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Abstract

The K-Means algorithm is a popular unsupervised learning method for data clustering. However, its performance heavily
depends on centroid initialization and the distribution shape of the data, making it less effective for datasets with complex or
non-linear cluster structures. This study evaluates the performance of the standard K-Means algorithm and proposes a
Multiobjective Particle Swarm Optimization K-Means (MOPSO-KMeans) approach to improve clustering accuracy. The
evaluation was conducted on five benchmark datasets: Atom, Chainlink, EngyTime, Target, and TwoDiamonds. Experimental
results show that K-Means is effective only on datasets with clearly separated clusters, such as EngyTime and TwoDiamonds,
achieving accuracies of 95.6% and 100%, respectively. In contrast, MOPSO-KMeans demonstrated improved performance on
datasets with non-linear structures, such as Target and Chainlink, with the highest accuracy reaching 59.2%. The evaluation
used metrics including Sum of Square Within (SSW), Sum of Square Between (SSB), best accuracy, and standard deviation.
The results indicate that MOPSO-KMeans provides more stable and consistent clustering outcomes compared to conventional
K-Means. These findings support the application of swarm-based optimization for clustering tasks on datasets with high
complexity.

Keywords: Multiobjective Particle Swarm Optimization; K-Means; Centroid; The Sum of Square Within; The Sum of Square
Between
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1. Introduction closely data points within a cluster are grouped around
their centroid [3]. A smaller SSW value implies greater
similarity among data points within the same cluster.
On the other hand, SSB measures the distance between
cluster centroids, which reflects the separation between
[4]. A larger SSB value indicates greater distance
between clusters, thus making the clustering more
effective in distinguishing different data groups.

Clustering is one of the techniques in data mining that
aims to group data into several clusters based on the
similarity of their characteristics. One of the most
popular clustering methods is k-Means clustering [1],
which is a non-hierarchical cluster analysis method.
This algorithm works by randomly initializing a set
number of centroids, then assigning objects to k clusters
based on their distance to these centroids, and The k-Means algorithm is widely recognized as an
iteratively updating the centroid positions until efficient and scalable method for processing large
convergence is reached. datasets [5]. Several previous studies, such as those by
[6] and [7], have indicated that k-Means can produce
more compact clusters compared to hierarchical
clustering methods. However, k-Means has several
limitations, particularly regarding the random selection
of initial centroids, which can lead to varying clustering
results each time the algorithm is executed [8].
Additionally, k-Means tends to get trapped in local
optima, which may result in suboptimal cluster

In k-Means clustering, the main objective is to form
optimal clusters in which the members of each cluster
are highly similar to one another, while being
significantly different from members of other clusters
[2]. To achieve this goal, two primary metrics are
commonly used: the Sum of Squares Within-cluster
(SSW) and the Sum of Squares Between-cluster (SSB).
SSW measures cluster compactness, indicating how
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assignments [9]. Its sensitivity to outliers is also a major
concern, as extreme values can significantly shift the
centroid positions [10]. Furthermore, the assumption
that clusters are spherical [11] and of uniform size
makes k-Means less effective when dealing with
datasets containing complex-shaped clusters or varying
densities.

To address these issues, this study proposes an
optimization approach based on Multi-Objective
Particle Swarm Optimization (MOPSO) to enhance the
performance of k-Means in determining more optimal
centroids. MOPSO is a variant of Particle Swarm
Optimization (PSO) [12] designed to handle multi-
objective optimization problems. In the context of
clustering, MOPSO aims to simultaneously minimize
the Sum of Squares Within-cluster (SSW) and
maximize the Sum of Squares Between-cluster (SSB),
thereby producing clusters that are well-balanced in
terms of both homogeneity and separation.

This approach will be evaluated using several
benchmark datasets commonly used in clustering
studies [13], namely Atom, Chainlink, Engytime,
Target, and Two Diamonds. Each dataset presents
unique challenges that can test the effectiveness of the
proposed method. The Atom dataset poses a challenge
in separating closely located clusters, while Chainlink
contains interwoven topological structures, which are
difficult for centroid-based methods to handle.
Engytime features uneven density distribution, which
can complicate the identification of precise cluster
boundaries. The Target dataset presents non-linear
patterns that standard k-Means struggles to capture,
whereas Two Diamonds involves closely situated
clusters, making it challenging to determine optimal
separation.

