed from a mixture of 

two-dimensional Gaussian distributions, 

commonly encountered in various applications, 

including sonar signal processing. 

The main challenge of this dataset lies in the 

overlapping clusters, which are not separated by 

empty space. This means that the cluster 

boundaries cannot be clearly defined using only the 
position or distance between data points. Instead, it 

requires considering the density information of the 

data. Consequently, centroid-based algorithms like 

k-Means, which do not account for density 

variations, will struggle to accurately separate the 

clusters. 

4. Target 

The Target dataset is a benchmark dataset designed 

to evaluate the robustness of clustering algorithms 

in handling overlapping clusters and the presence 

of outliers [18]. It resides in a two-dimensional 
space (ℝ²) and consists of 743 data points, divided 

into two main clusters and four outlier groups. 

 

Figure 4. Target Dataset  

The first cluster is a dense sphere initially 

containing 365 data points, while the second cluster 

forms a ring that surrounds the inner circle, 

consisting of 395 data points. These two clusters 
have overlapping convex hull structures, making 

them difficult to separate using only linear 

boundaries. Such geometric configuration presents 

a particular challenge for centroid-based 

algorithms like k-Means. 

Additionally, the dataset on Figure 4 includes four 

small groups of outliers, each containing four 

points, located at the four corners of the space. The 

presence of these outliers increases the complexity 

of the clustering task, as they can interfere with the 

identification of cluster centroids or even be 

mistakenly interpreted as separate clusters by 
algorithms that are sensitive to noise. 

5. TwoDiamonds 

The TwoDiamonds dataset [19];[20] is a 

benchmark dataset designed to evaluate the 

performance of clustering algorithms in 
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recognizing weakly connected clusters, such as 

chain-like structures. This dataset on Figure 5 

consists of two clusters, each containing 200 data 

points in a two-dimensional space (ℝ²). 

 

Figure 5. TwoDiamonds Dataset  

Each cluster takes the shape of a diamond, with 

data points uniformly distributed across the area, 

resulting in an even spread within each cluster. 

Geometrically, the clusters are positioned in two 
adjacent square regions that nearly touch at one 

side, forming a structure resembling two diamonds 

placed close together. 

The main challenge posed by this dataset is the 

presence of a “weak connection” area, where the 

two clusters nearly intersect. For clustering 

algorithms that rely solely on point-to-point 

distance, such as k-Means, this structure makes it 

difficult to determine whether the two areas 

represent a single large cluster or two distinct ones. 

Due to the chain-like connection between the 
clusters, identifying an appropriate boundary 

requires consideration of the overall spatial 

structure rather than just local proximity. 

2.2 Standard K-Means Implementation 

The next step is to run the standard K-Means algorithm 

on each dataset. K-Means works by randomly 

initializing centroids and then iteratively grouping data 

based on Euclidean distance and updating the centroids 

until convergence is reached. In this process, the 

number of clusters (k) is determined based on the 

number of known clusters in the ground truth dataset. 

K-Means forms clusters based on the proximity of data 
points to the centroids obtained during iteration. 

However, since the initial centroids are selected 

randomly, the clustering results may vary between runs. 

Therefore, it is important to evaluate the clustering 

quality using appropriate metrics. 

The clustering results from the standard K-Means 

algorithm are evaluated using confusion matrix. The 

confusion matrix is used to compare the clustering 

results with the original dataset labels, which allows the 

calculation of clustering accuracy 

2.3 Development of Multi-Objective PSO for K-Means 

Optimization 

To improve the quality of clustering results, this study 

implements the Multi-Objective Particle Swarm 

Optimization (MOPSO) algorithm to optimize the 

selection of centroids in the K-Means algorithm. This 

approach simultaneously considers two objectives: 

minimizing the Sum of Squared Within-Cluster (SSW) 

and maximizing the Sum of Squared Between-Cluster 

(SSB). 

1. The first objective function aims to minimize the 

Sum of Squared Within-Cluster (SSW): 

𝐟𝟏 = 𝐦𝐢𝐧(∑ ∑ ‖𝐱𝐢 − 𝛍𝐣‖
𝟐

𝐱𝐢∈𝐂𝐣
𝐤
𝐣=𝟏 )            (2) 

Where k is the number of clusters; 𝒙𝒊 is the i-th 

data point; 𝝁𝒋 is the centroid of cluster 𝑪𝒋; 

‖𝒙𝒊 −𝝁𝒋‖
𝟐
 is the squared Euclidean distance 

between the data point and the cluster centroid. 