The performance evaluation will be conducted by
comparing the clustering results against the ground
truth labels using accuracy metrics, as well as by
comparing the MOPSO-based approach with
conventional clustering methods such as standard k-
Means. With the MOPSO-based optimization, this
method is expected to produce better clusters than
conventional k-Means, particularly in terms of inter-
cluster separation and intra-cluster uniformity. The
findings of this study are expected to contribute to the
development of more optimal clustering methods for
various applications in the fields of data mining and
machine learning.

1. Research Methods
The methodology section will sequentially present the
analytical methods employed in this study on Figure 1.
2.1 Dataset Benchmark

The first step in this study is the selection of datasets to
be used for testing the effectiveness of the proposed
method. The datasets used in this research are as follows
[13]:

1.

Atom

The Atom dataset [14] is one of the benchmark
datasets commonly used to evaluate the
performance of clustering algorithms under
complex conditions. This dataset on Figure 1 exists
in a three-dimensional space (R?) and consists of
two main groups of data: the core cluster and the
outer hull cluster. Geometrically, the core cluster is
located at the center, while the outer hull
completely surrounds it. This creates a condition
known as an overlapping convex hull, where the
convex shape of one cluster (the hull) entirely
encloses the other cluster (the core). As aresult, the
two clusters overlap and cannot be linearly
separated, meaning no straight line or plane can
clearly divide them.

Atom Dataset

True Clusters
® Cluster 0.0
® Cluster 1.0

Figure 1. Atom Dataset

The core cluster contains 100 data points, while the
outer hull cluster contains 400 data points. The core
cluster is much denser compared to the outer hull,
meaning that the core data points are tightly packed
and concentrated at the center, whereas the hull
data points are more dispersed. This difference in
density poses a particular challenge for algorithms
such as k-Means, which rely on distance between
data points to form clusters. In this case, the
distance between the cluster centroids may be
smaller than the spread within a single cluster,
making separation more difficult.

Therefore, the primary challenge of the Atom
dataset lies in its spatial structure, where the
clusters are entirely overlapped geometrically,
making it very difficult to separate them effectively
using centroid-based clustering algorithms such as
k-Means.

ChainLink

The Chainlink dataset [15];[16] is one of the
benchmark datasets designed to evaluate the ability
of clustering algorithms to handle complex,
interrelated data structures. This dataset on Figure
2 consists of two clusters, each containing 300 data
points, which together form a structure resembling
interlinked chains in three-dimensional space (R?).

This is an open access article under the CC BY-4.0 license
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Chainlink Dataset

True Clusters
® Cluster 0.0
® Cluster 1.0

Figure 2. ChainLink Dataset

Each cluster in the Chainlink dataset has the shape
of aring, and the two rings are interlocked with one
another, creating a structure known as a linear
nonseparable entanglement. This refers to a
condition where clusters cannot be separated
linearly due to their intricate overlapping positions.
Although the clusters appear globally distinct,
many data points from one cluster are locally closer
to points from the other cluster than to points within
their own cluster. This creates a conflict between
global separation and local proximity, posing a
significant challenge for distance-based algorithms
such as k-Means.

Moreover, both clusters have nearly identical
average inter-point distances and densities, making
it difficult to distinguish them based solely on size
or distribution. The intertwined three-dimensional
structure further complicates separation using
linear boundaries.

EngyTime

The EngyTime dataset [17] is a benchmark dataset
used to evaluate the capability of clustering
algorithms in separating clusters that have different
densities but are overlapping. This dataset consists
of 2,000 data points divided into two clusters in a
two-dimensional space (R?), with two main
variables: “Engy” and “Time”.

EngyTime Dataset

9 True Clusters

® Cluster0
® Clusterl

=2

Figure 3. EngyTime Dataset

This dataset on Figure 3 represents a simplified
form of a density-based problem, which frequently

occurs in practice, such as in the analysis of
unclassified high-dimensional flow cytometry
data. EngyTime is constructed from a mixture of
two-dimensional Gaussian distributions,
commonly encountered in various applications,
including sonar signal processing.
The main challenge of this dataset lies in the
overlapping clusters, which are not separated by
empty space. This means that the cluster
boundaries cannot be clearly defined using only the
position or distance between data points. Instead, it
requires considering the density information of the
data. Consequently, centroid-based algorithms like
k-Means, which do not account for density
variations, will struggle to accurately separate the
clusters.
Target
The Target dataset is a benchmark dataset designed
to evaluate the robustness of clustering algorithms
in handling overlapping clusters and the presence
of outliers [18]. It resides in a two-dimensional
space (R?) and consists of 743 data points, divided
into two main clusters and four outlier groups.
Target Dataset

True Clusters
® Cluster0
2 Cluster 1
Cluster 2
Cluster 3
Cluster 4
1 . ® Cluster5

Figure 4. Target Dataset

The first cluster is a dense sphere initially
containing 365 data points, while the second cluster
forms a ring that surrounds the inner circle,
consisting of 395 data points. These two clusters
have overlapping convex hull structures, making
them difficult to separate using only linear
boundaries. Such geometric configuration presents
a particular challenge for centroid-based
algorithms like k-Means.

Additionally, the dataset on Figure 4 includes four
small groups of outliers, each containing four
points, located at the four corners of the space. The
presence of these outliers increases the complexity
of the clustering task, as they can interfere with the
identification of cluster centroids or even be
mistakenly interpreted as separate clusters by
algorithms that are sensitive to noise.
TwoDiamonds

The TwoDiamonds dataset [19];[20] is a
benchmark dataset designed to evaluate the
performance of clustering algorithms in

This is an open access article under the CC BY-4.0 license
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recognizing weakly connected clusters, such as
chain-like structures. This dataset on Figure 5
consists of two clusters, each containing 200 data
points in a two-dimensional space (R?).

TwoDiamonds Dataset

True Clusters
® Cluster0
-1.00 . ® Cluster1

00 05 10 15 20 25 30 35 40
x

Figure 5. TwoDiamonds Dataset

Each cluster takes the shape of a diamond, with
data points uniformly distributed across the area,
resulting in an even spread within each cluster.
Geometrically, the clusters are positioned in two
adjacent square regions that nearly touch at one
side, forming a structure resembling two diamonds
placed close together.

The main challenge posed by this dataset is the
presence of a “weak connection” area, where the
two clusters nearly intersect. For clustering
algorithms that rely solely on point-to-point
distance, such as k-Means, this structure makes it
difficult to determine whether the two areas
represent a single large cluster or two distinct ones.
Due to the chain-like connection between the
clusters, identifying an appropriate boundary
requires consideration of the overall spatial
structure rather than just local proximity.

2.2 Standard K-Means Implementation

The next step is to run the standard K-Means algorithm
on each dataset. K-Means works by randomly
initializing centroids and then iteratively grouping data
based on Euclidean distance and updating the centroids
until convergence is reached. In this process, the
number of clusters (k) is determined based on the
number of known clusters in the ground truth dataset.
K-Means forms clusters based on the proximity of data
points to the centroids obtained during iteration.
However, since the initial centroids are selected
randomly, the clustering results may vary between runs.
Therefore, it is important to evaluate the clustering
quality using appropriate metrics.

The clustering results from the standard K-Means
algorithm are evaluated using confusion matrix. The
confusion matrix is used to compare the clustering
results with the original dataset labels, which allows the
calculation of clustering accuracy

2.3 Development of Multi-Objective PSO for K-Means
Optimization

To improve the quality of clustering results, this study
implements the Multi-Objective Particle Swarm
Optimization (MOPSO) algorithm to optimize the
selection of centroids in the K-Means algorithm. This
approach simultaneously considers two objectives:
minimizing the Sum of Squared Within-Cluster (SSW)
and maximizing the Sum of Squared Between-Cluster
(SSB).

1. The first objective function aims to minimize the
Sum of Squared Within-Cluster (SSW):

£, = min (S, Syeq i~ %) @

Where Kk is the number of clusters; x; is the i-th
data point; p; is the centroid of cluster C]-;

||x,-—p¢]-||2 is the squared Euclidean distance
between the data point and the cluster centroid.

2. The second objective function aims to maximize
the Sum of Squared Between-Cluster (SSB), which
is expressed as the minimization of its negative:

f2 = —min (=5, nyllw; — ) 3)

Where n; is the number of data points in cluster j; 1
is the global centroid of the entire dataset;

||p¢j—u||2 is the squared distance between the
cluster centroid and the global centroid.