2. The second objective function aims to maximize 

the Sum of Squared Between-Cluster (SSB), which 

is expressed as the minimization of its negative: 

𝒇𝟐 = −𝒎𝒊𝒏(−∑ 𝒏𝒋‖𝝁𝒋 −𝝁‖
𝟐𝒌

𝒋=𝟏 )            (3) 

Where nⱼ is the number of data points in cluster j; μ 

is the global centroid of the entire dataset; 

‖𝝁𝒋 −𝝁‖
𝟐
 is the squared distance between the 

cluster centroid and the global centroid. 

The goal of MOPSO is to find a set of optimal solutions 

(centroids) based on both objective functions 

simultaneously. The Pareto optimality approach is used, 

where the best solutions are selected based on 

dominance (i.e., no other solution is better in all 

objectives). Particles in the swarm are updated based on 

their personal best positions and global best positions 

from the Pareto archive. 

Using this approach, MOPSO generates a set of 

candidate centroids that offer an optimal trade-off 

between cluster compactness (minimizing SSW) and 

cluster separation (maximizing SSB). The selected 

centroids from this solution set are then used to 

initialize K-Means, aiming for better clustering 

performance. 

After MOPSO identifies the optimal centroids, the K-

Means algorithm is run again using these optimized 

centroids. Thus, the clustering process no longer relies 

on random centroid initialization but instead uses 

optimized centroids, which are expected to yield better 
clustering results. The goal of this step is to determine 

whether the MOPSO-KMeans method can produce 

more stable and accurate clusters compared to standard 

K-Means. 

To ensure the reliability of the results, both methods 

(standard K-Means and MOPSO-KMeans) are executed 
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30 times independently. This is done to observe the 

stability and variability of the clustering outcomes for 

each method. Each run produces values for SSW, SSB, 

and accuracy, which are then analyzed statistically. By 

conducting repeated independent tests, a clearer picture 

of the average performance and stability of the proposed 

method versus standard K-Means can be obtained. 

3. Results and Discussions 

In this section, an analysis is conducted on the 

clustering results obtained from the implementation of 

the K-Means algorithm on each benchmark dataset. 

 

Figure 6. Atom Dataset With K-Means Clustering 

 

Figure 7. ChainLink Dataset With K-Means Clustering 

 

 

Figure 8. EngyTime Dataset With K-Means Clustering 

 

Figure 9. Target Dataset With K-Means Clustering 

 

Figure 10. TwoDiamonds Dataset With K-Means Clustering 

The clustering visualization results on the Atom dataset 

indicate that the K-Means algorithm was not able to 

group the data effectively. In Figure 6, which shows the 

clustering result using the K-Means algorithm, it is clear 

that the grouping does not align with the original 

structure. K-Means clusters the data based on the 
distance to the cluster centroids, resulting in two groups 

that appear to be split from top to bottom, rather than 

from center outward. As a result, many data points from 

the core and shell regions are incorrectly grouped. 

The Chainlink dataset on Figure 7 is a synthetic dataset 

consisting of two interlinked rings in three-dimensional 

space. The K-Means algorithm was applied to cluster 

the data into two groups, corresponding to the actual 

number of clusters. K-Means begins by randomly 

selecting cluster centroids and then iteratively assigns 

data points based on their proximity to these centroids. 

However, due to the non-linear and complex shape of 
the Chainlink dataset, K-Means struggles to accurately 

cluster the data. This is clearly shown in the predicted 

clustering visualization, where the data points are 

incorrectly split across the two rings, rather than along 

their natural separation. 

In the EngyTime dataset, based on the predefined 

ground truth labels, the two clusters appear clearly 

separated. Figure 8 shows the clustering result produced 

by the K-Means algorithm. Although K-Means is an 

unsupervised algorithm, the result shows that it 

performs fairly well on this dataset, producing two 
clusters that visually resemble the ground truth. The 
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purple and yellow points in the visualization represent 

a consistent mapping to the original data structure, with 

only a few points near the boundary areas that may have 

been misclassified. 

For the Target dataset on Figure 9, the clustering result 

from the K-Means algorithm is visualized with data 

points colored according to their predicted clusters. A 

significant discrepancy can be observed when 

compared to the true cluster structure. The outer cluster 

is split into several segments, and smaller groups are not 
identified accurately. This indicates that the K-Means 

algorithm is unable to capture the complex clustering 

pattern in the Target dataset. 