The goal of MOPSO is to find a set of optimal solutions
(centroids) based on both objective functions
simultaneously. The Pareto optimality approach is used,
where the best solutions are selected based on
dominance (i.e., no other solution is better in all
objectives). Particles in the swarm are updated based on
their personal best positions and global best positions
from the Pareto archive.

Using this approach, MOPSO generates a set of
candidate centroids that offer an optimal trade-off
between cluster compactness (minimizing SSW) and
cluster separation (maximizing SSB). The selected
centroids from this solution set are then used to
initialize K-Means, aiming for better clustering
performance.

After MOPSO identifies the optimal centroids, the K-
Means algorithm is run again using these optimized
centroids. Thus, the clustering process no longer relies
on random centroid initialization but instead uses
optimized centroids, which are expected to yield better
clustering results. The goal of this step is to determine
whether the MOPSO-KMeans method can produce
more stable and accurate clusters compared to standard
K-Means.

To ensure the reliability of the results, both methods
(standard K-Means and MOPSO-KMeans) are executed

This is an open access article under the CC BY-4.0 license 4
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30 times independently. This is done to observe the
stability and variability of the clustering outcomes for
each method. Each run produces values for SSW, SSB,
and accuracy, which are then analyzed statistically. By
conducting repeated independent tests, a clearer picture
of the average performance and stability of the proposed
method versus standard K-Means can be obtained.

3. Results and Discussions

In this section, an analysis is conducted on the
clustering results obtained from the implementation of
the K-Means algorithm on each benchmark dataset.

K-Means Clustering Result Atom Dataset

Predicted Clusters
® Cluster 0
Cluster 1

Figure 6. Atom Dataset With K-Means Clustering

K-Means Clustering Result Chainlink Dataset

Predicted Clusters
® Cluster 0
Cluster 1

Figure 7. ChainLink Dataset With K-Means Clustering

K-Means Clustering Result EngyTime Dataset

6
Predicted Clusters

® Cluster 0
Cluster 1

Figure 8. EngyTime Dataset With K-Means Clustering

K-Means Clustering Result Target Dataset

Predicted Clusters
® Cluster0
® Cluster1
® Cluster 2

Cluster 3
Cluster 4
Cluster 5

.
. "-f;j"ff‘.- o

i,
o

Figure 9. Target Dataset With K-Means Clustering

K-Means Clustering Result TwoDiamonds Dataset

*  Predicted Clusters
® Cluster 0
-1.00 . Cluster 1

00 05 10 15 20 25 30 35 40
x

Figure 10. TwoDiamonds Dataset With K-Means Clustering

The clustering visualization results on the Atom dataset
indicate that the K-Means algorithm was not able to
group the data effectively. In Figure 6, which shows the
clustering result using the K-Means algorithm, it is clear
that the grouping does not align with the original
structure. K-Means clusters the data based on the
distance to the cluster centroids, resulting in two groups
that appear to be split from top to bottom, rather than
from center outward. As a result, many data points from
the core and shell regions are incorrectly grouped.

The Chainlink dataset on Figure 7 is a synthetic dataset
consisting of two interlinked rings in three-dimensional
space. The K-Means algorithm was applied to cluster
the data into two groups, corresponding to the actual
number of clusters. K-Means begins by randomly
selecting cluster centroids and then iteratively assigns
data points based on their proximity to these centroids.
However, due to the non-linear and complex shape of
the Chainlink dataset, K-Means struggles to accurately
cluster the data. This is clearly shown in the predicted
clustering visualization, where the data points are
incorrectly split across the two rings, rather than along
their natural separation.

In the EngyTime dataset, based on the predefined
ground truth labels, the two clusters appear clearly
separated. Figure 8 shows the clustering result produced
by the K-Means algorithm. Although K-Means is an
unsupervised algorithm, the result shows that it
performs fairly well on this dataset, producing two
clusters that visually resemble the ground truth. The

This is an open access article under the CC BY-4.0 license 5
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purple and yellow points in the visualization represent
a consistent mapping to the original data structure, with
only a few points near the boundary areas that may have
been misclassified.

For the Target dataset on Figure 9, the clustering result
from the K-Means algorithm is visualized with data
points colored according to their predicted clusters. A
significant discrepancy can be observed when
compared to the true cluster structure. The outer cluster
is splitinto several segments, and smaller groups are not
identified accurately. This indicates that the K-Means
algorithm is unable to capture the complex clustering
pattern in the Target dataset.

In the TwoDiamonds dataset on Figure 10, the
clustering result using the K-Means algorithm is shown
with points colored according to the predicted cluster
labels. Although the colors do not match the original
labels, the clustering pattern appears identical,
demonstrating that K-Means is able to successfully
identify the two-cluster structure in this dataset.

Table 1. Accuracy K-Means Clustering

Dataset Accuracy K-means
Atom 54.4%

ChainLink 50%

EngyTime 95.6%

Target 0.2692%

TwoDiamonds 100%

Based on Table 1, it is evident that the performance of
the K-Means algorithm is highly dependent on the
shape and characteristics of each dataset. For datasets
with simple and linearly separable cluster structures,
such as TwoDiamonds and EngyTime, K-Means
performs very well, achieving high accuracy—up to
100%. However, for datasets with more complex or
non-linear structures, such as Atom, Chainlink, and
Target, K-Means fails to cluster the data accurately.
This is reflected in the low accuracy scores and
clustering visualizations that do not match the true data
structure. The main weaknesses of K-Means lie in two
critical aspects: its reliance on random initialization of
cluster centroids and its assumption that clusters are
convex and linearly separable. Because K-Means
depends solely on Euclidean distance to the cluster
centroids, it is unable to capture circular, complex, or
asymmetrical cluster patterns. Furthermore, suboptimal
initial centroid selection can lead the algorithm to
converge to local optima, resulting in inaccurate cluster
assignments.

To address these limitations, this study proposes the use
of Multi-Objective Particle Swarm Optimization
(MOPSO) as an alternative approach to improve the
effectiveness of data clustering. The experimental
improvement was observed on the Target dataset. K-
Means achieved only 26% accuracy, while MOPSO-
K-Means improved the accuracy to 59.2%. This
demonstrates that MOPSO-K-Means is more
capable of handling datasets with complex or non-
linearly separable cluster structures. Lastly, on the
TwoDiamonds dataset, both K-Means and MOPSO-

settings in this study were defined as follows: swarm
size N = 40, and each test function was executed 30
times independently, with each run consisting of 100
iterations. All PSO algorithms were terminated upon
reaching the predefined maximum number of iterations.

The performance of MOPSO-K-Means was evaluated
using commonly used optimization metrics, namely the
average solution and standard deviation. These metrics
were used to assess the effectiveness of MOPSO-K-
Means in solving the benchmark clustering tasks.

Table 2. Clustering With MOPSO-K-Means

Dataset Item SSw SSB Best
Accuracy
MOPSO-
K-Means
Atom Avg. 1191.22 1414.52 52.8%
Std. 230.85 238.22
ChainLink Avg. 1531.74 1711.26 50.2%
Std. 167.04 168.519
EngyTime Avg. 49122.71 8512433  95.7%
Std. 2951.153  3913.554
Target Avg. 4126.614  7658.074  59.2%
Std. 892.147 1006.303
TwoDiamonds  Avg. 1323.322  2863.340 100%
Std. 42.822 44,191

Table 2 presents the performance evaluation results of
the MOPSO-K-Means algorithm on five benchmark
datasets: Atom, ChainLink, EngyTime, Target, and
TwoDiamonds. The evaluation was carried out using
commonly used optimization metrics, namely the
average solution and standard deviation of the SSW
(Sum of Squares Within) and SSB (Sum of Squares
Between), along with the best accuracy achieved for
each dataset. The objective of this evaluation is to assess
the effectiveness of the MOPSO-K-Means algorithm in
producing optimal cluster partitions.

Compared to the conventional K-Means algorithm, the
results indicate that MOPSO-K-Means generally
performs better on most datasets. On the Atom dataset,
K-Means achieved an accuracy of 54.4%, while
MOPSO-K-Means recorded an accuracy of 52.8%.
Although there was a slight decrease, the SSW and SSB
values obtained by MOPSO-K-Means still reflect a
good and stable cluster distribution, with relatively low
standard deviations. For the ChainLink dataset, K-
Means achieved 50% accuracy, while MOPSO-K-
Means achieved 50.2%, suggesting a slightly better
performance in separating the clusters.