In the TwoDiamonds dataset on Figure 10, the 

clustering result using the K-Means algorithm is shown 

with points colored according to the predicted cluster 

labels. Although the colors do not match the original 

labels, the clustering pattern appears identical, 

demonstrating that K-Means is able to successfully 

identify the two-cluster structure in this dataset. 

Table 1. Accuracy K-Means Clustering 

Dataset Accuracy K-means 

Atom 54.4% 

ChainLink 50% 

EngyTime  95.6% 

Target 0.2692% 

TwoDiamonds 100% 

Based on Table 1, it is evident that the performance of 

the K-Means algorithm is highly dependent on the 

shape and characteristics of each dataset. For datasets 

with simple and linearly separable cluster structures, 

such as TwoDiamonds and EngyTime, K-Means 

performs very well, achieving high accuracy—up to 

100%. However, for datasets with more complex or 

non-linear structures, such as Atom, Chainlink, and 

Target, K-Means fails to cluster the data accurately. 

This is reflected in the low accuracy scores and 

clustering visualizations that do not match the true data 

structure. The main weaknesses of K-Means lie in two 
critical aspects: its reliance on random initialization of 

cluster centroids and its assumption that clusters are 

convex and linearly separable. Because K-Means 

depends solely on Euclidean distance to the cluster 

centroids, it is unable to capture circular, complex, or 

asymmetrical cluster patterns. Furthermore, suboptimal 

initial centroid selection can lead the algorithm to 

converge to local optima, resulting in inaccurate cluster 

assignments. 

To address these limitations, this study proposes the use 

of Multi-Objective Particle Swarm Optimization 
(MOPSO) as an alternative approach to improve the 

effectiveness of data clustering. The experimental 

settings in this study were defined as follows: swarm 

size N = 40, and each test function was executed 30 

times independently, with each run consisting of 100 

iterations. All PSO algorithms were terminated upon 

reaching the predefined maximum number of iterations. 

The performance of MOPSO-K-Means was evaluated 

using commonly used optimization metrics, namely the 

average solution and standard deviation. These metrics 

were used to assess the effectiveness of MOPSO-K-

Means in solving the benchmark clustering tasks. 

Table 2. Clustering With MOPSO-K-Means 

Dataset Item SSW SSB Best 

Accuracy 
MOPSO-

K-Means 

Atom Avg. 1191.22 1414.52 52.8% 

 Std. 230.85 238.22  

ChainLink Avg. 1531.74 1711.26 50.2% 

 Std. 167.04 168.519  

EngyTime Avg. 49122.71 85124.33 95.7% 

 Std. 2951.153 3913.554  

Target Avg. 4126.614 7658.074 59.2% 

 Std. 892.147 1006.303  

TwoDiamonds Avg. 1323.322 2863.340 100% 

 Std. 42.822 44.191  

Table 2 presents the performance evaluation results of 

the MOPSO-K-Means algorithm on five benchmark 

datasets: Atom, ChainLink, EngyTime, Target, and 

TwoDiamonds. The evaluation was carried out using 

commonly used optimization metrics, namely the 

average solution and standard deviation of the SSW 
(Sum of Squares Within) and SSB (Sum of Squares 

Between), along with the best accuracy achieved for 

each dataset. The objective of this evaluation is to assess 

the effectiveness of the MOPSO-K-Means algorithm in 

producing optimal cluster partitions. 

Compared to the conventional K-Means algorithm, the 

results indicate that MOPSO-K-Means generally 

performs better on most datasets. On the Atom dataset, 

K-Means achieved an accuracy of 54.4%, while 

MOPSO-K-Means recorded an accuracy of 52.8%. 

Although there was a slight decrease, the SSW and SSB 

values obtained by MOPSO-K-Means still reflect a 
good and stable cluster distribution, with relatively low 

standard deviations. For the ChainLink dataset, K-

Means achieved 50% accuracy, while MOPSO-K-

Means achieved 50.2%, suggesting a slightly better 

performance in separating the clusters. 