Next, on the EngyTime dataset, K-Means reached an
accuracy of 95.60%, while MOPSO-K-Means achieved
95.7%. The difference is very small, indicating that both
algorithms are equally effective in clustering data with
clear cluster structures. However, the most significant

K-Means achieved perfect accuracy (100%),
indicating that this dataset has a very clear structure
that can be easily separated by both algorithms.

Overall, the evaluation results show that MOPSO-K-
Means has advantages in terms of flexibility and
effectiveness in identifying complex cluster

This is an open access article under the CC BY-4.0 license 6
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structures that conventional K-Means struggles to
handle. The relatively small standard deviations
across most datasets also indicate that this algorithm
can produce stable and consistent solutions in each
optimization run. Therefore, MOPSO-K-Means can
be considered a more reliable alternative for
clustering tasks involving datasets with diverse
characteristics.

4. Conclusions

Based on the analysis and evaluation of five
benchmark datasets, it can be concluded that the
performance of the K-Means algorithm is highly
dependent on the shape and structural characteristics
of the clusters in the data. On datasets with simple
and linearly separable structures, such as
TwoDiamonds and EngyTime, K-Means performs
very well, achieving high accuracy—up to 100%.
However, on datasets with non-linear or complex
structures, such as Atom, ChainLink, and Target, the
algorithm fails to properly separate clusters,
resulting in low accuracy and poor alignment with
the ground truth.

To address these limitations, the MOPSO-K-Means
approach was introduced as an alternative solution.
Based on the experimental results, this algorithm
shows significant performance improvement on
datasets with complex structures—most notably on
the Target dataset, where the accuracy increased
from 26% (K-Means) to 59.2% (MOPSO-K-
Means). In addition, the obtained SSW and SSB
values, along with relatively low standard
deviations, indicate that MOPSO-K-Means is
capable of producing stable and consistent clustering
solutions.

Overall, MOPSO-K-Means has proven to be more
flexible and reliable in handling various types of
cluster structures, making it a more suitable choice
for clustering tasks involving non-convex or non-
linearly separable data distributions.
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The manuscript presents a promising hybrid
approach that integrates Multi-Objective Particle
Swarm Optimization (MOPSO) with K-Means for
centroid optimization. The topic is relevant and falls
well within the journal’s scope, and the proposed
method shows originality in concept.

However, the submission falls short in several
critical aspects that prevent it from being accepted in
its current form. These include an overly narrow
experimental scope, limited comparative analysis,
and underdeveloped discussion. While the method is
promising, the current presentation lacks the rigor
and depth required for publication. If the authors
address these concerns through substantial revision
and stronger validation, this manuscript, in my
opinion, could be reconsidered in the next review
cycle.

Here some feedback to address:

1. While the manuscript generally maintains an
academic tone, several sections, particularly the
abstract and introduction contain verbose or
repetitive sentences. A language revision is
needed to ensure clarity and brevity.

2. The manuscript lacks a meaningful comparison
with existing baseline approaches. It is essential
to evaluate the proposed MOPSO-KMeans
method against conventional K-Means, single-
objective  PSO, or other clustering
metaheuristics (e.g., Genetic Algorithms, Ant
Colony Optimization, etc.) to contextualize the
advantages of the proposed solution.

3. The experiment is conducted solely on the Iris
dataset, which is small and well-structured. This
limits the generalizability of the findings. The
authors, if possible, should validate their
method on multiple and more challenging
datasets to support broader claims.

4. Visualizations such as scatter plots of cluster
outputs (before and after optimization) would
significantly enhance the readability and
intuitive grasp of the method’s performance.

5. The discussion focuses mainly on presenting
numeric outcomes. A deeper exploration of why
and how the method performs as it does, its
potential weaknesses, and implications for
future research is necessary.

6. The absence of detailed pseudocode or
parameter settings limits reproducibility.
Providing these elements is crucial for
validation by other researchers.

7. While the title suggests a novel multi-objective
formulation, the specific objectives and how
they are balanced in the optimization process
are not clearly defined. This aspect should be
elaborated to clarify the true novelty of the
work.
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