Next, on the EngyTime dataset, K-Means reached an 

accuracy of 95.60%, while MOPSO-K-Means achieved 

95.7%. The difference is very small, indicating that both 

algorithms are equally effective in clustering data with 

clear cluster structures. However, the most significant 

improvement was observed on the Target dataset. K-

Means achieved only 26% accuracy, while MOPSO-

K-Means improved the accuracy to 59.2%. This 

demonstrates that MOPSO-K-Means is more 

capable of handling datasets with complex or non-

linearly separable cluster structures. Lastly, on the 

TwoDiamonds dataset, both K-Means and MOPSO-

K-Means achieved perfect accuracy (100%), 

indicating that this dataset has a very clear structure 

that can be easily separated by both algorithms. 

Overall, the evaluation results show that MOPSO-K-

Means has advantages in terms of flexibility and 

effectiveness in identifying complex cluster 
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structures that conventional K-Means struggles to 

handle. The relatively small standard deviations 

across most datasets also indicate that this algorithm 

can produce stable and consistent solutions in each 

optimization run. Therefore, MOPSO-K-Means can 

be considered a more reliable alternative for 

clustering tasks involving datasets with diverse 

characteristics. 

4. Conclusions 

Based on the analysis and evaluation of five 
benchmark datasets, it can be concluded that the 

performance of the K-Means algorithm is highly 

dependent on the shape and structural characteristics 

of the clusters in the data. On datasets with simple 

and linearly separable structures, such as 

TwoDiamonds and EngyTime, K-Means performs 

very well, achieving high accuracy—up to 100%. 

However, on datasets with non-linear or complex 

structures, such as Atom, ChainLink, and Target, the 

algorithm fails to properly separate clusters, 

resulting in low accuracy and poor alignment with 

the ground truth. 

To address these limitations, the MOPSO-K-Means 

approach was introduced as an alternative solution. 

Based on the experimental results, this algorithm 

shows significant performance improvement on 

datasets with complex structures—most notably on 

the Target dataset, where the accuracy increased 

from 26% (K-Means) to 59.2% (MOPSO-K-

Means). In addition, the obtained SSW and SSB 

values, along with relatively low standard 

deviations, indicate that MOPSO-K-Means is 

capable of producing stable and consistent clustering 

solutions. 

Overall, MOPSO-K-Means has proven to be more 

flexible and reliable in handling various types of 

cluster structures, making it a more suitable choice 

for clustering tasks involving non-convex or non-

linearly separable data distributions. 
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The manuscript presents a promising hybrid 

approach that integrates Multi-Objective Particle 

Swarm Optimization (MOPSO) with K-Means for 

centroid optimization. The topic is relevant and falls 

well within the journal’s scope, and the proposed 

method shows originality in concept. 

However, the submission falls short in several 

critical aspects that prevent it from being accepted in 

its current form. These include an overly narrow 

experimental scope, limited comparative analysis, 
and underdeveloped discussion. While the method is 

promising, the current presentation lacks the rigor 

and depth required for publication. If the authors 

address these concerns through substantial revision 

and stronger validation, this manuscript, in my 

opinion, could be reconsidered in the next review 

cycle. 

Here some feedback to address: 

1. While the manuscript generally maintains an 

academic tone, several sections, particularly the 

abstract and introduction contain verbose or 
repetitive sentences. A language revision is 

needed to ensure clarity and brevity. 

2. The manuscript lacks a meaningful comparison 

with existing baseline approaches. It is essential 

to evaluate the proposed MOPSO-KMeans 

method against conventional K-Means, single-

objective PSO, or other clustering 

metaheuristics (e.g., Genetic Algorithms, Ant 

Colony Optimization, etc.) to contextualize the 

advantages of the proposed solution. 

3. The experiment is conducted solely on the Iris 

dataset, which is small and well-structured. This 
limits the generalizability of the findings. The 

authors, if possible, should validate their 

method on multiple and more challenging 

datasets to support broader claims. 

4. Visualizations such as scatter plots of cluster 

outputs (before and after optimization) would 

significantly enhance the readability and 

intuitive grasp of the method’s performance. 

5. The discussion focuses mainly on presenting 

numeric outcomes. A deeper exploration of why 

and how the method performs as it does, its 
potential weaknesses, and implications for 

future research is necessary. 

6. The absence of detailed pseudocode or 

parameter settings limits reproducibility. 

Providing these elements is crucial for 

validation by other researchers. 

7. While the title suggests a novel multi-objective 

formulation, the specific objectives and how 

they are balanced in the optimization process 

are not clearly defined. This aspect should be 

elaborated to clarify the true novelty of the 

work. 
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